mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Add files via upload
This commit is contained in:
parent
143d32f621
commit
41ca6028d6
0
GPT_SoVITS/AR/__init__.py
Normal file
0
GPT_SoVITS/AR/__init__.py
Normal file
0
GPT_SoVITS/AR/data/__init__.py
Normal file
0
GPT_SoVITS/AR/data/__init__.py
Normal file
157
GPT_SoVITS/AR/data/bucket_sampler.py
Normal file
157
GPT_SoVITS/AR/data/bucket_sampler.py
Normal file
@ -0,0 +1,157 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/bucketsampler.py
|
||||
import itertools
|
||||
import math
|
||||
import random
|
||||
from random import shuffle
|
||||
from typing import Iterator
|
||||
from typing import Optional
|
||||
from typing import TypeVar
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import Dataset
|
||||
from torch.utils.data import Sampler
|
||||
|
||||
__all__ = [
|
||||
"DistributedBucketSampler",
|
||||
]
|
||||
|
||||
T_co = TypeVar('T_co', covariant=True)
|
||||
|
||||
|
||||
class DistributedBucketSampler(Sampler[T_co]):
|
||||
r"""
|
||||
sort the dataset wrt. input length
|
||||
divide samples into buckets
|
||||
sort within buckets
|
||||
divide buckets into batches
|
||||
sort batches
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int]=None,
|
||||
rank: Optional[int]=None,
|
||||
shuffle: bool=True,
|
||||
seed: int=0,
|
||||
drop_last: bool=False,
|
||||
batch_size: int=32) -> None:
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError(
|
||||
"Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError(
|
||||
"Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
torch.cuda.set_device(rank)
|
||||
if rank >= num_replicas or rank < 0:
|
||||
raise ValueError("Invalid rank {}, rank should be in the interval"
|
||||
" [0, {}]".format(rank, num_replicas - 1))
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.epoch = 0
|
||||
self.drop_last = drop_last
|
||||
# If the dataset length is evenly divisible by # of replicas, then there
|
||||
# is no need to drop any data, since the dataset will be split equally.
|
||||
if self.drop_last and len(
|
||||
self.
|
||||
dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
||||
# Split to nearest available length that is evenly divisible.
|
||||
# This is to ensure each rank receives the same amount of data when
|
||||
# using this Sampler.
|
||||
self.num_samples = math.ceil(
|
||||
(len(self.dataset) - self.num_replicas) /
|
||||
self.num_replicas # type: ignore[arg-type]
|
||||
)
|
||||
else:
|
||||
self.num_samples = math.ceil(
|
||||
len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
self.batch_size = batch_size
|
||||
self.id_with_length = self._get_sample_lengths()
|
||||
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
||||
|
||||
def _get_sample_lengths(self):
|
||||
id_with_lengths = []
|
||||
for i in range(len(self.dataset)):
|
||||
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
||||
id_with_lengths.sort(key=lambda x: x[1])
|
||||
return id_with_lengths
|
||||
|
||||
def make_buckets(self, bucket_width: float=2.0):
|
||||
buckets = []
|
||||
cur = []
|
||||
max_sec = bucket_width
|
||||
for id, sec in self.id_with_length:
|
||||
if sec < max_sec:
|
||||
cur.append(id)
|
||||
else:
|
||||
buckets.append(cur)
|
||||
cur = [id]
|
||||
max_sec += bucket_width
|
||||
if len(cur) > 0:
|
||||
buckets.append(cur)
|
||||
return buckets
|
||||
|
||||
def __iter__(self) -> Iterator[T_co]:
|
||||
if self.shuffle:
|
||||
# deterministically shuffle based on epoch and seed
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.seed + self.epoch)
|
||||
random.seed(self.epoch + self.seed)
|
||||
shuffled_bucket = []
|
||||
for buc in self.id_buckets:
|
||||
buc_copy = buc.copy()
|
||||
shuffle(buc_copy)
|
||||
shuffled_bucket.append(buc_copy)
|
||||
grouped_batch_size = self.batch_size * self.num_replicas
|
||||
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
||||
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
||||
batches = [
|
||||
shuffled_bucket[b * grouped_batch_size:(b + 1) *
|
||||
grouped_batch_size] for b in range(n_batch)
|
||||
]
|
||||
shuffle(batches)
|
||||
indices = list(itertools.chain(*batches))
|
||||
else:
|
||||
# type: ignore[arg-type]
|
||||
indices = list(range(len(self.dataset)))
|
||||
|
||||
if not self.drop_last:
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
if padding_size <= len(indices):
|
||||
indices += indices[:padding_size]
|
||||
else:
|
||||
indices += (indices * math.ceil(padding_size /
|
||||
len(indices)))[:padding_size]
|
||||
else:
|
||||
# remove tail of data to make it evenly divisible.
|
||||
indices = indices[:self.total_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.num_samples
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
r"""
|
||||
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
||||
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
||||
sampler will yield the same ordering.
|
||||
|
||||
Args:
|
||||
epoch (int): Epoch number.
|
||||
"""
|
||||
self.epoch = epoch
|
66
GPT_SoVITS/AR/data/data_module.py
Normal file
66
GPT_SoVITS/AR/data/data_module.py
Normal file
@ -0,0 +1,66 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/data_module.py
|
||||
from pytorch_lightning import LightningDataModule
|
||||
from AR.data.bucket_sampler import DistributedBucketSampler
|
||||
from AR.data.dataset import Text2SemanticDataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
class Text2SemanticDataModule(LightningDataModule):
|
||||
def __init__(self, config, train_semantic_path, train_phoneme_path,dev_semantic_path=None, dev_phoneme_path=None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.train_semantic_path = train_semantic_path
|
||||
self.train_phoneme_path = train_phoneme_path
|
||||
self.dev_semantic_path = dev_semantic_path
|
||||
self.dev_phoneme_path = dev_phoneme_path
|
||||
self.num_workers = self.config['data']['num_workers']
|
||||
|
||||
def prepare_data(self):
|
||||
pass
|
||||
|
||||
def setup(self, stage=None, output_logs=False):
|
||||
self._train_dataset = Text2SemanticDataset(
|
||||
phoneme_path=self.train_phoneme_path,
|
||||
semantic_path=self.train_semantic_path,
|
||||
max_sec=self.config['data']['max_sec'],
|
||||
pad_val=self.config['data']['pad_val'])
|
||||
self._dev_dataset = self._train_dataset
|
||||
# self._dev_dataset = Text2SemanticDataset(
|
||||
# phoneme_path=self.dev_phoneme_path,
|
||||
# semantic_path=self.dev_semantic_path,
|
||||
# max_sample=self.config['data']['max_eval_sample'],
|
||||
# max_sec=self.config['data']['max_sec'],
|
||||
# pad_val=self.config['data']['pad_val'])
|
||||
|
||||
def train_dataloader(self):
|
||||
batch_size = self.config['train']['batch_size']
|
||||
sampler = DistributedBucketSampler(
|
||||
self._train_dataset, batch_size=batch_size)
|
||||
return DataLoader(
|
||||
self._train_dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=self.num_workers,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
return DataLoader(
|
||||
self._dev_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=max(self.num_workers,12),
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16
|
||||
)
|
||||
|
||||
# 这个会使用到嘛?
|
||||
def test_dataloader(self):
|
||||
return DataLoader(
|
||||
self._dev_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate)
|
302
GPT_SoVITS/AR/data/dataset.py
Normal file
302
GPT_SoVITS/AR/data/dataset.py
Normal file
@ -0,0 +1,302 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/t2s_dataset.py
|
||||
import pdb
|
||||
import sys
|
||||
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
||||
import traceback,os
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch,json
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from text import cleaned_text_to_sequence
|
||||
# from config import exp_dir
|
||||
|
||||
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
||||
seq = sequences[0]
|
||||
ndim = seq.ndim
|
||||
if axis < 0:
|
||||
axis += ndim
|
||||
dtype = seq.dtype
|
||||
pad_value = dtype.type(pad_value)
|
||||
seq_lengths = [seq.shape[axis] for seq in sequences]
|
||||
max_length = np.max(seq_lengths)
|
||||
|
||||
padded_sequences = []
|
||||
for seq, length in zip(sequences, seq_lengths):
|
||||
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (
|
||||
ndim - axis - 1)
|
||||
padded_seq = np.pad(
|
||||
seq, padding, mode='constant', constant_values=pad_value)
|
||||
padded_sequences.append(padded_seq)
|
||||
batch = np.stack(padded_sequences)
|
||||
return batch
|
||||
|
||||
class Text2SemanticDataset(Dataset):
|
||||
"""dataset class for text tokens to semantic model training."""
|
||||
|
||||
def __init__(self,
|
||||
phoneme_path: str,
|
||||
semantic_path: str,
|
||||
max_sample: int = None,
|
||||
max_sec: int = 100,
|
||||
pad_val: int = 1024,
|
||||
# min value of phoneme/sec
|
||||
min_ps_ratio: int = 3,
|
||||
# max value of phoneme/sec
|
||||
max_ps_ratio: int = 25) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.semantic_data = pd.read_csv(semantic_path, delimiter='\t', encoding="utf-8")
|
||||
# get dict
|
||||
self.path2=phoneme_path#"%s/2-name2text.txt"%exp_dir#phoneme_path
|
||||
self.path3="%s/3-bert"%(os.path.basename(phoneme_path))#"%s/3-bert"%exp_dir#bert_dir
|
||||
self.path6=semantic_path#"%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path6)
|
||||
self.phoneme_data={}
|
||||
with open(self.path2,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp=line.split("\t")
|
||||
if(len(tmp)!=4):continue
|
||||
self.phoneme_data[tmp[0]]=[tmp[1],tmp[2],tmp[3]]
|
||||
|
||||
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
||||
# pad for semantic tokens
|
||||
self.PAD: int = pad_val
|
||||
# self.hz = 25
|
||||
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
||||
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
||||
# self.hz=int(data[:-2])#
|
||||
self.hz=int(os.environ.get("hz","25hz")[:-2])
|
||||
|
||||
# max seconds of semantic token
|
||||
self.max_sec = max_sec
|
||||
self.min_ps_ratio = min_ps_ratio
|
||||
self.max_ps_ratio = max_ps_ratio
|
||||
|
||||
if max_sample is not None:
|
||||
self.semantic_data = self.semantic_data[:max_sample]
|
||||
|
||||
# {idx: (semantic, phoneme)}
|
||||
# semantic list, phoneme list
|
||||
self.semantic_phoneme = []
|
||||
self.item_names = []
|
||||
|
||||
self.inited = False
|
||||
|
||||
if not self.inited:
|
||||
# 调用初始化函数
|
||||
self.init_batch()
|
||||
self.inited = True
|
||||
del self.semantic_data
|
||||
del self.phoneme_data
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
||||
|
||||
|
||||
def init_batch(self):
|
||||
semantic_data_len = len(self.semantic_data)
|
||||
phoneme_data_len = len(self.phoneme_data.keys())
|
||||
print("semantic_data_len:", semantic_data_len)
|
||||
print("phoneme_data_len:", phoneme_data_len)
|
||||
idx = 0
|
||||
num_not_in = 0
|
||||
num_deleted_bigger = 0
|
||||
num_deleted_ps = 0
|
||||
for i in range(semantic_data_len):
|
||||
# 先依次遍历
|
||||
# get str
|
||||
item_name = self.semantic_data['item_name'][i]
|
||||
# print(self.phoneme_data)
|
||||
try:
|
||||
phoneme, word2ph, text = self.phoneme_data[item_name]
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
# print(f"{item_name} not in self.phoneme_data !")
|
||||
num_not_in += 1
|
||||
continue
|
||||
|
||||
semantic_str = self.semantic_data['semantic_audio'][i]
|
||||
# get token list
|
||||
semantic_ids = [int(idx) for idx in semantic_str.split(' ')]
|
||||
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
||||
# 过滤掉太长的样本
|
||||
if len(semantic_ids) > self.max_sec * self.hz:#########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
||||
num_deleted_bigger += 1
|
||||
continue
|
||||
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
||||
phoneme = phoneme.split(' ')
|
||||
|
||||
try:
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
# print(f"{item_name} not in self.phoneme_data !")
|
||||
num_not_in += 1
|
||||
continue
|
||||
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
||||
if len(phoneme_ids) >self.max_sec * self.hz/2.5:###########2:改为恒定限制为semantic/2.5就行
|
||||
num_deleted_ps += 1
|
||||
continue
|
||||
# if len(semantic_ids) > 1000:###########3
|
||||
# num_deleted_bigger += 1
|
||||
# continue
|
||||
|
||||
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
||||
|
||||
if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio:##########4#3~25#每秒多少个phone
|
||||
num_deleted_ps += 1
|
||||
# print(item_name)
|
||||
continue
|
||||
|
||||
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
||||
idx += 1
|
||||
self.item_names.append(item_name)
|
||||
|
||||
min_num=100#20直接不补#30补了也不存ckpt
|
||||
leng =len(self.semantic_phoneme)
|
||||
if(leng<min_num):
|
||||
tmp1=self.semantic_phoneme
|
||||
tmp2=self.item_names
|
||||
self.semantic_phoneme=[]
|
||||
self.item_names=[]
|
||||
for _ in range(max(2,int(min_num/leng))):
|
||||
self.semantic_phoneme+=tmp1
|
||||
self.item_names+=tmp2
|
||||
if num_not_in > 0:
|
||||
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
||||
if num_deleted_bigger > 0:
|
||||
print(
|
||||
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
|
||||
)
|
||||
if num_deleted_ps > 0:
|
||||
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
||||
print(
|
||||
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
|
||||
)
|
||||
'''
|
||||
there are 31 semantic datas not in phoneme datas
|
||||
deleted 34 audios who's duration are bigger than 54 seconds
|
||||
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
||||
dataset.__len__(): 366463
|
||||
|
||||
'''
|
||||
# 345410 for LibriTTS
|
||||
print("dataset.__len__():", self.__len__())
|
||||
|
||||
def __get_item_names__(self) -> List[str]:
|
||||
return self.item_names
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.semantic_phoneme)
|
||||
|
||||
def __getitem__(self, idx: int) -> Dict:
|
||||
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
||||
item_name = self.item_names[idx]
|
||||
phoneme_ids_len = len(phoneme_ids)
|
||||
# semantic tokens target
|
||||
semantic_ids_len = len(semantic_ids)
|
||||
|
||||
flag=0
|
||||
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
||||
if(os.path.exists(path_bert)==True):bert_feature = torch.load(path_bert,map_location="cpu")
|
||||
else:flag=1
|
||||
if(flag==1):
|
||||
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
||||
bert_feature=None
|
||||
else:
|
||||
assert bert_feature.shape[-1] == len(phoneme_ids)
|
||||
return {
|
||||
'idx': idx,
|
||||
'phoneme_ids': phoneme_ids,
|
||||
'phoneme_ids_len': phoneme_ids_len,
|
||||
'semantic_ids': semantic_ids,
|
||||
'semantic_ids_len': semantic_ids_len,
|
||||
'bert_feature': bert_feature,
|
||||
}
|
||||
|
||||
def get_sample_length(self, idx: int):
|
||||
semantic_ids = self.semantic_phoneme[idx][0]
|
||||
sec = 1.0 * len(semantic_ids) / self.hz
|
||||
return sec
|
||||
|
||||
def collate(self, examples: List[Dict]) -> Dict:
|
||||
sample_index: List[int] = []
|
||||
phoneme_ids: List[torch.Tensor] = []
|
||||
phoneme_ids_lens: List[int] = []
|
||||
semantic_ids: List[torch.Tensor] = []
|
||||
semantic_ids_lens: List[int] = []
|
||||
# return
|
||||
|
||||
|
||||
for item in examples:
|
||||
sample_index.append(item["idx"])
|
||||
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
||||
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
||||
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
||||
semantic_ids_lens.append(item["semantic_ids_len"])
|
||||
|
||||
# pad 0
|
||||
phoneme_ids = batch_sequences(phoneme_ids)
|
||||
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
||||
|
||||
# # convert each batch to torch.tensor
|
||||
phoneme_ids = torch.tensor(phoneme_ids)
|
||||
semantic_ids = torch.tensor(semantic_ids)
|
||||
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
||||
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
||||
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
||||
bert_padded.zero_()
|
||||
|
||||
for idx, item in enumerate(examples):
|
||||
bert = item['bert_feature']
|
||||
if(bert!=None):
|
||||
bert_padded[idx, :, :bert.shape[-1]] = bert
|
||||
|
||||
return {
|
||||
# List[int]
|
||||
"ids": sample_index,
|
||||
# torch.Tensor (B, max_phoneme_length)
|
||||
"phoneme_ids": phoneme_ids,
|
||||
# torch.Tensor (B)
|
||||
"phoneme_ids_len": phoneme_ids_lens,
|
||||
# torch.Tensor (B, max_semantic_ids_length)
|
||||
"semantic_ids": semantic_ids,
|
||||
# torch.Tensor (B)
|
||||
"semantic_ids_len": semantic_ids_lens,
|
||||
# torch.Tensor (B, 1024, max_phoneme_length)
|
||||
"bert_feature": bert_padded,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
root_dir = '/data/docker/liujing04/gpt-vits/prepare/dump_mix/'
|
||||
dataset = Text2SemanticDataset(
|
||||
phoneme_path=root_dir + 'phoneme_train.npy',
|
||||
semantic_path=root_dir + 'semantic_train.tsv')
|
||||
|
||||
batch_size = 12
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
collate_fn=dataset.collate,
|
||||
shuffle=False)
|
||||
for i, batch in enumerate(dataloader):
|
||||
if(i%1000==0):print(i)
|
||||
# if i == 0:
|
||||
# print('batch["ids"]:', batch["ids"])
|
||||
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
||||
# batch["phoneme_ids"].shape)
|
||||
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
||||
# batch["phoneme_ids_len"].shape)
|
||||
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
||||
# batch["semantic_ids"].shape)
|
||||
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
||||
# batch["semantic_ids_len"].shape)
|
0
GPT_SoVITS/AR/models/__init__.py
Normal file
0
GPT_SoVITS/AR/models/__init__.py
Normal file
128
GPT_SoVITS/AR/models/t2s_lightning_module.py
Normal file
128
GPT_SoVITS/AR/models/t2s_lightning_module.py
Normal file
@ -0,0 +1,128 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
||||
import os,sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import LightningModule
|
||||
from AR.models.t2s_model import Text2SemanticDecoder
|
||||
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir,is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1=config.get("pretrained_s1")
|
||||
if(pretrained_s1 and is_train):
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["weight"]))
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / 'eval'
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
loss, acc = self.model.forward(
|
||||
batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
batch['bert_feature'])
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
opt.zero_grad()
|
||||
scheduler.step()
|
||||
|
||||
self.log(
|
||||
"total_loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):return
|
||||
# # get loss
|
||||
# loss, acc = self.model.forward(
|
||||
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
# batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
#
|
||||
# self.log(
|
||||
# "val_total_loss",
|
||||
# loss,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
# self.log(
|
||||
# f"val_top_{self.top_k}_acc",
|
||||
# acc,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
#
|
||||
# # get infer output
|
||||
# semantic_len = batch['semantic_ids'].size(1)
|
||||
# prompt_len = min(int(semantic_len * 0.5), 150)
|
||||
# prompt = batch['semantic_ids'][:, :prompt_len]
|
||||
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
||||
# batch['phoneme_ids_len'], prompt,
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
# save_name = f'semantic_toks_{batch_idx}.pt'
|
||||
# save_path = os.path.join(self.eval_dir, save_name)
|
||||
# torch.save(pred_semantic.detach().cpu(), save_path)
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append([
|
||||
name_param_pair[0]
|
||||
for name_param_pair in self.model.named_parameters()
|
||||
])
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
betas=(0.9, 0.95),
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000, )
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler":
|
||||
WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config['optimizer']['lr_init'],
|
||||
peak_lr=self.config['optimizer']['lr'],
|
||||
end_lr=self.config['optimizer']['lr_end'],
|
||||
warmup_steps=self.config['optimizer']['warmup_steps'],
|
||||
total_steps=self.config['optimizer']['decay_steps'])
|
||||
}
|
||||
}
|
298
GPT_SoVITS/AR/models/t2s_model.py
Normal file
298
GPT_SoVITS/AR/models/t2s_model.py
Normal file
@ -0,0 +1,298 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from AR.models.utils import make_pad_mask
|
||||
from AR.models.utils import topk_sampling,sample,logits_to_probs,multinomial_sample_one_no_sync
|
||||
from AR.modules.embedding import SinePositionalEmbedding
|
||||
from AR.modules.embedding import TokenEmbedding
|
||||
from AR.modules.transformer import LayerNorm
|
||||
from AR.modules.transformer import TransformerEncoder
|
||||
from AR.modules.transformer import TransformerEncoderLayer
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torchmetrics.classification import MulticlassAccuracy
|
||||
|
||||
default_config = {
|
||||
"embedding_dim": 512,
|
||||
"hidden_dim": 512,
|
||||
"num_head": 8,
|
||||
"num_layers": 12,
|
||||
"num_codebook": 8,
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024
|
||||
}
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config['model']["hidden_dim"]
|
||||
self.embedding_dim = config['model']["embedding_dim"]
|
||||
self.num_head = config['model']["head"]
|
||||
self.num_layers = config['model']["n_layer"]
|
||||
self.norm_first = norm_first
|
||||
self.vocab_size = config['model']["vocab_size"]
|
||||
self.phoneme_vocab_size = config['model']["phoneme_vocab_size"]
|
||||
self.p_dropout = config['model']["dropout"]
|
||||
self.EOS = config['model']["EOS"]
|
||||
self.norm_first = norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
# should be same as num of kmeans bin
|
||||
# assert self.EOS == 1024
|
||||
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||
self.ar_text_embedding = TokenEmbedding(
|
||||
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
||||
self.ar_text_position = SinePositionalEmbedding(
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.ar_audio_embedding = TokenEmbedding(
|
||||
self.embedding_dim, self.vocab_size, self.p_dropout)
|
||||
self.ar_audio_position = SinePositionalEmbedding(
|
||||
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
|
||||
self.h = TransformerEncoder(
|
||||
TransformerEncoderLayer(
|
||||
d_model=self.model_dim,
|
||||
nhead=self.num_head,
|
||||
dim_feedforward=self.model_dim * 4,
|
||||
dropout=0.1,
|
||||
batch_first=True,
|
||||
norm_first=norm_first, ),
|
||||
num_layers=self.num_layers,
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None, )
|
||||
|
||||
self.ar_predict_layer = nn.Linear(
|
||||
self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction='sum')
|
||||
|
||||
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||
self.vocab_size,
|
||||
top_k=top_k,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS, )
|
||||
|
||||
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
||||
'''
|
||||
x: phoneme_ids
|
||||
y: semantic_ids
|
||||
'''
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = self.ar_text_position(x)
|
||||
x_mask = make_pad_mask(x_lens)
|
||||
|
||||
y_mask = make_pad_mask(y_lens)
|
||||
y_mask_int = y_mask.type(torch.int64)
|
||||
codes = y.type(torch.int64) * (1 - y_mask_int)
|
||||
|
||||
# Training
|
||||
# AR Decoder
|
||||
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
||||
x_len = x_lens.max()
|
||||
y_len = y_lens.max()
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||
ar_xy_padding_mask = xy_padding_mask
|
||||
|
||||
x_attn_mask = F.pad(
|
||||
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True, )
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||
diagonal=1, ),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
bsz, src_len = x.shape[0], x_len + y_len
|
||||
_xy_padding_mask = (ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(bsz * self.num_head, 1, src_len))
|
||||
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||
xy_attn_mask = new_attn_mask
|
||||
# x 和完整的 y 一次性输入模型
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask, )
|
||||
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
||||
# loss
|
||||
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||
loss = F.cross_entropy(logits, targets, reduction='sum')
|
||||
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||
return loss, acc
|
||||
|
||||
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||
def infer(self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int=-100,
|
||||
early_stop_num: int=-1,
|
||||
temperature: float=1.0):
|
||||
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
prefix_len = y.shape[1]
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
for _ in tqdm(range(1500)):
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
# x 和逐渐增长的 y 一起输入给模型
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
y_len = y.shape[1]
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len),
|
||||
value=True, )
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
xy_attn_mask = torch.concat(
|
||||
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
||||
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask, )
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = topk_sampling(
|
||||
logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len
|
||||
) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(
|
||||
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print('bad zero prediction')
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
# import os
|
||||
# os._exit(2333)
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
return y
|
||||
|
||||
def pad_y_eos(self, y, y_mask_int, eos_id):
|
||||
targets = F.pad(
|
||||
y, (0, 1), value=0) + eos_id * F.pad(
|
||||
y_mask_int, (0, 1), value=1)
|
||||
# 错位
|
||||
return targets[:, :-1], targets[:, 1:]
|
||||
|
||||
def infer_panel(self,
|
||||
x,#####全部文本token
|
||||
x_lens,
|
||||
prompts,####参考音频token
|
||||
bert_feature,
|
||||
top_k: int=-100,
|
||||
early_stop_num: int=-1,
|
||||
temperature: float=1.0):
|
||||
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1,2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
prefix_len = y.shape[1]
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache={
|
||||
"all_stage":self.num_layers,
|
||||
"k":[None]*self.num_layers,###根据配置自己手写
|
||||
"v":[None]*self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb":None,##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer":1,
|
||||
"stage":0
|
||||
}
|
||||
for idx in tqdm(range(1500)):
|
||||
if(cache["first_infer"]==1):
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
else:
|
||||
y_emb = torch.cat([cache["y_emb"],self.ar_audio_embedding(y[:,-1:])],1)
|
||||
cache["y_emb"]=y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
# x 和逐渐增长的 y 一起输入给模型
|
||||
if(cache["first_infer"]==1):
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
else:
|
||||
xy_pos=y_pos[:,-1:]
|
||||
y_len = y_pos.shape[1]
|
||||
###以下3个不做缓存
|
||||
if (cache["first_infer"] == 1):
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len),###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True, )
|
||||
y_attn_mask = F.pad(###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False, )
|
||||
xy_attn_mask = torch.concat(
|
||||
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
||||
else:
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool, device=xy_pos.device)
|
||||
# pdb.set_trace()
|
||||
###缓存重头戏
|
||||
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,cache=cache )
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len
|
||||
) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(
|
||||
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print('bad zero prediction')
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
cache["first_infer"]=0
|
||||
return y,idx
|
162
GPT_SoVITS/AR/models/utils.py
Normal file
162
GPT_SoVITS/AR/models/utils.py
Normal file
@ -0,0 +1,162 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/utils.py\
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int=0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
max_len:
|
||||
The length of masks.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
#>>> make_pad_mask(lengths)
|
||||
tensor([[False, True, True, True, True],
|
||||
[False, False, False, True, True],
|
||||
[False, False, True, True, True],
|
||||
[False, False, False, False, False]])
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
max_len = max(max_len, lengths.max())
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
||||
|
||||
return expaned_lengths >= lengths.unsqueeze(-1)
|
||||
|
||||
|
||||
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
||||
def top_k_top_p_filtering(logits,
|
||||
top_k=0,
|
||||
top_p=1.0,
|
||||
filter_value=-float("Inf"),
|
||||
min_tokens_to_keep=1):
|
||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
top_k = min(max(top_k, min_tokens_to_keep),
|
||||
logits.size(-1)) # Safety check
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(
|
||||
F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
if min_tokens_to_keep > 1:
|
||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
||||
..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
1, sorted_indices, sorted_indices_to_remove)
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
|
||||
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
||||
# temperature: (`optional`) float
|
||||
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
||||
# top_k: (`optional`) int
|
||||
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
||||
# top_p: (`optional`) float
|
||||
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
||||
|
||||
# Temperature (higher temperature => more likely to sample low probability tokens)
|
||||
if temperature != 1.0:
|
||||
logits = logits / temperature
|
||||
# Top-p/top-k filtering
|
||||
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
||||
# Sample
|
||||
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
||||
return token
|
||||
|
||||
|
||||
from typing import Optional, Tuple
|
||||
def multinomial_sample_one_no_sync(
|
||||
probs_sort,
|
||||
): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.empty_like(probs_sort).exponential_(1)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
|
||||
def logits_to_probs(
|
||||
logits,
|
||||
previous_tokens: Optional[torch.Tensor] = None,
|
||||
temperature: float = 1.0,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
previous_tokens=previous_tokens.squeeze()
|
||||
# print(logits.shape,previous_tokens.shape)
|
||||
# pdb.set_trace()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=0, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0, score * repetition_penalty, score / repetition_penalty
|
||||
)
|
||||
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(
|
||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
|
||||
def sample(
|
||||
logits,
|
||||
previous_tokens: Optional[torch.Tensor] = None,
|
||||
**sampling_kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
probs = logits_to_probs(
|
||||
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
||||
)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
0
GPT_SoVITS/AR/modules/__init__.py
Normal file
0
GPT_SoVITS/AR/modules/__init__.py
Normal file
397
GPT_SoVITS/AR/modules/activation.py
Normal file
397
GPT_SoVITS/AR/modules/activation.py
Normal file
@ -0,0 +1,397 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import Linear
|
||||
from torch.nn import Module
|
||||
from torch.nn.init import constant_
|
||||
from torch.nn.init import xavier_normal_
|
||||
from torch.nn.init import xavier_uniform_
|
||||
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from torch.nn import functional as F
|
||||
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
||||
F.multi_head_attention_forward=multi_head_attention_forward_patched
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces as described in the paper:
|
||||
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
||||
|
||||
Multi-Head Attention is defined as:
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
|
||||
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
||||
|
||||
``forward()`` will use a special optimized implementation if all of the following
|
||||
conditions are met:
|
||||
|
||||
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
||||
restriction will be loosened in the future.)
|
||||
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
||||
- training is disabled (using ``.eval()``)
|
||||
- dropout is 0
|
||||
- ``add_bias_kv`` is ``False``
|
||||
- ``add_zero_attn`` is ``False``
|
||||
- ``batch_first`` is ``True`` and the input is batched
|
||||
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
||||
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
||||
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
||||
nor ``attn_mask`` is passed
|
||||
|
||||
If the optimized implementation is in use, a
|
||||
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
||||
``query``/``key``/``value`` to represent padding more efficiently than using a
|
||||
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
||||
will be returned, and an additional speedup proportional to the fraction of the input
|
||||
that is padding can be expected.
|
||||
|
||||
Args:
|
||||
embed_dim: Total dimension of the model.
|
||||
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
||||
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
||||
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
||||
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
||||
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
||||
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
||||
Default: ``False``.
|
||||
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
||||
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
||||
batch_first: If ``True``, then the input and output tensors are provided
|
||||
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
||||
|
||||
Examples::
|
||||
|
||||
>>> # xdoctest: +SKIP
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
|
||||
"""
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = (self.kdim == embed_dim and
|
||||
self.vdim == embed_dim)
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(
|
||||
torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = Parameter(
|
||||
torch.empty(3 * embed_dim, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
if not self._qkv_same_embed_dim:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = self.in_proj_linear.bias
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.0)
|
||||
constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor]=None,
|
||||
need_weights: bool=True,
|
||||
attn_mask: Optional[Tensor]=None,
|
||||
average_attn_weights: bool=True,cache=None
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
||||
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
||||
Queries are compared against key-value pairs to produce the output.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
||||
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
||||
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
||||
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
||||
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
||||
Binary and byte masks are supported.
|
||||
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
||||
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
||||
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
||||
Default: ``True``.
|
||||
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
||||
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
||||
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
||||
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
||||
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
||||
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
||||
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
||||
the attention weight.
|
||||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
||||
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
||||
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
||||
|
||||
Outputs:
|
||||
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
||||
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
||||
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
||||
embedding dimension ``embed_dim``.
|
||||
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
||||
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
||||
|
||||
.. note::
|
||||
`batch_first` argument is ignored for unbatched inputs.
|
||||
"""
|
||||
is_batched = query.dim() == 3
|
||||
if key_padding_mask is not None:
|
||||
_kpm_dtype = key_padding_mask.dtype
|
||||
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
key_padding_mask):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
why_not_fast_path = ""
|
||||
if not is_batched:
|
||||
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||||
elif query is not key or key is not value:
|
||||
# When lifting this restriction, don't forget to either
|
||||
# enforce that the dtypes all match or test cases where
|
||||
# they don't!
|
||||
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
||||
elif (self.in_proj_bias is not None and
|
||||
query.dtype != self.in_proj_bias.dtype):
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
||||
elif (self.in_proj_weight is not None and
|
||||
query.dtype != self.in_proj_weight.dtype):
|
||||
# this case will fail anyway, but at least they'll get a useful error message.
|
||||
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
||||
elif self.training:
|
||||
why_not_fast_path = "training is enabled"
|
||||
elif not self.batch_first:
|
||||
why_not_fast_path = "batch_first was not True"
|
||||
elif self.bias_k is not None:
|
||||
why_not_fast_path = "self.bias_k was not None"
|
||||
elif self.bias_v is not None:
|
||||
why_not_fast_path = "self.bias_v was not None"
|
||||
elif self.dropout:
|
||||
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
||||
elif self.add_zero_attn:
|
||||
why_not_fast_path = "add_zero_attn was enabled"
|
||||
elif not self._qkv_same_embed_dim:
|
||||
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
||||
elif attn_mask is not None:
|
||||
why_not_fast_path = "attn_mask was not None"
|
||||
elif query.is_nested and key_padding_mask is not None:
|
||||
why_not_fast_path = (
|
||||
"key_padding_mask is not supported with NestedTensor input")
|
||||
elif self.num_heads % 2 == 1:
|
||||
why_not_fast_path = "num_heads is odd"
|
||||
elif torch.is_autocast_enabled():
|
||||
why_not_fast_path = "autocast is enabled"
|
||||
|
||||
if not why_not_fast_path:
|
||||
tensor_args = (query, key, value, self.in_proj_weight,
|
||||
self.in_proj_bias, self.out_proj.weight,
|
||||
self.out_proj.bias, )
|
||||
# We have to use list comprehensions below because TorchScript does not support
|
||||
# generator expressions.
|
||||
if torch.overrides.has_torch_function(tensor_args):
|
||||
why_not_fast_path = "some Tensor argument has_torch_function"
|
||||
elif not all([(x is None or x.is_cuda or "cpu" in str(x.device))
|
||||
for x in tensor_args]):
|
||||
why_not_fast_path = (
|
||||
"some Tensor argument is neither CUDA nor CPU")
|
||||
elif torch.is_grad_enabled() and any(
|
||||
[x is not None and x.requires_grad for x in tensor_args]):
|
||||
why_not_fast_path = (
|
||||
"grad is enabled and at least one of query or the "
|
||||
"input/output projection weights or biases requires_grad")
|
||||
if not why_not_fast_path:
|
||||
return torch._native_multi_head_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
key_padding_mask
|
||||
if key_padding_mask is not None else attn_mask,
|
||||
need_weights,
|
||||
average_attn_weights,
|
||||
1 if key_padding_mask is not None else 0
|
||||
if attn_mask is not None else None, )
|
||||
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
assert not any_nested, (
|
||||
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
||||
+ f"The fast path was not hit because {why_not_fast_path}")
|
||||
|
||||
if self.batch_first and is_batched:
|
||||
# make sure that the transpose op does not affect the "is" property
|
||||
if key is value:
|
||||
if query is key:
|
||||
query = key = value = query.transpose(1, 0)
|
||||
else:
|
||||
query, key = [x.transpose(1, 0) for x in (query, key)]
|
||||
value = key
|
||||
else:
|
||||
query, key, value = [
|
||||
x.transpose(1, 0) for x in (query, key, value)
|
||||
]
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
use_separate_proj_weight=True,
|
||||
q_proj_weight=self.q_proj_weight,
|
||||
k_proj_weight=self.k_proj_weight,
|
||||
v_proj_weight=self.v_proj_weight,
|
||||
average_attn_weights=average_attn_weights,cache=cache )
|
||||
else:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,cache=cache )
|
||||
if self.batch_first and is_batched:
|
||||
return attn_output.transpose(1, 0), attn_output_weights
|
||||
else:
|
||||
return attn_output, attn_output_weights
|
78
GPT_SoVITS/AR/modules/embedding.py
Normal file
78
GPT_SoVITS/AR/modules/embedding.py
Normal file
@ -0,0 +1,78 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float=0.0, ):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index:index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float=0.0,
|
||||
scale: bool=False,
|
||||
alpha: bool=False, ):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
|
||||
self.reverse = False
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
||||
|
||||
def extend_pe(self, x):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.embedding_dim)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(
|
||||
0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
|
||||
-(math.log(10000.0) / self.embedding_dim))
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, :x.size(1)]
|
||||
return self.dropout(output)
|
85
GPT_SoVITS/AR/modules/lr_schedulers.py
Normal file
85
GPT_SoVITS/AR/modules/lr_schedulers.py
Normal file
@ -0,0 +1,85 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch import nn
|
||||
from torch.optim import Adam
|
||||
|
||||
|
||||
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
"""
|
||||
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
optimizer,
|
||||
init_lr,
|
||||
peak_lr,
|
||||
end_lr,
|
||||
warmup_steps=10000,
|
||||
total_steps=400000,
|
||||
current_step=0):
|
||||
self.init_lr = init_lr
|
||||
self.peak_lr = peak_lr
|
||||
self.end_lr = end_lr
|
||||
self.optimizer = optimizer
|
||||
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
||||
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
||||
self._current_step = current_step
|
||||
self.lr = init_lr
|
||||
self.warmup_steps = warmup_steps
|
||||
self.total_steps = total_steps
|
||||
self._last_lr = [self.lr]
|
||||
|
||||
def set_lr(self, lr):
|
||||
self._last_lr = [g['lr'] for g in self.optimizer.param_groups]
|
||||
for g in self.optimizer.param_groups:
|
||||
# g['lr'] = lr
|
||||
g['lr'] = self.end_lr###锁定用线性
|
||||
|
||||
def step(self):
|
||||
if self._current_step < self.warmup_steps:
|
||||
lr = self.init_lr + self._warmup_rate * self._current_step
|
||||
|
||||
elif self._current_step > self.total_steps:
|
||||
lr = self.end_lr
|
||||
|
||||
else:
|
||||
decay_ratio = (self._current_step - self.warmup_steps) / (
|
||||
self.total_steps - self.warmup_steps)
|
||||
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
||||
raise RuntimeError(
|
||||
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
|
||||
)
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
||||
|
||||
self.lr=lr=self.end_lr=0.002###锁定用线性###不听话,直接锁定!
|
||||
self.set_lr(lr)
|
||||
self.lr = lr
|
||||
self._current_step += 1
|
||||
return self.lr
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
m = nn.Linear(10, 10)
|
||||
opt = Adam(m.parameters(), lr=1e-4)
|
||||
s = WarmupCosineLRSchedule(
|
||||
opt,
|
||||
1e-6,
|
||||
2e-4,
|
||||
1e-6,
|
||||
warmup_steps=2000,
|
||||
total_steps=20000,
|
||||
current_step=0)
|
||||
lrs = []
|
||||
for i in range(25000):
|
||||
s.step()
|
||||
lrs.append(s.lr)
|
||||
print(s.lr)
|
||||
|
||||
plt.plot(lrs)
|
||||
plt.plot(range(0, 25000), lrs)
|
||||
plt.show()
|
622
GPT_SoVITS/AR/modules/optim.py
Normal file
622
GPT_SoVITS/AR/modules/optim.py
Normal file
@ -0,0 +1,622 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import contextlib
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
class BatchedOptimizer(Optimizer):
|
||||
"""
|
||||
This class adds to class Optimizer the capability to optimize parameters in batches:
|
||||
it will stack the parameters and their grads for you so the optimizer can work
|
||||
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
||||
as it reduces the number of kernels launched in the optimizer.
|
||||
|
||||
Args:
|
||||
params:
|
||||
"""
|
||||
|
||||
def __init__(self, params, defaults):
|
||||
super(BatchedOptimizer, self).__init__(params, defaults)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def batched_params(self, param_group, group_params_names):
|
||||
"""
|
||||
This function returns (technically, yields) a list of
|
||||
of tuples (p, state), where
|
||||
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
||||
that share the same shape, and its gradient is also stacked;
|
||||
`state` is the state corresponding to this batch of parameters
|
||||
(it will be physically located in the "state" for one of the real
|
||||
parameters, the last one that has any particular shape and dtype).
|
||||
|
||||
This function is decorated as a context manager so that it can
|
||||
write parameters back to their "real" locations.
|
||||
|
||||
The idea is, instead of doing:
|
||||
<code>
|
||||
for p in group["params"]:
|
||||
state = self.state[p]
|
||||
...
|
||||
</code>
|
||||
you can do:
|
||||
<code>
|
||||
with self.batched_params(group["params"]) as batches:
|
||||
for p, state, p_names in batches:
|
||||
...
|
||||
</code>
|
||||
|
||||
Args:
|
||||
group: a parameter group, which is a list of parameters; should be
|
||||
one of self.param_groups.
|
||||
group_params_names: name for each parameter in group,
|
||||
which is List[str].
|
||||
"""
|
||||
batches = defaultdict(
|
||||
list
|
||||
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
||||
batches_names = defaultdict(
|
||||
list
|
||||
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
||||
|
||||
assert len(param_group) == len(group_params_names)
|
||||
for p, named_p in zip(param_group, group_params_names):
|
||||
key = (str(p.dtype), *p.shape)
|
||||
batches[key].append(p)
|
||||
batches_names[key].append(named_p)
|
||||
|
||||
batches_names_keys = list(batches_names.keys())
|
||||
sorted_idx = sorted(
|
||||
range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
||||
batches_names = [
|
||||
batches_names[batches_names_keys[idx]] for idx in sorted_idx
|
||||
]
|
||||
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
||||
|
||||
stacked_params_dict = dict()
|
||||
|
||||
# turn batches into a list, in deterministic order.
|
||||
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
||||
# one for each batch in `batches`.
|
||||
tuples = []
|
||||
|
||||
for batch, batch_names in zip(batches, batches_names):
|
||||
p = batch[0]
|
||||
# we arbitrarily store the state in the
|
||||
# state corresponding to the 1st parameter in the
|
||||
# group. class Optimizer will take care of saving/loading state.
|
||||
state = self.state[p]
|
||||
p_stacked = torch.stack(batch)
|
||||
grad = torch.stack([
|
||||
torch.zeros_like(p) if p.grad is None else p.grad for p in batch
|
||||
])
|
||||
p_stacked.grad = grad
|
||||
stacked_params_dict[key] = p_stacked
|
||||
tuples.append((p_stacked, state, batch_names))
|
||||
|
||||
yield tuples # <-- calling code will do the actual optimization here!
|
||||
|
||||
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
||||
for i, p in enumerate(batch): # batch is list of Parameter
|
||||
p.copy_(stacked_params[i])
|
||||
|
||||
|
||||
class ScaledAdam(BatchedOptimizer):
|
||||
"""
|
||||
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
||||
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
||||
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
||||
param = underlying_param * log_scale.exp())
|
||||
|
||||
|
||||
Args:
|
||||
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
||||
lr: The learning rate. We will typically use a learning rate schedule that starts
|
||||
at 0.03 and decreases over time, i.e. much higher than other common
|
||||
optimizers.
|
||||
clipping_scale: (e.g. 2.0)
|
||||
A scale for gradient-clipping: if specified, the normalized gradients
|
||||
over the whole model will be clipped to have 2-norm equal to
|
||||
`clipping_scale` times the median 2-norm over the most recent period
|
||||
of `clipping_update_period` minibatches. By "normalized gradients",
|
||||
we mean after multiplying by the rms parameter value for this tensor
|
||||
[for non-scalars]; this is appropriate because our update is scaled
|
||||
by this quantity.
|
||||
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
||||
Must satisfy 0 < beta <= beta2 < 1.
|
||||
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
||||
scale of each parameter tensor and scalar parameters of the mode..
|
||||
If each parameter were decomposed
|
||||
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
||||
would be a the scaling factor on the learning rate of p_scale.
|
||||
eps: A general-purpose epsilon to prevent division by zero
|
||||
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be >= this value)
|
||||
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be <= this value)
|
||||
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
||||
model has any parameters with numel() == 1).
|
||||
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
||||
of the parameter tensor. This is provided to save a little time
|
||||
in the update.
|
||||
clipping_update_period: if clipping_scale is specified, this is the period
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=3e-02,
|
||||
clipping_scale=None,
|
||||
betas=(0.9, 0.98),
|
||||
scalar_lr_scale=0.1,
|
||||
eps=1.0e-08,
|
||||
param_min_rms=1.0e-05,
|
||||
param_max_rms=3.0,
|
||||
scalar_max=10.0,
|
||||
size_update_period=4,
|
||||
clipping_update_period=100,
|
||||
parameters_names=None,
|
||||
show_dominant_parameters=True, ):
|
||||
|
||||
assert parameters_names is not None, (
|
||||
"Please prepare parameters_names,"
|
||||
"which is a List[List[str]]. Each List[str] is for a group"
|
||||
"and each str is for a parameter")
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
clipping_scale=clipping_scale,
|
||||
betas=betas,
|
||||
scalar_lr_scale=scalar_lr_scale,
|
||||
eps=eps,
|
||||
param_min_rms=param_min_rms,
|
||||
param_max_rms=param_max_rms,
|
||||
scalar_max=scalar_max,
|
||||
size_update_period=size_update_period,
|
||||
clipping_update_period=clipping_update_period, )
|
||||
|
||||
super(ScaledAdam, self).__init__(params, defaults)
|
||||
assert len(self.param_groups) == len(parameters_names)
|
||||
self.parameters_names = parameters_names
|
||||
self.show_dominant_parameters = show_dominant_parameters
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(ScaledAdam, self).__setstate__(state)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
batch = True
|
||||
|
||||
for group, group_params_names in zip(self.param_groups,
|
||||
self.parameters_names):
|
||||
|
||||
with self.batched_params(group["params"],
|
||||
group_params_names) as batches:
|
||||
|
||||
# batches is list of pairs (stacked_param, state). stacked_param is like
|
||||
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
||||
# a stacking dim, it is not a real dim.
|
||||
|
||||
if (len(batches[0][1]) ==
|
||||
0): # if len(first state) == 0: not yet initialized
|
||||
clipping_scale = 1
|
||||
else:
|
||||
clipping_scale = self._get_clipping_scale(group, batches)
|
||||
|
||||
for p, state, _ in batches:
|
||||
# Perform optimization step.
|
||||
# grad is not going to be None, we handled that when creating the batches.
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
"ScaledAdam optimizer does not support sparse gradients"
|
||||
)
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
self._init_state(group, p, state)
|
||||
|
||||
self._step_one_batch(group, p, state, clipping_scale)
|
||||
|
||||
return loss
|
||||
|
||||
def _init_state(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
||||
is actually the batch dimension, corresponding to batched-together
|
||||
parameters of a given shape.
|
||||
|
||||
|
||||
Args:
|
||||
group: Dict to look up configuration values.
|
||||
p: The parameter that we are initializing the state for
|
||||
state: Dict from string to whatever state we are initializing
|
||||
"""
|
||||
size_update_period = group["size_update_period"]
|
||||
|
||||
state["step"] = 0
|
||||
|
||||
kwargs = {"device": p.device, "dtype": p.dtype}
|
||||
|
||||
# 'delta' implements conventional momentum. There are
|
||||
# several different kinds of update going on, so rather than
|
||||
# compute "exp_avg" like in Adam, we store and decay a
|
||||
# parameter-change "delta", which combines all forms of
|
||||
# update. this is equivalent to how it's done in Adam,
|
||||
# except for the first few steps.
|
||||
state["delta"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format)
|
||||
|
||||
batch_size = p.shape[0]
|
||||
numel = p.numel() // batch_size
|
||||
numel = p.numel()
|
||||
|
||||
if numel > 1:
|
||||
# "param_rms" just periodically records the scalar root-mean-square value of
|
||||
# the parameter tensor.
|
||||
# it has a shape like (batch_size, 1, 1, 1, 1)
|
||||
param_rms = (
|
||||
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
||||
state["param_rms"] = param_rms
|
||||
|
||||
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
||||
state["scale_grads"] = torch.zeros(size_update_period,
|
||||
*param_rms.shape, **kwargs)
|
||||
|
||||
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
||||
state["exp_avg_sq"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format)
|
||||
|
||||
def _get_clipping_scale(self,
|
||||
group: dict,
|
||||
tuples: List[Tuple[Tensor, dict, List[str]]]
|
||||
) -> float:
|
||||
"""
|
||||
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
||||
by this amount before applying the rest of the update.
|
||||
|
||||
Args:
|
||||
group: the parameter group, an item in self.param_groups
|
||||
tuples: a list of tuples of (param, state, param_names)
|
||||
where param is a batched set of parameters,
|
||||
with a .grad (1st dim is batch dim)
|
||||
and state is the state-dict where optimization parameters are kept.
|
||||
param_names is a List[str] while each str is name for a parameter
|
||||
in batched set of parameters "param".
|
||||
"""
|
||||
assert len(tuples) >= 1
|
||||
clipping_scale = group["clipping_scale"]
|
||||
(first_p, first_state, _) = tuples[0]
|
||||
step = first_state["step"]
|
||||
if clipping_scale is None or step == 0:
|
||||
# no clipping. return early on step == 0 because the other
|
||||
# parameters' state won't have been initialized yet.
|
||||
return 1.0
|
||||
clipping_update_period = group["clipping_update_period"]
|
||||
|
||||
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
||||
for (p, state, param_names) in tuples:
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
"ScaledAdam optimizer does not support sparse gradients")
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
||||
else:
|
||||
tot_sumsq += ((grad * state["param_rms"])**2).sum()
|
||||
|
||||
tot_norm = tot_sumsq.sqrt()
|
||||
if "model_norms" not in first_state:
|
||||
first_state["model_norms"] = torch.zeros(
|
||||
clipping_update_period, device=p.device)
|
||||
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
||||
|
||||
if step % clipping_update_period == 0:
|
||||
# Print some stats.
|
||||
# We don't reach here if step == 0 because we would have returned
|
||||
# above.
|
||||
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
||||
quartiles = []
|
||||
for n in range(0, 5):
|
||||
index = min(
|
||||
clipping_update_period - 1,
|
||||
(clipping_update_period // 4) * n, )
|
||||
quartiles.append(sorted_norms[index].item())
|
||||
|
||||
median = quartiles[2]
|
||||
threshold = clipping_scale * median
|
||||
first_state["model_norm_threshold"] = threshold
|
||||
percent_clipped = (first_state["num_clipped"] * 100.0 /
|
||||
clipping_update_period
|
||||
if "num_clipped" in first_state else 0.0)
|
||||
first_state["num_clipped"] = 0
|
||||
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
||||
logging.info(
|
||||
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
|
||||
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
||||
)
|
||||
|
||||
if step < clipping_update_period:
|
||||
return 1.0 # We have not yet estimated a norm to clip to.
|
||||
else:
|
||||
try:
|
||||
model_norm_threshold = first_state["model_norm_threshold"]
|
||||
except KeyError:
|
||||
logging.info(
|
||||
"Warning: model_norm_threshold not in state: possibly "
|
||||
"you changed config when restarting, adding clipping_scale option?"
|
||||
)
|
||||
return 1.0
|
||||
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
||||
if ans < 1.0:
|
||||
first_state["num_clipped"] += 1
|
||||
if ans < 0.1:
|
||||
logging.warn(
|
||||
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
||||
)
|
||||
if self.show_dominant_parameters:
|
||||
assert p.shape[0] == len(param_names)
|
||||
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
||||
return ans
|
||||
|
||||
def _show_gradient_dominating_parameter(
|
||||
self, tuples: List[Tuple[Tensor, dict, List[str]]],
|
||||
tot_sumsq: Tensor):
|
||||
"""
|
||||
Show information of parameter wihch dominanting tot_sumsq.
|
||||
|
||||
Args:
|
||||
tuples: a list of tuples of (param, state, param_names)
|
||||
where param is a batched set of parameters,
|
||||
with a .grad (1st dim is batch dim)
|
||||
and state is the state-dict where optimization parameters are kept.
|
||||
param_names is a List[str] while each str is name for a parameter
|
||||
in batched set of parameters "param".
|
||||
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
||||
from tuples, we still pass it to save some time.
|
||||
"""
|
||||
all_sumsq_orig = {}
|
||||
for (p, state, batch_param_names) in tuples:
|
||||
# p is a stacked batch parameters.
|
||||
batch_grad = p.grad
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
batch_sumsq_orig = batch_grad**2
|
||||
# Dummpy values used by following `zip` statement.
|
||||
batch_rms_orig = torch.ones(p.shape[0])
|
||||
else:
|
||||
batch_rms_orig = state["param_rms"]
|
||||
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
|
||||
dim=list(range(1, batch_grad.ndim)))
|
||||
|
||||
for name, sumsq_orig, rms, grad in zip(batch_param_names,
|
||||
batch_sumsq_orig,
|
||||
batch_rms_orig, batch_grad):
|
||||
|
||||
proportion_orig = sumsq_orig / tot_sumsq
|
||||
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
||||
|
||||
assert torch.isclose(
|
||||
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
||||
torch.tensor(1.0), )
|
||||
sorted_by_proportion = {
|
||||
k: v
|
||||
for k, v in sorted(
|
||||
all_sumsq_orig.items(),
|
||||
key=lambda item: item[1][0],
|
||||
reverse=True, )
|
||||
}
|
||||
dominant_param_name = next(iter(sorted_by_proportion))
|
||||
(dominant_proportion, dominant_sumsq, dominant_rms,
|
||||
dominant_grad, ) = sorted_by_proportion[dominant_param_name]
|
||||
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
|
||||
f" with proportion {dominant_proportion:.2f},"
|
||||
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
||||
f"={dominant_sumsq:.3e},"
|
||||
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
||||
f" orig_rms_sq={(dominant_rms**2).item():.3e}")
|
||||
|
||||
def _step_one_batch(self,
|
||||
group: dict,
|
||||
p: Tensor,
|
||||
state: dict,
|
||||
clipping_scale: float):
|
||||
"""
|
||||
Do the step for one parameter, which is actually going to be a batch of
|
||||
`real` parameters, with dim 0 as the batch dim.
|
||||
Args:
|
||||
group: dict to look up configuration values
|
||||
p: parameter to update (actually multiple parameters stacked together
|
||||
as a batch)
|
||||
state: state-dict for p, to look up the optimizer state
|
||||
"""
|
||||
lr = group["lr"]
|
||||
size_update_period = group["size_update_period"]
|
||||
beta1 = group["betas"][0]
|
||||
|
||||
grad = p.grad
|
||||
if clipping_scale != 1.0:
|
||||
grad = grad * clipping_scale
|
||||
step = state["step"]
|
||||
delta = state["delta"]
|
||||
|
||||
delta.mul_(beta1)
|
||||
batch_size = p.shape[0]
|
||||
numel = p.numel() // batch_size
|
||||
if numel > 1:
|
||||
# Update the size/scale of p, and set param_rms
|
||||
scale_grads = state["scale_grads"]
|
||||
scale_grads[step % size_update_period] = (p * grad).sum(
|
||||
dim=list(range(1, p.ndim)), keepdim=True)
|
||||
if step % size_update_period == size_update_period - 1:
|
||||
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
||||
param_rms.copy_((p**2)
|
||||
.mean(dim=list(range(1, p.ndim)), keepdim=True)
|
||||
.sqrt())
|
||||
if step > 0:
|
||||
# self._size_update() learns the overall scale on the
|
||||
# parameter, by shrinking or expanding it.
|
||||
self._size_update(group, scale_grads, p, state)
|
||||
|
||||
if numel == 1:
|
||||
# For parameters with 1 element we just use regular Adam.
|
||||
# Updates delta.
|
||||
self._step_scalar(group, p, state)
|
||||
else:
|
||||
self._step(group, p, state)
|
||||
|
||||
state["step"] = step + 1
|
||||
|
||||
def _size_update(self,
|
||||
group: dict,
|
||||
scale_grads: Tensor,
|
||||
p: Tensor,
|
||||
state: dict) -> None:
|
||||
"""
|
||||
Called only where p.numel() > 1, this updates the scale of the parameter.
|
||||
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
||||
gradient descent on underlying param and on scale, this function does the update
|
||||
on `scale`.
|
||||
|
||||
Args:
|
||||
group: dict to look up configuration values
|
||||
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
||||
grads w.r.t. the scales.
|
||||
p: The parameter to update
|
||||
state: The state-dict of p
|
||||
"""
|
||||
|
||||
param_rms = state["param_rms"]
|
||||
beta1, beta2 = group["betas"]
|
||||
size_lr = group["lr"] * group["scalar_lr_scale"]
|
||||
param_min_rms = group["param_min_rms"]
|
||||
param_max_rms = group["param_max_rms"]
|
||||
eps = group["eps"]
|
||||
step = state["step"]
|
||||
batch_size = p.shape[0]
|
||||
|
||||
size_update_period = scale_grads.shape[0]
|
||||
# correct beta2 for the size update period: we will have
|
||||
# faster decay at this level.
|
||||
beta2_corr = beta2**size_update_period
|
||||
|
||||
scale_exp_avg_sq = state[
|
||||
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
||||
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
||||
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
||||
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
|
||||
|
||||
# The 1st time we reach here is when size_step == 1.
|
||||
size_step = (step + 1) // size_update_period
|
||||
bias_correction2 = 1 - beta2_corr**size_step
|
||||
# we don't bother with bias_correction1; this will help prevent divergence
|
||||
# at the start of training.
|
||||
|
||||
denom = scale_exp_avg_sq.sqrt() + eps
|
||||
|
||||
scale_step = (-size_lr * (bias_correction2**0.5) *
|
||||
scale_grads.sum(dim=0) / denom)
|
||||
|
||||
is_too_small = param_rms < param_min_rms
|
||||
is_too_large = param_rms > param_max_rms
|
||||
|
||||
# when the param gets too small, just don't shrink it any further.
|
||||
scale_step.masked_fill_(is_too_small, 0.0)
|
||||
# when it gets too large, stop it from getting any larger.
|
||||
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
||||
delta = state["delta"]
|
||||
# the factor of (1-beta1) relates to momentum.
|
||||
delta.add_(p * scale_step, alpha=(1 - beta1))
|
||||
|
||||
def _step(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
This function does the core update of self.step(), in the case where the members of
|
||||
the batch have more than 1 element.
|
||||
|
||||
Args:
|
||||
group: A dict which will be used to look up configuration values
|
||||
p: The parameter to be updated
|
||||
grad: The grad of p
|
||||
state: The state-dict corresponding to parameter p
|
||||
|
||||
This function modifies p.
|
||||
"""
|
||||
grad = p.grad
|
||||
lr = group["lr"]
|
||||
beta1, beta2 = group["betas"]
|
||||
eps = group["eps"]
|
||||
param_min_rms = group["param_min_rms"]
|
||||
step = state["step"]
|
||||
|
||||
exp_avg_sq = state["exp_avg_sq"]
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
||||
|
||||
this_step = state["step"] - (state["zero_step"]
|
||||
if "zero_step" in state else 0)
|
||||
bias_correction2 = 1 - beta2**(this_step + 1)
|
||||
if bias_correction2 < 0.99:
|
||||
# note: not in-place.
|
||||
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
||||
|
||||
denom = exp_avg_sq.sqrt()
|
||||
denom += eps
|
||||
grad = grad / denom
|
||||
|
||||
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
||||
|
||||
delta = state["delta"]
|
||||
delta.add_(grad * alpha)
|
||||
p.add_(delta)
|
||||
|
||||
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
A simplified form of the core update for scalar tensors, where we cannot get a good
|
||||
estimate of the parameter rms.
|
||||
"""
|
||||
beta1, beta2 = group["betas"]
|
||||
scalar_max = group["scalar_max"]
|
||||
eps = group["eps"]
|
||||
lr = group["lr"] * group["scalar_lr_scale"]
|
||||
grad = p.grad
|
||||
|
||||
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
|
||||
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
||||
# slower update at the start will help stability anyway.
|
||||
bias_correction2 = 1 - beta2**(state["step"] + 1)
|
||||
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
||||
|
||||
delta = state["delta"]
|
||||
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
||||
p.clamp_(min=-scalar_max, max=scalar_max)
|
||||
p.add_(delta)
|
388
GPT_SoVITS/AR/modules/patched_mha_with_cache.py
Normal file
388
GPT_SoVITS/AR/modules/patched_mha_with_cache.py
Normal file
@ -0,0 +1,388 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import _mha_shape_check,_canonical_mask,_none_or_dtype,_in_projection_packed
|
||||
# import torch
|
||||
# Tensor = torch.Tensor
|
||||
# from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Optional[Tensor],
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,cache=None
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
See "Attention Is All You Need" for more details.
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
||||
add_zero_attn: add a new batch of zeros to the key and
|
||||
value sequences at dim=1.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
Default: `True`
|
||||
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
||||
For best performance when attention weights are not nedeeded.
|
||||
*Setting needs_weights to `True`
|
||||
leads to a significant performance degradation.*
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
||||
attn_mask for computing scaled dot product attention.
|
||||
Default: ``False``.
|
||||
.. warning::
|
||||
is_causal is provides a hint that the attn_mask is the
|
||||
causal mask.Providing incorrect hints can result in
|
||||
incorrect execution, including forward and backward
|
||||
compatibility.
|
||||
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
||||
and value in different forms. If false, in_proj_weight will be used, which is
|
||||
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
||||
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
static_k, static_v: static key and value used for attention operators.
|
||||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
||||
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
||||
when ``need_weights=True.``. Default: True
|
||||
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a FloatTensor is provided, it will be directly added to the value.
|
||||
If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||||
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
||||
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
||||
"""
|
||||
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
||||
if has_torch_function(tens_ops):
|
||||
return handle_torch_function(
|
||||
multi_head_attention_forward,
|
||||
tens_ops,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check,
|
||||
num_heads,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
add_zero_attn,
|
||||
dropout_p,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
training=training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
is_causal=is_causal,
|
||||
use_separate_proj_weight=use_separate_proj_weight,
|
||||
q_proj_weight=q_proj_weight,
|
||||
k_proj_weight=k_proj_weight,
|
||||
v_proj_weight=v_proj_weight,
|
||||
static_k=static_k,
|
||||
static_v=static_v,
|
||||
average_attn_weights=average_attn_weights,cache=cache
|
||||
)
|
||||
|
||||
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
||||
|
||||
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||||
# is batched, run the computation and before returning squeeze the
|
||||
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
||||
if not is_batched:
|
||||
# unsqueeze if the input is unbatched
|
||||
query = query.unsqueeze(1)
|
||||
key = key.unsqueeze(1)
|
||||
value = value.unsqueeze(1)
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = key_padding_mask.unsqueeze(0)
|
||||
|
||||
# set up shape vars
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
src_len, _, _ = key.shape
|
||||
|
||||
key_padding_mask = _canonical_mask(
|
||||
mask=key_padding_mask,
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype
|
||||
)
|
||||
|
||||
if is_causal and attn_mask is None:
|
||||
raise RuntimeError(
|
||||
"Need attn_mask if specifying the is_causal hint. "
|
||||
"You may use the Transformer module method "
|
||||
"`generate_square_subsequent_mask` to create this mask."
|
||||
)
|
||||
|
||||
if is_causal and key_padding_mask is None and not need_weights:
|
||||
# when we have a kpm or need weights, we need attn_mask
|
||||
# Otherwise, we use the is_causal hint go as is_causal
|
||||
# indicator to SDPA.
|
||||
attn_mask = None
|
||||
else:
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
|
||||
if key_padding_mask is not None:
|
||||
# We have the attn_mask, and use that to merge kpm into it.
|
||||
# Turn off use of is_causal hint, as the merged mask is no
|
||||
# longer causal.
|
||||
is_causal = False
|
||||
|
||||
assert embed_dim == embed_dim_to_check, \
|
||||
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||||
if isinstance(embed_dim, torch.Tensor):
|
||||
# embed_dim can be a tensor when JIT tracing
|
||||
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
||||
else:
|
||||
head_dim = embed_dim // num_heads
|
||||
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||||
if use_separate_proj_weight:
|
||||
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||||
assert key.shape[:2] == value.shape[:2], \
|
||||
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||||
else:
|
||||
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
|
||||
#
|
||||
# compute in-projection
|
||||
#
|
||||
if not use_separate_proj_weight:
|
||||
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
||||
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||||
else:
|
||||
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
||||
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
||||
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
||||
if in_proj_bias is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||||
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
||||
if(cache!=None):
|
||||
if(cache["first_infer"]==1):
|
||||
cache["k"][cache["stage"]]=k
|
||||
# print(0,cache["k"].shape)
|
||||
cache["v"][cache["stage"]]=v
|
||||
else:###12个layer每个都要留自己的cache_kv
|
||||
# print(1,cache["k"].shape)
|
||||
cache["k"][cache["stage"]]=torch.cat([cache["k"][cache["stage"]],k],0)##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
||||
cache["v"][cache["stage"]]=torch.cat([cache["v"][cache["stage"]],v],0)
|
||||
# print(2, cache["k"].shape)
|
||||
src_len = cache["k"][cache["stage"]].shape[0]
|
||||
k=cache["k"][cache["stage"]]
|
||||
v=cache["v"][cache["stage"]]
|
||||
# if attn_mask is not None:
|
||||
# attn_mask=attn_mask[-1:,]
|
||||
# print(attn_mask.shape,attn_mask)
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
# print(2333,cache)
|
||||
# prep attention mask
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=q.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
if attn_mask is not None:
|
||||
# ensure attn_mask's dim is 3
|
||||
if attn_mask.dim() == 2:
|
||||
correct_2d_size = (tgt_len, src_len)
|
||||
if attn_mask.shape != correct_2d_size:
|
||||
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
elif attn_mask.dim() == 3:
|
||||
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||||
if attn_mask.shape != correct_3d_size:
|
||||
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
||||
else:
|
||||
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||||
|
||||
# add bias along batch dimension (currently second)
|
||||
if bias_k is not None and bias_v is not None:
|
||||
assert static_k is None, "bias cannot be added to static key."
|
||||
assert static_v is None, "bias cannot be added to static value."
|
||||
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
||||
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
else:
|
||||
assert bias_k is None
|
||||
assert bias_v is None
|
||||
|
||||
#
|
||||
# reshape q, k, v for multihead attention and make em batch first
|
||||
#
|
||||
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
if static_k is None:
|
||||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_k.size(0) == bsz * num_heads, \
|
||||
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||||
assert static_k.size(2) == head_dim, \
|
||||
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||||
k = static_k
|
||||
if static_v is None:
|
||||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_v.size(0) == bsz * num_heads, \
|
||||
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||||
assert static_v.size(2) == head_dim, \
|
||||
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||||
v = static_v
|
||||
|
||||
# add zero attention along batch dimension (now first)
|
||||
if add_zero_attn:
|
||||
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||||
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
||||
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
|
||||
# update source sequence length after adjustments
|
||||
src_len = k.size(1)
|
||||
|
||||
# merge key padding and attention masks
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape == (bsz, src_len), \
|
||||
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
||||
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
||||
if attn_mask is None:
|
||||
attn_mask = key_padding_mask
|
||||
else:
|
||||
attn_mask = attn_mask + key_padding_mask
|
||||
|
||||
# adjust dropout probability
|
||||
if not training:
|
||||
dropout_p = 0.0
|
||||
|
||||
#
|
||||
# (deep breath) calculate attention and out projection
|
||||
#
|
||||
|
||||
if need_weights:
|
||||
B, Nt, E = q.shape
|
||||
q_scaled = q / math.sqrt(E)
|
||||
|
||||
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||||
else:
|
||||
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||||
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||||
if dropout_p > 0.0:
|
||||
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
||||
# optionally average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||||
if average_attn_weights:
|
||||
attn_output_weights = attn_output_weights.mean(dim=1)
|
||||
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
attn_output_weights = attn_output_weights.squeeze(0)
|
||||
return attn_output, attn_output_weights
|
||||
else:
|
||||
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||||
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||||
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
else:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
||||
|
||||
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||
|
||||
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
return attn_output, None
|
319
GPT_SoVITS/AR/modules/scaling.py
Normal file
319
GPT_SoVITS/AR/modules/scaling.py
Normal file
@ -0,0 +1,319 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import math
|
||||
import random
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class DoubleSwishFunction(torch.autograd.Function):
|
||||
"""
|
||||
double_swish(x) = x * torch.sigmoid(x-1)
|
||||
This is a definition, originally motivated by its close numerical
|
||||
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
||||
|
||||
Memory-efficient derivative computation:
|
||||
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
||||
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
||||
Now, s'(x) = s(x) * (1-s(x)).
|
||||
double_swish'(x) = x * s'(x) + s(x).
|
||||
= x * s(x) * (1-s(x)) + s(x).
|
||||
= double_swish(x) * (1-s(x)) + s(x)
|
||||
... so we just need to remember s(x) but not x itself.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
x_dtype = x.dtype
|
||||
if x.dtype == torch.float16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
s = torch.sigmoid(x - 1.0)
|
||||
y = x * s
|
||||
|
||||
if requires_grad:
|
||||
deriv = y * (1 - s) + s
|
||||
# notes on derivative of x * sigmoid(x - 1):
|
||||
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
||||
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
||||
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
||||
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
||||
# floors), should be expectation-preserving.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)
|
||||
) + torch.rand_like(deriv)
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
assert d_scaled.max() < 256.0
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
(d, ) = ctx.saved_tensors
|
||||
# the same constants as used in forward pass.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d = d * ((ceil - floor) / 255.0) + floor
|
||||
return y_grad * d
|
||||
|
||||
|
||||
class DoubleSwish(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||
that we approximate closely with x * sigmoid(x-1).
|
||||
"""
|
||||
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||
return x * torch.sigmoid(x - 1.0)
|
||||
return DoubleSwishFunction.apply(x)
|
||||
|
||||
|
||||
class ActivationBalancerFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx,
|
||||
x: Tensor,
|
||||
scale_factor: Tensor,
|
||||
sign_factor: Optional[Tensor],
|
||||
channel_dim: int, ) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
ctx.channel_dim = channel_dim
|
||||
xgt0 = x > 0
|
||||
if sign_factor is None:
|
||||
ctx.save_for_backward(xgt0, scale_factor)
|
||||
else:
|
||||
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
||||
if len(ctx.saved_tensors) == 3:
|
||||
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
||||
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
||||
scale_factor = scale_factor.unsqueeze(-1)
|
||||
sign_factor = sign_factor.unsqueeze(-1)
|
||||
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
||||
else:
|
||||
xgt0, scale_factor = ctx.saved_tensors
|
||||
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
||||
scale_factor = scale_factor.unsqueeze(-1)
|
||||
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
||||
neg_delta_grad = x_grad.abs() * factor
|
||||
return (x_grad - neg_delta_grad, None, None, None, )
|
||||
|
||||
|
||||
def _compute_scale_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_abs: float,
|
||||
max_abs: float,
|
||||
gain_factor: float,
|
||||
max_factor: float, ) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
||||
|
||||
if min_abs == 0.0:
|
||||
below_threshold = 0.0
|
||||
else:
|
||||
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
||||
# x_abs)_mean , min_abs.
|
||||
below_threshold = (
|
||||
(min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
||||
min=0, max=max_factor)
|
||||
|
||||
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
||||
min=0, max=max_factor)
|
||||
|
||||
return below_threshold - above_threshold
|
||||
|
||||
|
||||
def _compute_sign_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_positive: float,
|
||||
max_positive: float,
|
||||
gain_factor: float,
|
||||
max_factor: float, ) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
||||
if min_positive == 0.0:
|
||||
factor1 = 0.0
|
||||
else:
|
||||
# 0 if proportion_positive >= min_positive, else can be
|
||||
# as large as max_factor.
|
||||
factor1 = ((min_positive - proportion_positive) *
|
||||
(gain_factor / min_positive)).clamp_(
|
||||
min=0, max=max_factor)
|
||||
|
||||
if max_positive == 1.0:
|
||||
factor2 = 0.0
|
||||
else:
|
||||
# 0 if self.proportion_positive <= max_positive, else can be
|
||||
# as large as -max_factor.
|
||||
factor2 = ((proportion_positive - max_positive) *
|
||||
(gain_factor / (1.0 - max_positive))).clamp_(
|
||||
min=0, max=max_factor)
|
||||
sign_factor = factor1 - factor2
|
||||
# require min_positive != 0 or max_positive != 1:
|
||||
assert not isinstance(sign_factor, float)
|
||||
return sign_factor
|
||||
|
||||
|
||||
class ActivationBalancer(torch.nn.Module):
|
||||
"""
|
||||
Modifies the backpropped derivatives of a function to try to encourage, for
|
||||
each channel, that it is positive at least a proportion `threshold` of the
|
||||
time. It does this by multiplying negative derivative values by up to
|
||||
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
||||
interpolated from 1 at the threshold to those extremal values when none
|
||||
of the inputs are positive.
|
||||
|
||||
Args:
|
||||
num_channels: the number of channels
|
||||
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
||||
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
||||
min_positive: the minimum, per channel, of the proportion of the time
|
||||
that (x > 0), below which we start to modify the derivatives.
|
||||
max_positive: the maximum, per channel, of the proportion of the time
|
||||
that (x > 0), above which we start to modify the derivatives.
|
||||
max_factor: the maximum factor by which we modify the derivatives for
|
||||
either the sign constraint or the magnitude constraint;
|
||||
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
||||
values in the range [0.98..1.02].
|
||||
sign_gain_factor: determines the 'gain' with which we increase the
|
||||
change in gradient once the constraints on min_positive and max_positive
|
||||
are violated.
|
||||
scale_gain_factor: determines the 'gain' with which we increase the
|
||||
change in gradient once the constraints on min_abs and max_abs
|
||||
are violated.
|
||||
min_abs: the minimum average-absolute-value difference from the mean
|
||||
value per channel, which we allow, before we start to modify
|
||||
the derivatives to prevent this.
|
||||
max_abs: the maximum average-absolute-value difference from the mean
|
||||
value per channel, which we allow, before we start to modify
|
||||
the derivatives to prevent this.
|
||||
min_prob: determines the minimum probability with which we modify the
|
||||
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
||||
on each forward(). This is done randomly to prevent all layers
|
||||
from doing it at the same time. Early in training we may use
|
||||
higher probabilities than this; it will decay to this value.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int,
|
||||
min_positive: float=0.05,
|
||||
max_positive: float=0.95,
|
||||
max_factor: float=0.04,
|
||||
sign_gain_factor: float=0.01,
|
||||
scale_gain_factor: float=0.02,
|
||||
min_abs: float=0.2,
|
||||
max_abs: float=100.0,
|
||||
min_prob: float=0.1, ):
|
||||
super(ActivationBalancer, self).__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
self.min_positive = min_positive
|
||||
self.max_positive = max_positive
|
||||
self.max_factor = max_factor
|
||||
self.min_abs = min_abs
|
||||
self.max_abs = max_abs
|
||||
self.min_prob = min_prob
|
||||
self.sign_gain_factor = sign_gain_factor
|
||||
self.scale_gain_factor = scale_gain_factor
|
||||
|
||||
# count measures how many times the forward() function has been called.
|
||||
# We occasionally sync this to a tensor called `count`, that exists to
|
||||
# make sure it is synced to disk when we load and save the model.
|
||||
self.cpu_count = 0
|
||||
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
if (torch.jit.is_scripting() or not x.requires_grad or
|
||||
torch.jit.is_tracing()):
|
||||
return _no_op(x)
|
||||
|
||||
count = self.cpu_count
|
||||
self.cpu_count += 1
|
||||
|
||||
if random.random() < 0.01:
|
||||
# Occasionally sync self.cpu_count with self.count.
|
||||
# count affects the decay of 'prob'. don't do this on every iter,
|
||||
# because syncing with the GPU is slow.
|
||||
self.cpu_count = max(self.cpu_count, self.count.item())
|
||||
self.count.fill_(self.cpu_count)
|
||||
|
||||
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
||||
# a floor at min_prob (==0.1, by default)
|
||||
prob = max(self.min_prob, 0.5**(1 + (count / 4000.0)))
|
||||
|
||||
if random.random() < prob:
|
||||
sign_gain_factor = 0.5
|
||||
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
||||
sign_factor = _compute_sign_factor(
|
||||
x,
|
||||
self.channel_dim,
|
||||
self.min_positive,
|
||||
self.max_positive,
|
||||
gain_factor=self.sign_gain_factor / prob,
|
||||
max_factor=self.max_factor, )
|
||||
else:
|
||||
sign_factor = None
|
||||
|
||||
scale_factor = _compute_scale_factor(
|
||||
x.detach(),
|
||||
self.channel_dim,
|
||||
min_abs=self.min_abs,
|
||||
max_abs=self.max_abs,
|
||||
gain_factor=self.scale_gain_factor / prob,
|
||||
max_factor=self.max_factor, )
|
||||
return ActivationBalancerFunction.apply(
|
||||
x,
|
||||
scale_factor,
|
||||
sign_factor,
|
||||
self.channel_dim, )
|
||||
else:
|
||||
return _no_op(x)
|
||||
|
||||
|
||||
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0,
|
||||
min_prob=0.25) -> nn.Sequential:
|
||||
"""
|
||||
ActivationBalancer -> DoubleSwish
|
||||
"""
|
||||
balancer = ActivationBalancer(
|
||||
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
|
||||
return nn.Sequential(
|
||||
balancer,
|
||||
DoubleSwish(), )
|
347
GPT_SoVITS/AR/modules/transformer.py
Normal file
347
GPT_SoVITS/AR/modules/transformer.py
Normal file
@ -0,0 +1,347 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
||||
import copy
|
||||
import numbers
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
from typing import Callable
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from AR.modules.activation import MultiheadAttention
|
||||
from AR.modules.scaling import BalancedDoubleSwish
|
||||
from torch import nn
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
_shape_t = Union[int, List[int], torch.Size]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float=1e-5,
|
||||
elementwise_affine: bool=True,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape, ) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(
|
||||
normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
if self.elementwise_affine:
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps, ), embedding, )
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(input, self.normalized_shape, self.weight,
|
||||
self.bias, self.eps)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"{normalized_shape}, eps={eps}, "
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__))
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float=1e-5,
|
||||
device=None,
|
||||
dtype=None, ) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
assert embedding is None
|
||||
return input
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
||||
(and convert back on output). This will improve the overall performance of
|
||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor]=None,
|
||||
src_key_padding_mask: Optional[Tensor]=None,
|
||||
return_layer_states: bool=False,cache=None ) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
return_layer_states: return layers' state (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
if return_layer_states:
|
||||
layer_states = [] # layers' output
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask, cache=cache)
|
||||
layer_states.append(output[0])
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return layer_states, output
|
||||
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask, cache=cache)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int=2048,
|
||||
dropout: float=0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]]=F.relu,
|
||||
batch_first: bool=False,
|
||||
norm_first: bool=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module=nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module=nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module=nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module=nn.Linear,
|
||||
layer_norm_cls: nn.Module=LayerNorm,
|
||||
layer_norm_eps: float=1e-5,
|
||||
adaptive_layer_norm=False, ) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
# print(233333333333,d_model,nhead)
|
||||
# import os
|
||||
# os._exit(2333333)
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model,#512 16
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs, )
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward,
|
||||
**factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model,
|
||||
**factory_kwargs)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
activation = BalancedDoubleSwish(d_model)
|
||||
|
||||
# # We can't test self.activation in forward() in TorchScript,
|
||||
# # so stash some information about it instead.
|
||||
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
||||
# self.activation_relu_or_gelu = 1
|
||||
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
||||
# self.activation_relu_or_gelu = 2
|
||||
# else:
|
||||
# self.activation_relu_or_gelu = 0
|
||||
self.activation = activation
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
norm2 = layer_norm_cls(
|
||||
d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
else:
|
||||
self.norm1 = norm1
|
||||
self.norm2 = norm2
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
if not hasattr(self, "activation"):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor]=None,
|
||||
src_key_padding_mask: Optional[Tensor]=None,cache=None ) -> Tensor:
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
x, stage_embedding = src, None
|
||||
is_src_tuple = False
|
||||
if isinstance(src, tuple):
|
||||
x, stage_embedding = src
|
||||
is_src_tuple = True
|
||||
|
||||
if src_key_padding_mask is not None:
|
||||
_skpm_dtype = src_key_padding_mask.dtype
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
src_key_padding_mask):
|
||||
raise AssertionError(
|
||||
"only bool and floating types of key_padding_mask are supported"
|
||||
)
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self._sa_block(
|
||||
self.norm1(x, stage_embedding),
|
||||
src_mask,
|
||||
src_key_padding_mask,cache=cache )
|
||||
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask,cache=cache),
|
||||
stage_embedding, )
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
if is_src_tuple:
|
||||
return (x, stage_embedding)
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],cache=None ) -> Tensor:
|
||||
# print(x.shape,attn_mask.shape,key_padding_mask)
|
||||
#torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
||||
# import os
|
||||
# os._exit(23333)
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,cache=cache )[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor=None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1, )
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1, )
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
0
GPT_SoVITS/AR/text_processing/__init__.py
Normal file
0
GPT_SoVITS/AR/text_processing/__init__.py
Normal file
80
GPT_SoVITS/AR/text_processing/phonemizer.py
Normal file
80
GPT_SoVITS/AR/text_processing/phonemizer.py
Normal file
@ -0,0 +1,80 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/phonemizer.py
|
||||
import itertools
|
||||
import re
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
import regex
|
||||
from gruut import sentences
|
||||
from gruut.const import Sentence
|
||||
from gruut.const import Word
|
||||
from AR.text_processing.symbols import SYMBOL_TO_ID
|
||||
|
||||
|
||||
class GruutPhonemizer:
|
||||
def __init__(self, language: str):
|
||||
self._phonemizer = sentences
|
||||
self.lang = language
|
||||
self.symbol_to_id = SYMBOL_TO_ID
|
||||
self._special_cases_dict: Dict[str] = {
|
||||
r"\.\.\.": "... ",
|
||||
";": "; ",
|
||||
":": ": ",
|
||||
",": ", ",
|
||||
r"\.": ". ",
|
||||
"!": "! ",
|
||||
r"\?": "? ",
|
||||
"—": "—",
|
||||
"…": "… ",
|
||||
"«": "«",
|
||||
"»": "»"
|
||||
}
|
||||
self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
|
||||
|
||||
def _normalize_punctuation(self, text: str) -> str:
|
||||
text = regex.sub(fr"\pZ+{self._punctuation_regexp}", r"\1", text)
|
||||
text = regex.sub(fr"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
||||
text = regex.sub(r"\pZ+", r" ", text)
|
||||
return text.strip()
|
||||
|
||||
def _convert_punctuation(self, word: Word) -> str:
|
||||
if not word.phonemes:
|
||||
return ''
|
||||
if word.phonemes[0] in ['‖', '|']:
|
||||
return word.text.strip()
|
||||
|
||||
phonemes = ''.join(word.phonemes)
|
||||
# remove modifier characters ˈˌː with regex
|
||||
phonemes = re.sub(r'[ˈˌː͡]', '', phonemes)
|
||||
return phonemes.strip()
|
||||
|
||||
def phonemize(self, text: str, espeak: bool=False) -> str:
|
||||
text_to_phonemize: str = self._normalize_punctuation(text)
|
||||
sents: List[Sentence] = [
|
||||
sent
|
||||
for sent in self._phonemizer(
|
||||
text_to_phonemize, lang="en-us", espeak=espeak)
|
||||
]
|
||||
words: List[str] = [
|
||||
self._convert_punctuation(word) for word in itertools.chain(*sents)
|
||||
]
|
||||
return ' '.join(words)
|
||||
|
||||
def transform(self, phonemes):
|
||||
# convert phonemes to ids
|
||||
# dictionary is in symbols.py
|
||||
return [
|
||||
self.symbol_to_id[p] for p in phonemes
|
||||
if p in self.symbol_to_id.keys()
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
phonemizer = GruutPhonemizer("en-us")
|
||||
# text -> IPA
|
||||
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
||||
print("phonemes:", phonemes)
|
||||
print("len(phonemes):", len(phonemes))
|
||||
phoneme_ids = phonemizer.transform(phonemes)
|
||||
print("phoneme_ids:", phoneme_ids)
|
||||
print("len(phoneme_ids):", len(phoneme_ids))
|
9
GPT_SoVITS/AR/text_processing/symbols.py
Normal file
9
GPT_SoVITS/AR/text_processing/symbols.py
Normal file
@ -0,0 +1,9 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/symbols.py
|
||||
PAD = '_'
|
||||
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
||||
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
||||
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
||||
SPACE_ID = SYMBOLS.index(" ")
|
||||
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
||||
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
37
GPT_SoVITS/AR/utils/__init__.py
Normal file
37
GPT_SoVITS/AR/utils/__init__.py
Normal file
@ -0,0 +1,37 @@
|
||||
import re
|
||||
|
||||
|
||||
def str2bool(str):
|
||||
return True if str.lower() == 'true' else False
|
||||
|
||||
|
||||
def get_newest_ckpt(string_list):
|
||||
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
||||
pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
|
||||
|
||||
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
||||
extracted_info = []
|
||||
for string in string_list:
|
||||
match = re.match(pattern, string)
|
||||
if match:
|
||||
epoch = int(match.group(1))
|
||||
step = int(match.group(2))
|
||||
extracted_info.append((epoch, step, string))
|
||||
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
||||
sorted_info = sorted(
|
||||
extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
||||
# 获取最新的 ckpt 文件名
|
||||
newest_ckpt = sorted_info[0][2]
|
||||
return newest_ckpt
|
||||
|
||||
|
||||
# 文本存在且不为空时 return True
|
||||
def check_txt_file(file_path):
|
||||
try:
|
||||
with open(file_path, 'r') as file:
|
||||
text = file.readline().strip()
|
||||
assert text.strip() != ''
|
||||
return text
|
||||
except Exception:
|
||||
return False
|
||||
return False
|
38
GPT_SoVITS/AR/utils/initialize.py
Normal file
38
GPT_SoVITS/AR/utils/initialize.py
Normal file
@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Initialize modules for espnet2 neural networks."""
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
|
||||
def initialize(model: torch.nn.Module, init: str):
|
||||
"""Initialize weights of a neural network module.
|
||||
|
||||
Parameters are initialized using the given method or distribution.
|
||||
|
||||
Custom initialization routines can be implemented into submodules
|
||||
as function `espnet_initialization_fn` within the custom module.
|
||||
|
||||
Args:
|
||||
model: Target.
|
||||
init: Method of initialization.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
print("init with", init)
|
||||
|
||||
# weight init
|
||||
for p in model.parameters():
|
||||
if p.dim() > 1:
|
||||
if init == "xavier_uniform":
|
||||
torch.nn.init.xavier_uniform_(p.data)
|
||||
elif init == "xavier_normal":
|
||||
torch.nn.init.xavier_normal_(p.data)
|
||||
elif init == "kaiming_uniform":
|
||||
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
||||
elif init == "kaiming_normal":
|
||||
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
||||
else:
|
||||
raise ValueError("Unknown initialization: " + init)
|
||||
# bias init
|
||||
for name, p in model.named_parameters():
|
||||
if ".bias" in name and p.dim() == 1:
|
||||
p.data.zero_()
|
32
GPT_SoVITS/AR/utils/io.py
Normal file
32
GPT_SoVITS/AR/utils/io.py
Normal file
@ -0,0 +1,32 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
|
||||
def load_yaml_config(path):
|
||||
with open(path) as f:
|
||||
config = yaml.full_load(f)
|
||||
return config
|
||||
|
||||
|
||||
def save_config_to_yaml(config, path):
|
||||
assert path.endswith('.yaml')
|
||||
with open(path, 'w') as f:
|
||||
f.write(yaml.dump(config))
|
||||
f.close()
|
||||
|
||||
|
||||
def write_args(args, path):
|
||||
args_dict = dict((name, getattr(args, name)) for name in dir(args)
|
||||
if not name.startswith('_'))
|
||||
with open(path, 'a') as args_file:
|
||||
args_file.write('==> torch version: {}\n'.format(torch.__version__))
|
||||
args_file.write(
|
||||
'==> cudnn version: {}\n'.format(torch.backends.cudnn.version()))
|
||||
args_file.write('==> Cmd:\n')
|
||||
args_file.write(str(sys.argv))
|
||||
args_file.write('\n==> args:\n')
|
||||
for k, v in sorted(args_dict.items()):
|
||||
args_file.write(' %s: %s\n' % (str(k), str(v)))
|
||||
args_file.close()
|
31
GPT_SoVITS/configs/s1.yaml
Normal file
31
GPT_SoVITS/configs/s1.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 12
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
31
GPT_SoVITS/configs/s1big.yaml
Normal file
31
GPT_SoVITS/configs/s1big.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 8
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 16
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
31
GPT_SoVITS/configs/s1big2.yaml
Normal file
31
GPT_SoVITS/configs/s1big2.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 300
|
||||
batch_size: 12
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 1024
|
||||
hidden_dim: 1024
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 6
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
inference:
|
||||
top_k: 5
|
31
GPT_SoVITS/configs/s1longer.yaml
Normal file
31
GPT_SoVITS/configs/s1longer.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 20
|
||||
batch_size: 8
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 4
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
inference:
|
||||
top_k: 5
|
77
GPT_SoVITS/configs/s1mq.yaml
Normal file
77
GPT_SoVITS/configs/s1mq.yaml
Normal file
@ -0,0 +1,77 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 100
|
||||
batch_size: 6
|
||||
gradient_accumulation: 4
|
||||
save_every_n_epoch: 1
|
||||
precision: 32
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 40
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
saving_path: "ckpt/"
|
||||
resume_checkpoint: null
|
||||
vocoder_config_path: "quantizer/new_ckpt/config.json"
|
||||
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
|
||||
datadir: "/home/liweiche/GigaSpeech/wavs"
|
||||
metapath: "/home/liweiche/GigaSpeech/train2.json"
|
||||
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
|
||||
sampledir: "logs/"
|
||||
pretrained_path: null
|
||||
lr: 0.0001
|
||||
batch_size: 200.0
|
||||
train_bucket_size: 8192
|
||||
training_step: 800000
|
||||
optim_flat_percent: 0.0
|
||||
warmup_step: 50
|
||||
adam_beta1: 0.9
|
||||
adam_beta2: 0.98
|
||||
ffd_size: 3072
|
||||
hidden_size: 768
|
||||
enc_nlayers: 6
|
||||
dec_nlayers: 6
|
||||
nheads: 12
|
||||
ar_layer: 4
|
||||
ar_ffd_size: 1024
|
||||
ar_hidden_size: 256
|
||||
ar_nheads: 4
|
||||
aligner_softmax_temp: 1.0
|
||||
layer_norm_eps: 0.00001
|
||||
speaker_embed_dropout: 0.05
|
||||
label_smoothing: 0.0
|
||||
val_check_interval: 5000
|
||||
check_val_every_n_epoch: 1
|
||||
precision: "fp16"
|
||||
nworkers: 16
|
||||
distributed: true
|
||||
accelerator: "ddp"
|
||||
version: null
|
||||
accumulate_grad_batches: 1
|
||||
use_repetition_token: true
|
||||
use_repetition_gating: false
|
||||
repetition_penalty: 1.0
|
||||
sampling_temperature: 1.0
|
||||
top_k: -1
|
||||
min_top_k: 3
|
||||
top_p: 0.8
|
||||
sample_num: 4
|
||||
length_penalty_max_length: 15000
|
||||
length_penalty_max_prob: 0.95
|
||||
max_input_length: 2048
|
||||
max_output_length: 2000
|
||||
sample_rate: 16000
|
||||
n_codes: 1024
|
||||
n_cluster_groups: 1
|
||||
phone_context_window: 4
|
||||
phoneset_size: 1000
|
||||
inference:
|
||||
top_k: 5
|
90
GPT_SoVITS/configs/s2.json
Normal file
90
GPT_SoVITS/configs/s2.json
Normal file
@ -0,0 +1,90 @@
|
||||
{
|
||||
"train": {
|
||||
"log_interval": 100,
|
||||
"eval_interval": 500,
|
||||
"seed": 1234,
|
||||
"epochs": 100,
|
||||
"learning_rate": 0.0001,
|
||||
"betas": [
|
||||
0.8,
|
||||
0.99
|
||||
],
|
||||
"eps": 1e-09,
|
||||
"batch_size": 32,
|
||||
"fp16_run": true,
|
||||
"lr_decay": 0.999875,
|
||||
"segment_size": 20480,
|
||||
"init_lr_ratio": 1,
|
||||
"warmup_epochs": 0,
|
||||
"c_mel": 45,
|
||||
"c_kl": 1.0,
|
||||
"text_low_lr_rate": 0.4
|
||||
},
|
||||
"data": {
|
||||
"max_wav_value": 32768.0,
|
||||
"sampling_rate": 32000,
|
||||
"filter_length": 2048,
|
||||
"hop_length": 640,
|
||||
"win_length": 2048,
|
||||
"n_mel_channels": 128,
|
||||
"mel_fmin": 0.0,
|
||||
"mel_fmax": null,
|
||||
"add_blank": true,
|
||||
"n_speakers": 300,
|
||||
"cleaned_text": true
|
||||
},
|
||||
"model": {
|
||||
"inter_channels": 192,
|
||||
"hidden_channels": 192,
|
||||
"filter_channels": 768,
|
||||
"n_heads": 2,
|
||||
"n_layers": 6,
|
||||
"kernel_size": 3,
|
||||
"p_dropout": 0.1,
|
||||
"resblock": "1",
|
||||
"resblock_kernel_sizes": [
|
||||
3,
|
||||
7,
|
||||
11
|
||||
],
|
||||
"resblock_dilation_sizes": [
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
]
|
||||
],
|
||||
"upsample_rates": [
|
||||
10,
|
||||
8,
|
||||
2,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"upsample_initial_channel": 512,
|
||||
"upsample_kernel_sizes": [
|
||||
16,
|
||||
16,
|
||||
8,
|
||||
2,
|
||||
2
|
||||
],
|
||||
"n_layers_q": 3,
|
||||
"use_spectral_norm": false,
|
||||
"gin_channels": 512,
|
||||
"semantic_frame_rate": "25hz",
|
||||
"freeze_quantizer": true
|
||||
},
|
||||
"s2_ckpt_dir": "logs/s2/big2k1",
|
||||
"content_module": "cnhubert"
|
||||
}
|
32
GPT_SoVITS/configs/train.yaml
Normal file
32
GPT_SoVITS/configs/train.yaml
Normal file
@ -0,0 +1,32 @@
|
||||
gpu:
|
||||
n_card: 1
|
||||
n_process_per_card: 2
|
||||
io:
|
||||
text_path: D:\RVC1006\GPT-SoVITS\GPT_SoVITS
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 1
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 512
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
inference:
|
||||
top_k: 5
|
6
GPT_SoVITS/feature_extractor/__init__.py
Normal file
6
GPT_SoVITS/feature_extractor/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
from . import cnhubert, whisper_enc
|
||||
|
||||
content_module_map = {
|
||||
'cnhubert': cnhubert,
|
||||
'whisper': whisper_enc
|
||||
}
|
97
GPT_SoVITS/feature_extractor/cnhubert.py
Normal file
97
GPT_SoVITS/feature_extractor/cnhubert.py
Normal file
@ -0,0 +1,97 @@
|
||||
import time
|
||||
|
||||
import librosa
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import soundfile as sf
|
||||
import logging
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
|
||||
from transformers import (
|
||||
Wav2Vec2FeatureExtractor,
|
||||
HubertModel,
|
||||
Wav2Vec2Model,
|
||||
)
|
||||
|
||||
import utils
|
||||
import torch.nn as nn
|
||||
|
||||
cnhubert_base_path=None
|
||||
class CNHubert(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = HubertModel.from_pretrained(cnhubert_base_path)
|
||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(cnhubert_base_path)
|
||||
def forward(self, x):
|
||||
input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
feats = self.model(input_values)["last_hidden_state"]
|
||||
return feats
|
||||
|
||||
# class CNHubertLarge(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
#
|
||||
# class CVec(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
#
|
||||
# class cnw2v2base(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
|
||||
|
||||
|
||||
def get_model():
|
||||
model = CNHubert()
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
# def get_large_model():
|
||||
# model = CNHubertLarge()
|
||||
# model.eval()
|
||||
# return model
|
||||
#
|
||||
# def get_model_cvec():
|
||||
# model = CVec()
|
||||
# model.eval()
|
||||
# return model
|
||||
#
|
||||
# def get_model_cnw2v2base():
|
||||
# model = cnw2v2base()
|
||||
# model.eval()
|
||||
# return model
|
||||
|
||||
def get_content(hmodel, wav_16k_tensor):
|
||||
with torch.no_grad():
|
||||
feats = hmodel(wav_16k_tensor)
|
||||
return feats.transpose(1,2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = get_model()
|
||||
src_path = "/Users/Shared/原音频2.wav"
|
||||
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
|
||||
model = model
|
||||
wav_16k_tensor = wav_16k_tensor
|
||||
feats = get_content(model,wav_16k_tensor)
|
||||
print(feats.shape)
|
||||
|
22
GPT_SoVITS/feature_extractor/whisper_enc.py
Normal file
22
GPT_SoVITS/feature_extractor/whisper_enc.py
Normal file
@ -0,0 +1,22 @@
|
||||
import torch
|
||||
|
||||
|
||||
def get_model():
|
||||
import whisper
|
||||
model = whisper.load_model("small", device='cpu')
|
||||
|
||||
return model.encoder
|
||||
|
||||
|
||||
def get_content(model=None, wav_16k_tensor=None):
|
||||
from whisper import log_mel_spectrogram, pad_or_trim
|
||||
dev = next(model.parameters()).device
|
||||
mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
|
||||
# if torch.cuda.is_available():
|
||||
# mel = mel.to(torch.float16)
|
||||
feature_len = mel.shape[-1] // 2
|
||||
assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
|
||||
with torch.no_grad():
|
||||
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[:1, :feature_len, :].transpose(1,2)
|
||||
return feature
|
||||
|
272
GPT_SoVITS/inference_webui.py
Normal file
272
GPT_SoVITS/inference_webui.py
Normal file
@ -0,0 +1,272 @@
|
||||
import os
|
||||
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base")
|
||||
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large")
|
||||
infer_ttswebui=os.environ.get("infer_ttswebui",9872)
|
||||
infer_ttswebui=int(infer_ttswebui)
|
||||
if("_CUDA_VISIBLE_DEVICES"in os.environ):
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import sys,torch,numpy as np
|
||||
from pathlib import Path
|
||||
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
|
||||
# torch.backends.cuda.sdp_kernel("flash")
|
||||
# torch.backends.cuda.enable_flash_sdp(True)
|
||||
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
|
||||
# torch.backends.cuda.enable_math_sdp(True)
|
||||
from random import shuffle
|
||||
from AR.utils import get_newest_ckpt
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
from feature_extractor import cnhubert
|
||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
from io import BytesIO
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from AR.utils.io import load_yaml_config
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import text_to_sequence, clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
|
||||
device="cuda"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if(is_half==True):bert_model=bert_model.half().to(device)
|
||||
else:bert_model=bert_model.to(device)
|
||||
# bert_model=bert_model.to(device)
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
||||
return phone_level_feature.T
|
||||
|
||||
n_semantic = 1024
|
||||
dict_s2=torch.load(sovits_path,map_location="cpu")
|
||||
hps=dict_s2["config"]
|
||||
class DictToAttrRecursive:
|
||||
def __init__(self, input_dict):
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
# 如果值是字典,递归调用构造函数
|
||||
setattr(self, key, DictToAttrRecursive(value))
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate="25hz"
|
||||
dict_s1=torch.load(gpt_path,map_location="cpu")
|
||||
config=dict_s1["config"]
|
||||
ssl_model=cnhubert.get_model()
|
||||
if(is_half==True):ssl_model=ssl_model.half().to(device)
|
||||
else:ssl_model=ssl_model.to(device)
|
||||
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model)
|
||||
if(is_half==True):vq_model=vq_model.half().to(device)
|
||||
else:vq_model=vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"],strict=False))
|
||||
hz = 50
|
||||
max_sec = config['data']['max_sec']
|
||||
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
|
||||
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if(is_half==True):t2s_model=t2s_model.half()
|
||||
t2s_model=t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
def get_spepc(hps, filename):
|
||||
audio=load_audio(filename,int(hps.data.sampling_rate))
|
||||
audio=torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
|
||||
return spec
|
||||
|
||||
dict_language={
|
||||
"中文":"zh",
|
||||
"英文":"en",
|
||||
"日文":"ja"
|
||||
}
|
||||
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language):
|
||||
t0 = ttime()
|
||||
prompt_text=prompt_text.strip("\n")
|
||||
prompt_language,text=prompt_language,text.strip("\n")
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
if(is_half==True):wav16k=wav16k.half().to(device)
|
||||
else:wav16k=wav16k.to(device)
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
prompt_language=dict_language[prompt_language]
|
||||
text_language=dict_language[text_language]
|
||||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||||
phones1=cleaned_text_to_sequence(phones1)
|
||||
texts=text.split("\n")
|
||||
audio_opt = []
|
||||
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
|
||||
for text in texts:
|
||||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||||
phones2 = cleaned_text_to_sequence(phones2)
|
||||
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
|
||||
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic,idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config['inference']['top_k'],
|
||||
early_stop_num=hz * max_sec)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path)#.to(device)
|
||||
if(is_half==True):refer=refer.half().to(device)
|
||||
else:refer=refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)
|
||||
|
||||
|
||||
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if (todo_text[-1] not in splits): todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while (1):
|
||||
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if (todo_text[i_split_head] in splits):
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
def cut1(inp):
|
||||
inp=inp.strip("\n")
|
||||
inps=split(inp)
|
||||
split_idx=list(range(0,len(inps),5))
|
||||
split_idx[-1]=None
|
||||
if(len(split_idx)>1):
|
||||
opts=[]
|
||||
for idx in range(len(split_idx)-1):
|
||||
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]]))
|
||||
else:
|
||||
opts=[inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
def cut2(inp):
|
||||
inp=inp.strip("\n")
|
||||
inps=split(inp)
|
||||
if(len(inps)<2):return [inp]
|
||||
opts=[]
|
||||
summ=0
|
||||
tmp_str=""
|
||||
for i in range(len(inps)):
|
||||
summ+=len(inps[i])
|
||||
tmp_str+=inps[i]
|
||||
if(summ>50):
|
||||
summ=0
|
||||
opts.append(tmp_str)
|
||||
tmp_str=""
|
||||
if(tmp_str!=""):opts.append(tmp_str)
|
||||
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起
|
||||
opts[-2]=opts[-2]+opts[-1]
|
||||
opts=opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
def cut3(inp):
|
||||
inp=inp.strip("\n")
|
||||
return "\n".join(["%s。"%item for item in inp.strip("。").split("。")])
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=
|
||||
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
||||
)
|
||||
# with gr.Tabs():
|
||||
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=
|
||||
"*请上传并填写参考信息"
|
||||
)
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
|
||||
prompt_text= gr.Textbox(label="参考音频的文本",value="")
|
||||
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文")
|
||||
gr.Markdown(
|
||||
value=
|
||||
"*请填写需要合成的目标文本"
|
||||
)
|
||||
with gr.Row():
|
||||
text=gr.Textbox(label="需要合成的文本",value="")
|
||||
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文")
|
||||
inference_button=gr.Button("合成语音", variant="primary")
|
||||
output = gr.Audio(label="输出的语音")
|
||||
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output])
|
||||
|
||||
gr.Markdown(
|
||||
value=
|
||||
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
|
||||
)
|
||||
with gr.Row():
|
||||
text_inp=gr.Textbox(label="需要合成的切分前文本",value="")
|
||||
button1 = gr.Button("凑五句一切", variant="primary")
|
||||
button2 = gr.Button("凑50字一切", variant="primary")
|
||||
button3 = gr.Button("按中文句号。切", variant="primary")
|
||||
text_opt = gr.Textbox(label="切分后文本", value="")
|
||||
button1.click(cut1,[text_inp],[text_opt])
|
||||
button2.click(cut2,[text_inp],[text_opt])
|
||||
button3.click(cut3,[text_inp],[text_opt])
|
||||
gr.Markdown(
|
||||
value=
|
||||
"后续将支持混合语种编码文本输入。"
|
||||
)
|
||||
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||
server_name="0.0.0.0",
|
||||
inbrowser=True,
|
||||
server_port=infer_ttswebui,
|
||||
quiet=True,
|
||||
)
|
0
GPT_SoVITS/module/__init__.py
Normal file
0
GPT_SoVITS/module/__init__.py
Normal file
514
GPT_SoVITS/module/attentions.py
Normal file
514
GPT_SoVITS/module/attentions.py
Normal file
@ -0,0 +1,514 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from module import commons
|
||||
from module. modules import LayerNorm
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,isflow=False, **kwargs):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
if isflow:
|
||||
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
|
||||
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
||||
self.cond_layer = weight_norm_modules(cond_layer, name='weight')
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
def forward(self, x, x_mask, g=None):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
if g is not None:
|
||||
x = self.cond_pre(x)
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
||||
x = commons.fused_add_tanh_sigmoid_multiply(
|
||||
x,
|
||||
g_l,
|
||||
torch.IntTensor([self.hidden_channels]))
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.encdec_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, h, h_mask):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
if proximal_init:
|
||||
with torch.no_grad():
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert t_s == t_t, "Local attention is only available for self-attention."
|
||||
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(self.padding(x * x_mask))
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
|
||||
class Depthwise_Separable_Conv1D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
bias=True,
|
||||
padding_mode='zeros', # TODO: refine this type
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
|
||||
groups=in_channels, stride=stride, padding=padding, dilation=dilation, bias=bias,
|
||||
padding_mode=padding_mode, device=device, dtype=dtype)
|
||||
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias,
|
||||
device=device, dtype=dtype)
|
||||
|
||||
def forward(self, input):
|
||||
return self.point_conv(self.depth_conv(input))
|
||||
|
||||
def weight_norm(self):
|
||||
self.depth_conv = weight_norm(self.depth_conv, name='weight')
|
||||
self.point_conv = weight_norm(self.point_conv, name='weight')
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.depth_conv = remove_weight_norm(self.depth_conv, name='weight')
|
||||
self.point_conv = remove_weight_norm(self.point_conv, name='weight')
|
||||
|
||||
|
||||
class Depthwise_Separable_TransposeConv1D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
output_padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
padding_mode='zeros', # TODO: refine this type
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
|
||||
groups=in_channels, stride=stride, output_padding=output_padding,
|
||||
padding=padding, dilation=dilation, bias=bias, padding_mode=padding_mode,
|
||||
device=device, dtype=dtype)
|
||||
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias,
|
||||
device=device, dtype=dtype)
|
||||
|
||||
def forward(self, input):
|
||||
return self.point_conv(self.depth_conv(input))
|
||||
|
||||
def weight_norm(self):
|
||||
self.depth_conv = weight_norm(self.depth_conv, name='weight')
|
||||
self.point_conv = weight_norm(self.point_conv, name='weight')
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.depth_conv, name='weight')
|
||||
remove_weight_norm(self.point_conv, name='weight')
|
||||
|
||||
|
||||
def weight_norm_modules(module, name='weight', dim=0):
|
||||
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
|
||||
module.weight_norm()
|
||||
return module
|
||||
else:
|
||||
return weight_norm(module, name, dim)
|
||||
|
||||
|
||||
def remove_weight_norm_modules(module, name='weight'):
|
||||
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
|
||||
module.remove_weight_norm()
|
||||
else:
|
||||
remove_weight_norm(module, name)
|
||||
|
||||
|
||||
class FFT(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
||||
proximal_bias=False, proximal_init=True, isflow = False, **kwargs):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
if isflow:
|
||||
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
|
||||
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
||||
self.cond_layer = weight_norm_modules(cond_layer, name='weight')
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(
|
||||
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
||||
proximal_init=proximal_init))
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g = None):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
if g is not None:
|
||||
x = self.cond_pre(x)
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
||||
x = commons.fused_add_tanh_sigmoid_multiply(
|
||||
x,
|
||||
g_l,
|
||||
torch.IntTensor([self.hidden_channels]))
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class TransformerCouplingLayer(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
n_heads,
|
||||
p_dropout=0,
|
||||
filter_channels=0,
|
||||
mean_only=False,
|
||||
wn_sharing_parameter=None,
|
||||
gin_channels = 0
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1,2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
189
GPT_SoVITS/module/commons.py
Normal file
189
GPT_SoVITS/module/commons.py
Normal file
@ -0,0 +1,189 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(
|
||||
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = (
|
||||
math.log(float(max_timescale) / float(min_timescale)) /
|
||||
(num_timescales - 1))
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2,3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1. / norm_type)
|
||||
return total_norm
|
||||
|
||||
|
||||
def squeeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
t = (t // n_sqz) * n_sqz
|
||||
x = x[:, :, :t]
|
||||
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
|
||||
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask[:, :, n_sqz - 1::n_sqz]
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_sqz * x_mask, x_mask
|
||||
|
||||
|
||||
def unsqueeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
|
||||
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_unsqz * x_mask, x_mask
|
367
GPT_SoVITS/module/core_vq.py
Normal file
367
GPT_SoVITS/module/core_vq.py
Normal file
@ -0,0 +1,367 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
# This implementation is inspired from
|
||||
# https://github.com/lucidrains/vector-quantize-pytorch
|
||||
# which is released under MIT License. Hereafter, the original license:
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2020 Phil Wang
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
"""Core vector quantization implementation."""
|
||||
import typing as tp
|
||||
|
||||
from einops import rearrange, repeat
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def default(val: tp.Any, d: tp.Any) -> tp.Any:
|
||||
return val if val is not None else d
|
||||
|
||||
|
||||
def ema_inplace(moving_avg, new, decay: float):
|
||||
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
||||
|
||||
|
||||
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
|
||||
return (x + epsilon) / (x.sum() + n_categories * epsilon)
|
||||
|
||||
|
||||
def uniform_init(*shape: int):
|
||||
t = torch.empty(shape)
|
||||
nn.init.kaiming_uniform_(t)
|
||||
return t
|
||||
|
||||
|
||||
def sample_vectors(samples, num: int):
|
||||
num_samples, device = samples.shape[0], samples.device
|
||||
|
||||
if num_samples >= num:
|
||||
indices = torch.randperm(num_samples, device=device)[:num]
|
||||
else:
|
||||
indices = torch.randint(0, num_samples, (num,), device=device)
|
||||
|
||||
return samples[indices]
|
||||
|
||||
|
||||
def kmeans(samples, num_clusters: int, num_iters: int = 10):
|
||||
dim, dtype = samples.shape[-1], samples.dtype
|
||||
max_kmeans_samples = 500
|
||||
samples = samples[:max_kmeans_samples, :]
|
||||
means = sample_vectors(samples, num_clusters)
|
||||
|
||||
print("kmeans start ... ")
|
||||
for _ in tqdm(range(num_iters)):
|
||||
diffs = rearrange(samples, "n d -> n () d") - rearrange(
|
||||
means, "c d -> () c d"
|
||||
)
|
||||
dists = -(diffs ** 2).sum(dim=-1)
|
||||
|
||||
buckets = dists.max(dim=-1).indices
|
||||
bins = torch.bincount(buckets, minlength=num_clusters)
|
||||
zero_mask = bins == 0
|
||||
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
||||
|
||||
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
|
||||
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
|
||||
new_means = new_means / bins_min_clamped[..., None]
|
||||
|
||||
means = torch.where(zero_mask[..., None], means, new_means)
|
||||
|
||||
return means, bins
|
||||
|
||||
|
||||
class EuclideanCodebook(nn.Module):
|
||||
"""Codebook with Euclidean distance.
|
||||
Args:
|
||||
dim (int): Dimension.
|
||||
codebook_size (int): Codebook size.
|
||||
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
|
||||
If set to true, run the k-means algorithm on the first training batch and use
|
||||
the learned centroids as initialization.
|
||||
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
epsilon (float): Epsilon value for numerical stability.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
codebook_size: int,
|
||||
kmeans_init: int = False,
|
||||
kmeans_iters: int = 10,
|
||||
decay: float = 0.99,
|
||||
epsilon: float = 1e-5,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
|
||||
embed = init_fn(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.epsilon = epsilon
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
|
||||
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer("cluster_size", torch.zeros(codebook_size))
|
||||
self.register_buffer("embed", embed)
|
||||
self.register_buffer("embed_avg", embed.clone())
|
||||
|
||||
@torch.jit.ignore
|
||||
def init_embed_(self, data):
|
||||
if self.inited:
|
||||
return
|
||||
|
||||
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
||||
self.embed.data.copy_(embed)
|
||||
self.embed_avg.data.copy_(embed.clone())
|
||||
self.cluster_size.data.copy_(cluster_size)
|
||||
self.inited.data.copy_(torch.Tensor([True]))
|
||||
# Make sure all buffers across workers are in sync after initialization
|
||||
#broadcast_tensors(self.buffers())
|
||||
|
||||
def replace_(self, samples, mask):
|
||||
modified_codebook = torch.where(
|
||||
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
|
||||
)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def expire_codes_(self, batch_samples):
|
||||
if self.threshold_ema_dead_code == 0:
|
||||
return
|
||||
|
||||
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
||||
if not torch.any(expired_codes):
|
||||
return
|
||||
|
||||
batch_samples = rearrange(batch_samples, "... d -> (...) d")
|
||||
self.replace_(batch_samples, mask=expired_codes)
|
||||
#broadcast_tensors(self.buffers())
|
||||
|
||||
def preprocess(self, x):
|
||||
x = rearrange(x, "... d -> (...) d")
|
||||
return x
|
||||
|
||||
def quantize(self, x):
|
||||
embed = self.embed.t()
|
||||
dist = -(
|
||||
x.pow(2).sum(1, keepdim=True)
|
||||
- 2 * x @ embed
|
||||
+ embed.pow(2).sum(0, keepdim=True)
|
||||
)
|
||||
embed_ind = dist.max(dim=-1).indices
|
||||
return embed_ind
|
||||
|
||||
def postprocess_emb(self, embed_ind, shape):
|
||||
return embed_ind.view(*shape[:-1])
|
||||
|
||||
def dequantize(self, embed_ind):
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
return quantize
|
||||
|
||||
def encode(self, x):
|
||||
shape = x.shape
|
||||
# pre-process
|
||||
x = self.preprocess(x)
|
||||
# quantize
|
||||
embed_ind = self.quantize(x)
|
||||
# post-process
|
||||
embed_ind = self.postprocess_emb(embed_ind, shape)
|
||||
return embed_ind
|
||||
|
||||
def decode(self, embed_ind):
|
||||
quantize = self.dequantize(embed_ind)
|
||||
return quantize
|
||||
|
||||
def forward(self, x):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
x = self.preprocess(x)
|
||||
|
||||
self.init_embed_(x)
|
||||
|
||||
embed_ind = self.quantize(x)
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
||||
embed_ind = self.postprocess_emb(embed_ind, shape)
|
||||
quantize = self.dequantize(embed_ind)
|
||||
|
||||
if self.training:
|
||||
# We do the expiry of code at that point as buffers are in sync
|
||||
# and all the workers will take the same decision.
|
||||
self.expire_codes_(x)
|
||||
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
|
||||
embed_sum = x.t() @ embed_onehot
|
||||
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
||||
cluster_size = (
|
||||
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
|
||||
* self.cluster_size.sum()
|
||||
)
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
|
||||
class VectorQuantization(nn.Module):
|
||||
"""Vector quantization implementation.
|
||||
Currently supports only euclidean distance.
|
||||
Args:
|
||||
dim (int): Dimension
|
||||
codebook_size (int): Codebook size
|
||||
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
epsilon (float): Epsilon value for numerical stability.
|
||||
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
||||
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
commitment_weight (float): Weight for commitment loss.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
codebook_size: int,
|
||||
codebook_dim: tp.Optional[int] = None,
|
||||
decay: float = 0.99,
|
||||
epsilon: float = 1e-5,
|
||||
kmeans_init: bool = True,
|
||||
kmeans_iters: int = 50,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
commitment_weight: float = 1.,
|
||||
):
|
||||
super().__init__()
|
||||
_codebook_dim: int = default(codebook_dim, dim)
|
||||
|
||||
requires_projection = _codebook_dim != dim
|
||||
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
|
||||
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())
|
||||
|
||||
self.epsilon = epsilon
|
||||
self.commitment_weight = commitment_weight
|
||||
|
||||
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
|
||||
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
|
||||
decay=decay, epsilon=epsilon,
|
||||
threshold_ema_dead_code=threshold_ema_dead_code)
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
@property
|
||||
def codebook(self):
|
||||
return self._codebook.embed
|
||||
|
||||
def encode(self, x):
|
||||
x = rearrange(x, "b d n -> b n d")
|
||||
x = self.project_in(x)
|
||||
embed_in = self._codebook.encode(x)
|
||||
return embed_in
|
||||
|
||||
def decode(self, embed_ind):
|
||||
quantize = self._codebook.decode(embed_ind)
|
||||
quantize = self.project_out(quantize)
|
||||
quantize = rearrange(quantize, "b n d -> b d n")
|
||||
return quantize
|
||||
|
||||
def forward(self, x):
|
||||
device = x.device
|
||||
x = rearrange(x, "b d n -> b n d")
|
||||
x = self.project_in(x)
|
||||
|
||||
quantize, embed_ind = self._codebook(x)
|
||||
|
||||
if self.training:
|
||||
quantize = x + (quantize - x).detach()
|
||||
|
||||
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
|
||||
|
||||
if self.training:
|
||||
if self.commitment_weight > 0:
|
||||
commit_loss = F.mse_loss(quantize.detach(), x)
|
||||
loss = loss + commit_loss * self.commitment_weight
|
||||
|
||||
quantize = self.project_out(quantize)
|
||||
quantize = rearrange(quantize, "b n d -> b d n")
|
||||
return quantize, embed_ind, loss
|
||||
|
||||
|
||||
class ResidualVectorQuantization(nn.Module):
|
||||
"""Residual vector quantization implementation.
|
||||
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
|
||||
"""
|
||||
def __init__(self, *, num_quantizers, **kwargs):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
|
||||
)
|
||||
|
||||
def forward(self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None):
|
||||
quantized_out = 0.0
|
||||
residual = x
|
||||
|
||||
all_losses = []
|
||||
all_indices = []
|
||||
out_quantized = []
|
||||
|
||||
n_q = n_q or len(self.layers)
|
||||
|
||||
for i, layer in enumerate(self.layers[:n_q]):
|
||||
quantized, indices, loss = layer(residual)
|
||||
residual = residual - quantized
|
||||
quantized_out = quantized_out + quantized
|
||||
|
||||
all_indices.append(indices)
|
||||
all_losses.append(loss)
|
||||
if layers and i in layers:
|
||||
out_quantized.append(quantized)
|
||||
|
||||
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
|
||||
return quantized_out, out_indices, out_losses, out_quantized
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int]= None) -> torch.Tensor:
|
||||
residual = x
|
||||
all_indices = []
|
||||
n_q = n_q or len(self.layers)
|
||||
st = st or 0
|
||||
for layer in self.layers[st:n_q]:
|
||||
indices = layer.encode(residual)
|
||||
quantized = layer.decode(indices)
|
||||
residual = residual - quantized
|
||||
all_indices.append(indices)
|
||||
out_indices = torch.stack(all_indices)
|
||||
return out_indices
|
||||
|
||||
def decode(self, q_indices: torch.Tensor, st: int=0) -> torch.Tensor:
|
||||
quantized_out = torch.tensor(0.0, device=q_indices.device)
|
||||
for i, indices in enumerate(q_indices):
|
||||
layer = self.layers[st + i]
|
||||
quantized = layer.decode(indices)
|
||||
quantized_out = quantized_out + quantized
|
||||
return quantized_out
|
326
GPT_SoVITS/module/data_utils.py
Normal file
326
GPT_SoVITS/module/data_utils.py
Normal file
@ -0,0 +1,326 @@
|
||||
import time,logging
|
||||
import os
|
||||
import random,traceback
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from tqdm import tqdm
|
||||
|
||||
from module import commons
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from text import cleaned_text_to_sequence
|
||||
from utils import load_wav_to_torch, load_filepaths_and_text
|
||||
import torch.nn.functional as F
|
||||
from functools import lru_cache
|
||||
import torch
|
||||
import requests
|
||||
from scipy.io import wavfile
|
||||
from io import BytesIO
|
||||
# from config import exp_dir
|
||||
from my_utils import load_audio
|
||||
|
||||
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir=hparams.exp_dir
|
||||
self.path2="%s/2-name2text.txt"%exp_dir
|
||||
self.path4="%s/4-cnhubert"%exp_dir
|
||||
self.path5="%s/5-wav32k"%exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4=set([name[:-3]for name in list(os.listdir(self.path4))])#去除.pt后缀
|
||||
names5=set(os.listdir(self.path5))
|
||||
self.phoneme_data={}
|
||||
with open(self.path2,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp=line.split("\t")
|
||||
if(len(tmp)!=4):continue
|
||||
self.phoneme_data[tmp[0]]=[tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text=list(set(self.phoneme_data)&names4&names5)
|
||||
tmp=self.audiopaths_sid_text
|
||||
leng=len(tmp)
|
||||
min_num=100
|
||||
if(leng<min_num):
|
||||
self.audiopaths_sid_text=[]
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.val = val
|
||||
|
||||
random.seed(1234)
|
||||
random.shuffle(self.audiopaths_sid_text)
|
||||
|
||||
print("phoneme_data_len:", len(self.phoneme_data.keys()))
|
||||
print("wav_data_len:", len(self.audiopaths_sid_text))
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
continue
|
||||
size=os.path.getsize("%s/%s"%(self.path5,audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
if (54 > duration > 0.6 or self.val):
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
skipped_dur += 1
|
||||
continue
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new)>1#至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, wav = self.get_audio("%s/%s"%(self.path5,audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt"%(self.path4,audiopath),map_location="cpu")
|
||||
if(ssl.shape[-1]!=spec.shape[-1]):
|
||||
typee=ssl.dtype
|
||||
ssl=F.pad(ssl.float(),(0,1),mode="replicate").to(typee)
|
||||
ssl.requires_grad=False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
spec = torch.zeros(1025, 100)
|
||||
wav = torch.zeros(1, 100*self.hop_length)
|
||||
ssl=torch.zeros(1,768,100)
|
||||
text=text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
|
||||
return (ssl, spec, wav, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,self.sampling_rate, self.hop_length, self.win_length,center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec, audio_norm
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
|
||||
def random_slice(self, ssl, wav, mel):
|
||||
assert abs(ssl.shape[-1]- wav.shape[-1]//self.hop_length) < 3, ("first", ssl.shape, wav.shape)
|
||||
|
||||
len_mel = mel.shape[1]
|
||||
if self.val:
|
||||
reference_mel = mel[:, :len_mel//3]
|
||||
return reference_mel, ssl, wav, mel
|
||||
dir = random.randint(0, 1)
|
||||
sep_point = random.randint(int(len_mel//3), int(len_mel//3*2))
|
||||
|
||||
if dir == 0:
|
||||
reference_mel = mel[:, :sep_point]
|
||||
ssl = ssl[:, :, sep_point:]
|
||||
wav2 = wav[:, sep_point*self.hop_length:]
|
||||
mel = mel[:, sep_point:]
|
||||
else:
|
||||
reference_mel = mel[:, sep_point:]
|
||||
ssl = ssl[:, :, :sep_point]
|
||||
wav2 = wav[:, :sep_point*self.hop_length]
|
||||
mel = mel[:, :sep_point]
|
||||
|
||||
assert abs(ssl.shape[-1]- wav2.shape[-1]//self.hop_length) < 3, (ssl.shape, wav.shape,wav2.shape, mel.shape, sep_point,self.hop_length, sep_point*self.hop_length, dir)
|
||||
return reference_mel, ssl, wav2, mel
|
||||
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text, audio and speaker identities
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
max_spec_len = max([x[1].size(1) for x in batch])
|
||||
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
|
||||
max_wav_len = max([x[2].size(1) for x in batch])
|
||||
max_text_len = max([x[3].size(0) for x in batch])
|
||||
|
||||
ssl_lengths = torch.LongTensor(len(batch))
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
wav_lengths = torch.LongTensor(len(batch))
|
||||
text_lengths = torch.LongTensor(len(batch))
|
||||
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
wav_padded.zero_()
|
||||
ssl_padded.zero_()
|
||||
text_padded.zero_()
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wav = row[2]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
wav_lengths[i] = wav.size(1)
|
||||
|
||||
text = row[3]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
|
||||
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
|
||||
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
"""
|
||||
Maintain similar input lengths in a batch.
|
||||
Length groups are specified by boundaries.
|
||||
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
||||
|
||||
It removes samples which are not included in the boundaries.
|
||||
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
||||
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||||
self.lengths = dataset.lengths
|
||||
# print(233333333333333,self.lengths,dir(dataset))
|
||||
self.batch_size = batch_size
|
||||
self.boundaries = boundaries
|
||||
|
||||
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
||||
self.total_size = sum(self.num_samples_per_bucket)
|
||||
self.num_samples = self.total_size // self.num_replicas
|
||||
|
||||
def _create_buckets(self):
|
||||
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
||||
for i in range(len(self.lengths)):
|
||||
length = self.lengths[i]
|
||||
idx_bucket = self._bisect(length)
|
||||
if idx_bucket != -1:
|
||||
buckets[idx_bucket].append(i)
|
||||
|
||||
for i in range(len(buckets) - 1, 0, -1):
|
||||
# for i in range(len(buckets) - 1, -1, -1):
|
||||
if len(buckets[i]) == 0:
|
||||
buckets.pop(i)
|
||||
self.boundaries.pop(i + 1)
|
||||
|
||||
num_samples_per_bucket = []
|
||||
for i in range(len(buckets)):
|
||||
len_bucket = len(buckets[i])
|
||||
total_batch_size = self.num_replicas * self.batch_size
|
||||
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
||||
num_samples_per_bucket.append(len_bucket + rem)
|
||||
return buckets, num_samples_per_bucket
|
||||
|
||||
def __iter__(self):
|
||||
# deterministically shuffle based on epoch
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.epoch)
|
||||
|
||||
indices = []
|
||||
if self.shuffle:
|
||||
for bucket in self.buckets:
|
||||
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
||||
else:
|
||||
for bucket in self.buckets:
|
||||
indices.append(list(range(len(bucket))))
|
||||
|
||||
batches = []
|
||||
for i in range(len(self.buckets)):
|
||||
bucket = self.buckets[i]
|
||||
len_bucket = len(bucket)
|
||||
ids_bucket = indices[i]
|
||||
num_samples_bucket = self.num_samples_per_bucket[i]
|
||||
|
||||
# add extra samples to make it evenly divisible
|
||||
rem = num_samples_bucket - len_bucket
|
||||
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
||||
|
||||
# subsample
|
||||
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
||||
|
||||
# batching
|
||||
for j in range(len(ids_bucket) // self.batch_size):
|
||||
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
||||
batches.append(batch)
|
||||
|
||||
if self.shuffle:
|
||||
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
||||
batches = [batches[i] for i in batch_ids]
|
||||
self.batches = batches
|
||||
|
||||
assert len(self.batches) * self.batch_size == self.num_samples
|
||||
return iter(self.batches)
|
||||
|
||||
def _bisect(self, x, lo=0, hi=None):
|
||||
if hi is None:
|
||||
hi = len(self.boundaries) - 1
|
||||
|
||||
if hi > lo:
|
||||
mid = (hi + lo) // 2
|
||||
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
||||
return mid
|
||||
elif x <= self.boundaries[mid]:
|
||||
return self._bisect(x, lo, mid)
|
||||
else:
|
||||
return self._bisect(x, mid + 1, hi)
|
||||
else:
|
||||
return -1
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples // self.batch_size
|
68
GPT_SoVITS/module/losses.py
Normal file
68
GPT_SoVITS/module/losses.py
Normal file
@ -0,0 +1,68 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
rl = rl.float().detach()
|
||||
gl = gl.float()
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
dr = dr.float()
|
||||
dg = dg.float()
|
||||
r_loss = torch.mean((1-dr)**2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
dg = dg.float()
|
||||
l = torch.mean((1-dg)**2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
||||
"""
|
||||
z_p, logs_q: [b, h, t_t]
|
||||
m_p, logs_p: [b, h, t_t]
|
||||
"""
|
||||
z_p = z_p.float()
|
||||
logs_q = logs_q.float()
|
||||
m_p = m_p.float()
|
||||
logs_p = logs_p.float()
|
||||
z_mask = z_mask.float()
|
||||
|
||||
kl = logs_p - logs_q - 0.5
|
||||
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
||||
kl = torch.sum(kl * z_mask)
|
||||
l = kl / torch.sum(z_mask)
|
||||
return l
|
||||
|
||||
def mle_loss(z, m, logs, logdet, mask):
|
||||
l = torch.sum(logs) + 0.5 * torch.sum(torch.exp(-2 * logs) * ((z - m)**2)) # neg normal likelihood w/o the constant term
|
||||
l = l - torch.sum(logdet) # log jacobian determinant
|
||||
l = l / torch.sum(torch.ones_like(z) * mask) # averaging across batch, channel and time axes
|
||||
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
|
||||
return l
|
111
GPT_SoVITS/module/mel_processing.py
Normal file
111
GPT_SoVITS/module/mel_processing.py
Normal file
@ -0,0 +1,111 @@
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
import librosa
|
||||
import librosa.util as librosa_util
|
||||
from librosa.util import normalize, pad_center, tiny
|
||||
from scipy.signal import get_window
|
||||
from scipy.io.wavfile import read
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor
|
||||
"""
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor used to compress
|
||||
"""
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
return spec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + '_' + str(y.device)
|
||||
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
784
GPT_SoVITS/module/models.py
Normal file
784
GPT_SoVITS/module/models.py
Normal file
@ -0,0 +1,784 @@
|
||||
import copy
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from module import commons
|
||||
from module import modules
|
||||
from module import attentions
|
||||
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.mrte_model import MRTE
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.log_flow = modules.Log()
|
||||
self.flows = nn.ModuleList()
|
||||
self.flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(n_flows):
|
||||
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
self.post_flows = nn.ModuleList()
|
||||
self.post_flows.append(modules.ElementwiseAffine(2))
|
||||
for i in range(4):
|
||||
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||
self.post_flows.append(modules.Flip())
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||
x = torch.detach(x)
|
||||
x = self.pre(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.convs(x, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
|
||||
if not reverse:
|
||||
flows = self.flows
|
||||
assert w is not None
|
||||
|
||||
logdet_tot_q = 0
|
||||
h_w = self.post_pre(w)
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||
logdet_tot_q += logdet_q
|
||||
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||
u = torch.sigmoid(z_u) * x_mask
|
||||
z0 = (w - u) * x_mask
|
||||
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
||||
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
||||
|
||||
logdet_tot = 0
|
||||
z0, logdet = self.log_flow(z0, x_mask)
|
||||
logdet_tot += logdet
|
||||
z = torch.cat([z0, z1], 1)
|
||||
for flow in flows:
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
z0, z1 = torch.split(z, [1, 1], 1)
|
||||
logw = z0
|
||||
return logw
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_1 = modules.LayerNorm(filter_channels)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
||||
self.norm_2 = modules.LayerNorm(filter_channels)
|
||||
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
x = torch.detach(x)
|
||||
if g is not None:
|
||||
g = torch.detach(g)
|
||||
x = x + self.cond(g)
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.latent_channels = latent_channels
|
||||
|
||||
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
||||
|
||||
self.encoder_ssl = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers//2,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
|
||||
self.encoder_text = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
||||
|
||||
self.mrte = MRTE()
|
||||
|
||||
self.encoder2 = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers//2,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
|
||||
y = self.ssl_proj(y * y_mask) * y_mask
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
text_mask = torch.unsqueeze(commons.sequence_mask(text_lengths, text.size(1)), 1).to(y.dtype)
|
||||
if test == 1 :
|
||||
text[:, :] = 0
|
||||
text = self.text_embedding(text).transpose(1, 2)
|
||||
text = self.encoder_text(text * text_mask, text_mask)
|
||||
y = self.mrte(y, y_mask, text, text_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask
|
||||
|
||||
def extract_latent(self, x):
|
||||
x = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
|
||||
return codes.transpose(0,1)
|
||||
def decode_latent(self, codes, y_mask, refer,refer_mask, ge):
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
|
||||
y = self.vq_proj(quantized) * y_mask
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
y = self.mrte(y, y_mask, refer, refer_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask, quantized
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.flows = nn.ModuleList()
|
||||
for i in range(n_flows):
|
||||
self.flows.append(
|
||||
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
||||
gin_channels=gin_channels, mean_only=True))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
if not reverse:
|
||||
for flow in self.flows:
|
||||
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
||||
else:
|
||||
for flow in reversed(self.flows):
|
||||
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||
return x
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
if(g!=None):
|
||||
g = g.detach()
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.norm = modules.LayerNorm(out_channels)
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
out = self.proj(x) * x_mask
|
||||
out = self.norm(out)
|
||||
return out
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
||||
super(Generator, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
||||
k, u, padding=(k - u) // 2)))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d))
|
||||
|
||||
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||
self.ups.apply(init_weights)
|
||||
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
def forward(self, x, g=None):
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
x = x + self.cond(g)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
self.use_spectral_norm = use_spectral_norm
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
||||
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
])
|
||||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
periods = [2, 3, 5, 7, 11]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_rs.append(fmap_r)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
class ReferenceEncoder(nn.Module):
|
||||
'''
|
||||
inputs --- [N, Ty/r, n_mels*r] mels
|
||||
outputs --- [N, ref_enc_gru_size]
|
||||
'''
|
||||
|
||||
def __init__(self, spec_channels, gin_channels=0):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
||||
K = len(ref_enc_filters)
|
||||
filters = [1] + ref_enc_filters
|
||||
convs = [weight_norm(nn.Conv2d(in_channels=filters[i],
|
||||
out_channels=filters[i + 1],
|
||||
kernel_size=(3, 3),
|
||||
stride=(2, 2),
|
||||
padding=(1, 1))) for i in range(K)]
|
||||
self.convs = nn.ModuleList(convs)
|
||||
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
|
||||
|
||||
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
||||
self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels,
|
||||
hidden_size=256 // 2,
|
||||
batch_first=True)
|
||||
self.proj = nn.Linear(128, gin_channels)
|
||||
|
||||
def forward(self, inputs):
|
||||
N = inputs.size(0)
|
||||
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
||||
for conv in self.convs:
|
||||
out = conv(out)
|
||||
# out = wn(out)
|
||||
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
||||
|
||||
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
||||
T = out.size(1)
|
||||
N = out.size(0)
|
||||
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
||||
|
||||
self.gru.flatten_parameters()
|
||||
memory, out = self.gru(out) # out --- [1, N, 128]
|
||||
|
||||
return self.proj(out.squeeze(0)).unsqueeze(-1)
|
||||
|
||||
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
||||
for i in range(n_convs):
|
||||
L = (L - kernel_size + 2 * pad) // stride + 1
|
||||
return L
|
||||
|
||||
|
||||
class Quantizer_module(torch.nn.Module):
|
||||
def __init__(self, n_e, e_dim):
|
||||
super(Quantizer_module, self).__init__()
|
||||
self.embedding = nn.Embedding(n_e, e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
|
||||
|
||||
def forward(self, x):
|
||||
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) - 2 * torch.matmul(x, self.embedding.weight.T)
|
||||
min_indicies = torch.argmin(d, 1)
|
||||
z_q = self.embedding(min_indicies)
|
||||
return z_q, min_indicies
|
||||
|
||||
class Quantizer(torch.nn.Module):
|
||||
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
|
||||
super(Quantizer, self).__init__()
|
||||
assert embed_dim % n_code_groups == 0
|
||||
self.quantizer_modules = nn.ModuleList([
|
||||
Quantizer_module(n_codes, embed_dim // n_code_groups) for _ in range(n_code_groups)
|
||||
])
|
||||
self.n_code_groups = n_code_groups
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def forward(self, xin):
|
||||
#B, C, T
|
||||
B, C, T = xin.shape
|
||||
xin = xin.transpose(1, 2)
|
||||
x = xin.reshape(-1, self.embed_dim)
|
||||
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
|
||||
min_indicies = []
|
||||
z_q = []
|
||||
for _x, m in zip(x, self.quantizer_modules):
|
||||
_z_q, _min_indicies = m(_x)
|
||||
z_q.append(_z_q)
|
||||
min_indicies.append(_min_indicies) #B * T,
|
||||
z_q = torch.cat(z_q, -1).reshape(xin.shape)
|
||||
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
|
||||
z_q = xin + (z_q - xin).detach()
|
||||
z_q = z_q.transpose(1, 2)
|
||||
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
|
||||
return z_q, loss, codes.transpose(1, 2)
|
||||
|
||||
def embed(self, x):
|
||||
#idx: N, 4, T
|
||||
x=x.transpose(1, 2)
|
||||
x = torch.split(x, 1, 2)
|
||||
ret = []
|
||||
for q, embed in zip(x, self.quantizer_modules):
|
||||
q = embed.embedding(q.squeeze(-1))
|
||||
ret.append(q)
|
||||
ret = torch.cat(ret, -1)
|
||||
return ret.transpose(1, 2) #N, C, T
|
||||
|
||||
|
||||
class CodePredictor(nn.Module):
|
||||
def __init__(self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_q=8,
|
||||
dims=1024,
|
||||
ssl_dim=768
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
|
||||
self.ref_enc = modules.MelStyleEncoder(ssl_dim, style_vector_dim=hidden_channels)
|
||||
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
|
||||
self.out_proj = nn.Conv1d(hidden_channels, (n_q-1) * dims, 1)
|
||||
self.n_q = n_q
|
||||
self.dims = dims
|
||||
def forward(self, x, x_mask, refer, codes, infer=False):
|
||||
x = x.detach()
|
||||
x = self.vq_proj(x * x_mask) * x_mask
|
||||
g = self.ref_enc(refer, x_mask)
|
||||
x = x + g
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.out_proj(x * x_mask) * x_mask
|
||||
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(2, 3)
|
||||
target = codes[1:].transpose(0, 1)
|
||||
if not infer:
|
||||
logits = logits.reshape(-1, self.dims)
|
||||
target = target.reshape(-1)
|
||||
loss = torch.nn.functional.cross_entropy(logits, target)
|
||||
return loss
|
||||
else:
|
||||
_, top10_preds = torch.topk(logits, 10, dim=-1)
|
||||
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
|
||||
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
|
||||
|
||||
print('Top-10 Accuracy:', top3_acc, "%")
|
||||
|
||||
pred_codes = torch.argmax(logits, dim=-1)
|
||||
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
|
||||
print('Top-1 Accuracy:', acc, "%")
|
||||
|
||||
return pred_codes.transpose(0, 1)
|
||||
|
||||
|
||||
|
||||
class SynthesizerTrn(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout)
|
||||
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
gin_channels=gin_channels)
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
if freeze_quantizer:
|
||||
self.ssl_proj.requires_grad_(False)
|
||||
self.quantizer.requires_grad_(False)
|
||||
# self.enc_p.text_embedding.requires_grad_(False)
|
||||
# self.enc_p.encoder_text.requires_grad_(False)
|
||||
# self.enc_p.mrte.requires_grad_(False)
|
||||
|
||||
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
with autocast(enabled=False):
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl, layers=[0])
|
||||
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
||||
z_p = self.flow(z, y_mask, g=ge)
|
||||
|
||||
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
||||
o = self.dec(z_slice, g=ge)
|
||||
return o, commit_loss, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
|
||||
|
||||
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge, test=test)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
|
||||
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
||||
return o,y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, codes,text, refer, noise_scale=0.5):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
|
||||
y_lengths = torch.LongTensor([codes.size(2)*2]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
|
||||
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
||||
return o
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
769
GPT_SoVITS/module/modules.py
Normal file
769
GPT_SoVITS/module/modules.py
Normal file
@ -0,0 +1,769 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
from module import commons
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.transforms import piecewise_rational_quadratic_transform
|
||||
import torch.distributions as D
|
||||
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers-1):
|
||||
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size ** i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
||||
groups=channels, dilation=dilation, padding=padding
|
||||
))
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size,
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
g_l,
|
||||
n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])))
|
||||
])
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels,1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels,1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1,2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1,2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
||||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails='linear',
|
||||
tail_bound=self.tail_bound
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class LinearNorm(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bias=True,
|
||||
spectral_norm=False,
|
||||
):
|
||||
super(LinearNorm, self).__init__()
|
||||
self.fc = nn.Linear(in_channels, out_channels, bias)
|
||||
|
||||
if spectral_norm:
|
||||
self.fc = nn.utils.spectral_norm(self.fc)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.fc(input)
|
||||
return out
|
||||
|
||||
|
||||
class Mish(nn.Module):
|
||||
def __init__(self):
|
||||
super(Mish, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x * torch.tanh(F.softplus(x))
|
||||
|
||||
|
||||
class Conv1dGLU(nn.Module):
|
||||
'''
|
||||
Conv1d + GLU(Gated Linear Unit) with residual connection.
|
||||
For GLU refer to https://arxiv.org/abs/1612.08083 paper.
|
||||
'''
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, dropout):
|
||||
super(Conv1dGLU, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
x = self.conv1(x)
|
||||
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
|
||||
x = x1 * torch.sigmoid(x2)
|
||||
x = residual + self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNorm(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=None,
|
||||
dilation=1,
|
||||
bias=True,
|
||||
spectral_norm=False,
|
||||
):
|
||||
super(ConvNorm, self).__init__()
|
||||
|
||||
if padding is None:
|
||||
assert (kernel_size % 2 == 1)
|
||||
padding = int(dilation * (kernel_size - 1) / 2)
|
||||
|
||||
self.conv = torch.nn.Conv1d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias)
|
||||
|
||||
if spectral_norm:
|
||||
self.conv = nn.utils.spectral_norm(self.conv)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.conv(input)
|
||||
return out
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
''' Multi-Head Attention module '''
|
||||
|
||||
def __init__(self, n_head, d_model, d_k, d_v, dropout=0., spectral_norm=False):
|
||||
super().__init__()
|
||||
|
||||
self.n_head = n_head
|
||||
self.d_k = d_k
|
||||
self.d_v = d_v
|
||||
|
||||
self.w_qs = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_ks = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_vs = nn.Linear(d_model, n_head * d_v)
|
||||
|
||||
self.attention = ScaledDotProductAttention(temperature=np.power(d_model, 0.5), dropout=dropout)
|
||||
|
||||
self.fc = nn.Linear(n_head * d_v, d_model)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
if spectral_norm:
|
||||
self.w_qs = nn.utils.spectral_norm(self.w_qs)
|
||||
self.w_ks = nn.utils.spectral_norm(self.w_ks)
|
||||
self.w_vs = nn.utils.spectral_norm(self.w_vs)
|
||||
self.fc = nn.utils.spectral_norm(self.fc)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
||||
sz_b, len_x, _ = x.size()
|
||||
|
||||
residual = x
|
||||
|
||||
q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
|
||||
k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
|
||||
v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
|
||||
q = q.permute(2, 0, 1, 3).contiguous().view(-1,
|
||||
len_x, d_k) # (n*b) x lq x dk
|
||||
k = k.permute(2, 0, 1, 3).contiguous().view(-1,
|
||||
len_x, d_k) # (n*b) x lk x dk
|
||||
v = v.permute(2, 0, 1, 3).contiguous().view(-1,
|
||||
len_x, d_v) # (n*b) x lv x dv
|
||||
|
||||
if mask is not None:
|
||||
slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
|
||||
else:
|
||||
slf_mask = None
|
||||
output, attn = self.attention(q, k, v, mask=slf_mask)
|
||||
|
||||
output = output.view(n_head, sz_b, len_x, d_v)
|
||||
output = output.permute(1, 2, 0, 3).contiguous().view(
|
||||
sz_b, len_x, -1) # b x lq x (n*dv)
|
||||
|
||||
output = self.fc(output)
|
||||
|
||||
output = self.dropout(output) + residual
|
||||
return output, attn
|
||||
|
||||
|
||||
class ScaledDotProductAttention(nn.Module):
|
||||
''' Scaled Dot-Product Attention '''
|
||||
|
||||
def __init__(self, temperature, dropout):
|
||||
super().__init__()
|
||||
self.temperature = temperature
|
||||
self.softmax = nn.Softmax(dim=2)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
attn = torch.bmm(q, k.transpose(1, 2))
|
||||
attn = attn / self.temperature
|
||||
|
||||
if mask is not None:
|
||||
attn = attn.masked_fill(mask, -np.inf)
|
||||
|
||||
attn = self.softmax(attn)
|
||||
p_attn = self.dropout(attn)
|
||||
|
||||
output = torch.bmm(p_attn, v)
|
||||
return output, attn
|
||||
|
||||
|
||||
class MelStyleEncoder(nn.Module):
|
||||
''' MelStyleEncoder '''
|
||||
|
||||
def __init__(self, n_mel_channels=80,
|
||||
style_hidden=128,
|
||||
style_vector_dim=256,
|
||||
style_kernel_size=5,
|
||||
style_head=2,
|
||||
dropout=0.1):
|
||||
super(MelStyleEncoder, self).__init__()
|
||||
self.in_dim = n_mel_channels
|
||||
self.hidden_dim = style_hidden
|
||||
self.out_dim = style_vector_dim
|
||||
self.kernel_size = style_kernel_size
|
||||
self.n_head = style_head
|
||||
self.dropout = dropout
|
||||
|
||||
self.spectral = nn.Sequential(
|
||||
LinearNorm(self.in_dim, self.hidden_dim),
|
||||
Mish(),
|
||||
nn.Dropout(self.dropout),
|
||||
LinearNorm(self.hidden_dim, self.hidden_dim),
|
||||
Mish(),
|
||||
nn.Dropout(self.dropout)
|
||||
)
|
||||
|
||||
self.temporal = nn.Sequential(
|
||||
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
||||
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
||||
)
|
||||
|
||||
self.slf_attn = MultiHeadAttention(self.n_head, self.hidden_dim,
|
||||
self.hidden_dim // self.n_head, self.hidden_dim // self.n_head,
|
||||
self.dropout)
|
||||
|
||||
self.fc = LinearNorm(self.hidden_dim, self.out_dim)
|
||||
|
||||
def temporal_avg_pool(self, x, mask=None):
|
||||
if mask is None:
|
||||
out = torch.mean(x, dim=1)
|
||||
else:
|
||||
len_ = (~mask).sum(dim=1).unsqueeze(1)
|
||||
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
||||
x = x.sum(dim=1)
|
||||
out = torch.div(x, len_)
|
||||
return out
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
x = x.transpose(1,2)
|
||||
if mask is not None:
|
||||
mask = (mask.int()==0).squeeze(1)
|
||||
max_len = x.shape[1]
|
||||
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
|
||||
|
||||
# spectral
|
||||
x = self.spectral(x)
|
||||
# temporal
|
||||
x = x.transpose(1, 2)
|
||||
x = self.temporal(x)
|
||||
x = x.transpose(1, 2)
|
||||
# self-attention
|
||||
if mask is not None:
|
||||
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
||||
x, _ = self.slf_attn(x, mask=slf_attn_mask)
|
||||
# fc
|
||||
x = self.fc(x)
|
||||
# temoral average pooling
|
||||
w = self.temporal_avg_pool(x, mask=mask)
|
||||
|
||||
return w.unsqueeze(-1)
|
||||
|
||||
|
||||
class MelStyleEncoderVAE(nn.Module):
|
||||
def __init__(self, spec_channels, z_latent_dim, emb_dim):
|
||||
super().__init__()
|
||||
self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
|
||||
self.fc1 = nn.Linear(emb_dim, z_latent_dim)
|
||||
self.fc2 = nn.Linear(emb_dim, z_latent_dim)
|
||||
self.fc3 = nn.Linear(z_latent_dim, emb_dim)
|
||||
self.z_latent_dim = z_latent_dim
|
||||
|
||||
def reparameterize(self, mu, logvar):
|
||||
if self.training:
|
||||
std = torch.exp(0.5 * logvar)
|
||||
eps = torch.randn_like(std)
|
||||
return eps.mul(std).add_(mu)
|
||||
else:
|
||||
return mu
|
||||
|
||||
def forward(self, inputs, mask=None):
|
||||
enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
|
||||
mu = self.fc1(enc_out)
|
||||
logvar = self.fc2(enc_out)
|
||||
posterior = D.Normal(mu, torch.exp(logvar))
|
||||
kl_divergence = D.kl_divergence(posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar)))
|
||||
loss_kl = kl_divergence.mean()
|
||||
|
||||
z = posterior.rsample()
|
||||
style_embed = self.fc3(z)
|
||||
|
||||
return style_embed.unsqueeze(-1), loss_kl
|
||||
|
||||
def infer(self, inputs=None, random_sample=False, manual_latent=None):
|
||||
if manual_latent is None:
|
||||
if random_sample:
|
||||
dev = next(self.parameters()).device
|
||||
posterior = D.Normal(torch.zeros(1, self.z_latent_dim, device=dev),
|
||||
torch.ones(1, self.z_latent_dim, device=dev))
|
||||
z = posterior.rsample()
|
||||
else:
|
||||
|
||||
enc_out = self.ref_encoder(inputs.transpose(1, 2))
|
||||
mu = self.fc1(enc_out)
|
||||
z = mu
|
||||
else:
|
||||
z = manual_latent
|
||||
style_embed = self.fc3(z)
|
||||
return style_embed.unsqueeze(-1), z
|
||||
|
||||
|
||||
class ActNorm(nn.Module):
|
||||
def __init__(self, channels, ddi=False, **kwargs):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.initialized = not ddi
|
||||
|
||||
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
|
||||
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
|
||||
|
||||
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
||||
if x_mask is None:
|
||||
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
x_len = torch.sum(x_mask, [1, 2])
|
||||
if not self.initialized:
|
||||
self.initialize(x, x_mask)
|
||||
self.initialized = True
|
||||
|
||||
if reverse:
|
||||
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
|
||||
logdet = None
|
||||
return z
|
||||
else:
|
||||
z = (self.bias + torch.exp(self.logs) * x) * x_mask
|
||||
logdet = torch.sum(self.logs) * x_len # [b]
|
||||
return z, logdet
|
||||
|
||||
def store_inverse(self):
|
||||
pass
|
||||
|
||||
def set_ddi(self, ddi):
|
||||
self.initialized = not ddi
|
||||
|
||||
def initialize(self, x, x_mask):
|
||||
with torch.no_grad():
|
||||
denom = torch.sum(x_mask, [0, 2])
|
||||
m = torch.sum(x * x_mask, [0, 2]) / denom
|
||||
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
|
||||
v = m_sq - (m ** 2)
|
||||
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
|
||||
|
||||
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
|
||||
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
|
||||
|
||||
self.bias.data.copy_(bias_init)
|
||||
self.logs.data.copy_(logs_init)
|
||||
|
||||
|
||||
class InvConvNear(nn.Module):
|
||||
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
|
||||
super().__init__()
|
||||
assert (n_split % 2 == 0)
|
||||
self.channels = channels
|
||||
self.n_split = n_split
|
||||
self.no_jacobian = no_jacobian
|
||||
|
||||
w_init = torch.linalg.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
|
||||
if torch.det(w_init) < 0:
|
||||
w_init[:, 0] = -1 * w_init[:, 0]
|
||||
self.weight = nn.Parameter(w_init)
|
||||
|
||||
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
||||
b, c, t = x.size()
|
||||
assert (c % self.n_split == 0)
|
||||
if x_mask is None:
|
||||
x_mask = 1
|
||||
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
|
||||
else:
|
||||
x_len = torch.sum(x_mask, [1, 2])
|
||||
|
||||
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
|
||||
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)
|
||||
|
||||
if reverse:
|
||||
if hasattr(self, "weight_inv"):
|
||||
weight = self.weight_inv
|
||||
else:
|
||||
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
||||
logdet = None
|
||||
else:
|
||||
weight = self.weight
|
||||
if self.no_jacobian:
|
||||
logdet = 0
|
||||
else:
|
||||
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
|
||||
|
||||
weight = weight.view(self.n_split, self.n_split, 1, 1)
|
||||
z = F.conv2d(x, weight)
|
||||
|
||||
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
|
||||
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
|
||||
if reverse:
|
||||
return z
|
||||
else:
|
||||
return z, logdet
|
||||
|
||||
def store_inverse(self):
|
||||
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
160
GPT_SoVITS/module/mrte_model.py
Normal file
160
GPT_SoVITS/module/mrte_model.py
Normal file
@ -0,0 +1,160 @@
|
||||
# This is Multi-reference timbre encoder
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
from module.attentions import MultiHeadAttention
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer = 2
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size,out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
||||
if(ge==None):ge=0
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
if test != None:
|
||||
if test == 0:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
elif test == 1:
|
||||
x = ssl_enc + ge
|
||||
elif test ==2:
|
||||
x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
|
||||
else:
|
||||
raise ValueError("test should be 0,1,2")
|
||||
else:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
||||
|
||||
class SpeakerEncoder(torch.nn.Module):
|
||||
def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
|
||||
super(SpeakerEncoder, self).__init__()
|
||||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
||||
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, mels):
|
||||
self.lstm.flatten_parameters()
|
||||
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
|
||||
embeds_raw = self.relu(self.linear(hidden[-1]))
|
||||
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
||||
|
||||
|
||||
class MELEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# print(x.shape,x_lengths.shape)
|
||||
x = self.pre(x)
|
||||
x = self.enc(x)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert(kernel_size % 2 == 1)
|
||||
self.hidden_channels =hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate ** i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||
dilation=dilation, padding=padding)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name='weight')
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
|
||||
acts = fused_add_tanh_sigmoid_multiply(
|
||||
x_in,
|
||||
n_channels_tensor)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||
x = (x + res_acts)
|
||||
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
content_enc = torch.randn(3,192,100)
|
||||
content_mask = torch.ones(3,1,100)
|
||||
ref_mel = torch.randn(3,128,30)
|
||||
ref_mask = torch.ones(3,1,30)
|
||||
model = MRTE()
|
||||
out = model(content_enc,content_mask,ref_mel,ref_mask)
|
||||
print(out.shape)
|
108
GPT_SoVITS/module/quantize.py
Normal file
108
GPT_SoVITS/module/quantize.py
Normal file
@ -0,0 +1,108 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Residual vector quantizer implementation."""
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
import math
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from module.core_vq import ResidualVectorQuantization
|
||||
|
||||
|
||||
@dataclass
|
||||
class QuantizedResult:
|
||||
quantized: torch.Tensor
|
||||
codes: torch.Tensor
|
||||
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
|
||||
penalty: tp.Optional[torch.Tensor] = None
|
||||
metrics: dict = field(default_factory=dict)
|
||||
|
||||
|
||||
class ResidualVectorQuantizer(nn.Module):
|
||||
"""Residual Vector Quantizer.
|
||||
Args:
|
||||
dimension (int): Dimension of the codebooks.
|
||||
n_q (int): Number of residual vector quantizers used.
|
||||
bins (int): Codebook size.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
||||
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
dimension: int = 256,
|
||||
n_q: int = 8,
|
||||
bins: int = 1024,
|
||||
decay: float = 0.99,
|
||||
kmeans_init: bool = True,
|
||||
kmeans_iters: int = 50,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_q = n_q
|
||||
self.dimension = dimension
|
||||
self.bins = bins
|
||||
self.decay = decay
|
||||
self.kmeans_init = kmeans_init
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
self.vq = ResidualVectorQuantization(
|
||||
dim=self.dimension,
|
||||
codebook_size=self.bins,
|
||||
num_quantizers=self.n_q,
|
||||
decay=self.decay,
|
||||
kmeans_init=self.kmeans_init,
|
||||
kmeans_iters=self.kmeans_iters,
|
||||
threshold_ema_dead_code=self.threshold_ema_dead_code,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None) -> QuantizedResult:
|
||||
"""Residual vector quantization on the given input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
||||
layers (list): Layer that need to return quantized. Defalt: None.
|
||||
Returns:
|
||||
QuantizedResult:
|
||||
The quantized (or approximately quantized) representation with
|
||||
the associated numbert quantizers and layer quantized required to return.
|
||||
"""
|
||||
n_q = n_q if n_q else self.n_q
|
||||
if layers and max(layers) >= n_q:
|
||||
raise ValueError(f'Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B.')
|
||||
quantized, codes, commit_loss, quantized_list = self.vq(x, n_q=n_q, layers=layers)
|
||||
return quantized, codes, torch.mean(commit_loss), quantized_list
|
||||
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor:
|
||||
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
|
||||
The RVQ encode method sets the appropriate number of quantizer to use
|
||||
and returns indices for each quantizer.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
||||
st (int): Start to encode input from which layers. Default: 0.
|
||||
"""
|
||||
n_q = n_q if n_q else self.n_q
|
||||
st = st or 0
|
||||
codes = self.vq.encode(x, n_q=n_q, st=st)
|
||||
return codes
|
||||
|
||||
def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor:
|
||||
"""Decode the given codes to the quantized representation.
|
||||
Args:
|
||||
codes (torch.Tensor): Input indices for each quantizer.
|
||||
st (int): Start to decode input codes from which layers. Default: 0.
|
||||
"""
|
||||
quantized = self.vq.decode(codes, st=st)
|
||||
return quantized
|
193
GPT_SoVITS/module/transforms.py
Normal file
193
GPT_SoVITS/module/transforms.py
Normal file
@ -0,0 +1,193 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {
|
||||
'tails': tails,
|
||||
'tail_bound': tail_bound
|
||||
}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(
|
||||
inputs[..., None] >= bin_locations,
|
||||
dim=-1
|
||||
) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails='linear',
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == 'linear':
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||
|
||||
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
def rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0., right=1., bottom=0., top=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError('Input to a transform is not within its domain')
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin width too large for the number of bins')
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin height too large for the number of bins')
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (((inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta)
|
||||
+ input_heights * (input_delta - input_derivatives)))
|
||||
b = (input_heights * input_derivatives
|
||||
- (inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta))
|
||||
c = - input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2))
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2)
|
||||
+ input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2))
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
21
GPT_SoVITS/my_utils.py
Normal file
21
GPT_SoVITS/my_utils.py
Normal file
@ -0,0 +1,21 @@
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
|
||||
|
||||
def load_audio(file, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # 防止小白拷路径头尾带了空格和"和回车
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.float32).flatten()
|
50
GPT_SoVITS/prepare_datasets/0-pipeline.py
Normal file
50
GPT_SoVITS/prepare_datasets/0-pipeline.py
Normal file
@ -0,0 +1,50 @@
|
||||
import os,torch,sys
|
||||
from subprocess import Popen
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from config import text_path,wav_dir,n_card,n_process_per_card,exp_name,n_parts,exp_dir
|
||||
os.makedirs("%s/logs_s1"%exp_dir,exist_ok=True)
|
||||
os.makedirs("%s/logs_s2"%exp_dir,exist_ok=True)
|
||||
##############step1
|
||||
ps=[]
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/1-get-text.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
|
||||
opt=[]
|
||||
for i_part in range(n_parts):
|
||||
txt_path = "%s/2-name2text-%s.txt" % (exp_dir, i_part)
|
||||
with open(txt_path,"r")as f:
|
||||
opt+=f.read().strip("\n").split("\n")
|
||||
os.remove(txt_path)
|
||||
with open("%s/2-name2text.txt"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")
|
||||
|
||||
############step2
|
||||
ps=[]
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/2-get-hubert-wav32k.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
#############step3
|
||||
ps=[]
|
||||
for i_part in range(n_parts):
|
||||
cmd="python prepare/3-get-semantic.py %s %s %s %s %s"%(text_path,exp_name,i_part,n_parts,i_part%n_card)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
p.wait()
|
||||
opt=["item_name semantic_audio"]
|
||||
for i_part in range(n_parts):
|
||||
semantic_path = "%s/6-name2semantic-%s.tsv" % (exp_dir, i_part)
|
||||
with open(semantic_path,"r")as f:
|
||||
opt+=f.read().strip("\n").split("\n")
|
||||
os.remove(semantic_path)
|
||||
with open("%s/6-name2semantic.tsv"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")
|
109
GPT_SoVITS/prepare_datasets/1-get-text.py
Normal file
109
GPT_SoVITS/prepare_datasets/1-get-text.py
Normal file
@ -0,0 +1,109 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
|
||||
inp_text= os.environ.get("inp_text")
|
||||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
bert_pretrained_dir= os.environ.get("bert_pretrained_dir")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import sys,numpy as np,traceback,pdb
|
||||
import os.path
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
from text.cleaner import clean_text
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
|
||||
# inp_text=sys.argv[1]
|
||||
# inp_wav_dir=sys.argv[2]
|
||||
# exp_name=sys.argv[3]
|
||||
# i_part=sys.argv[4]
|
||||
# all_parts=sys.argv[5]
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu
|
||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
|
||||
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
dir=os.path.dirname(path)
|
||||
name=os.path.basename(path)
|
||||
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
|
||||
txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
|
||||
if(os.path.exists(txt_path)==False):
|
||||
bert_dir="%s/3-bert"%(opt_dir)
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
os.makedirs(bert_dir,exist_ok=True)
|
||||
device="cuda:0"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||
bert_model=AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||
if (is_half == True):
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
|
||||
return phone_level_feature.T
|
||||
def process(data,res):
|
||||
for name,text,lan in data:
|
||||
try:
|
||||
name=os.path.basename(name)
|
||||
phones, word2ph, norm_text=clean_text(text.replace("%", '-').replace('¥', ','),lan)
|
||||
path_bert="%s/%s.pt"%(bert_dir,name)
|
||||
if (os.path.exists(path_bert) == False and lan == "zh"):
|
||||
bert_feature = get_bert_feature(norm_text, word2ph)
|
||||
assert bert_feature.shape[-1] == len(phones)
|
||||
# torch.save(bert_feature, path_bert)
|
||||
my_save(bert_feature, path_bert)
|
||||
phones = " ".join(phones)
|
||||
# res.append([name,phones])
|
||||
res.append([name,phones, word2ph, norm_text])
|
||||
except:
|
||||
print(name, text, traceback.format_exc())
|
||||
|
||||
todo=[]
|
||||
res=[]
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
language_v1_to_language_v2={
|
||||
"ZH":"zh"
|
||||
}
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
try:
|
||||
wav_name,spk_name,language,text=line.split("|")
|
||||
# todo.append([name,text,"zh"])
|
||||
todo.append([wav_name,text,language_v1_to_language_v2.get(language,language)])
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
|
||||
process(todo,res)
|
||||
opt=[]
|
||||
for name,phones, word2ph, norm_text in res:
|
||||
opt.append("%s\t%s\t%s\t%s"%(name,phones, word2ph, norm_text))
|
||||
with open(txt_path,"w",encoding="utf8")as f:
|
||||
f.write("\n".join(opt)+"\n")
|
||||
|
94
GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py
Normal file
94
GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py
Normal file
@ -0,0 +1,94 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys,os
|
||||
inp_text= os.environ.get("inp_text")
|
||||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
from feature_extractor import cnhubert
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
|
||||
import pdb,traceback,numpy as np,logging
|
||||
from scipy.io import wavfile
|
||||
import librosa,torch
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from my_utils import load_audio
|
||||
|
||||
# from config import cnhubert_base_path
|
||||
# cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
# inp_text=sys.argv[1]
|
||||
# inp_wav_dir=sys.argv[2]
|
||||
# exp_name=sys.argv[3]
|
||||
# i_part=sys.argv[4]
|
||||
# all_parts=sys.argv[5]
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]
|
||||
# cnhubert.cnhubert_base_path=sys.argv[7]
|
||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
dir=os.path.dirname(path)
|
||||
name=os.path.basename(path)
|
||||
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
|
||||
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
||||
wav32dir="%s/5-wav32k"%(opt_dir)
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
os.makedirs(hubert_dir,exist_ok=True)
|
||||
os.makedirs(wav32dir,exist_ok=True)
|
||||
|
||||
maxx=0.95
|
||||
alpha=0.5
|
||||
device="cuda:0"
|
||||
model=cnhubert.get_model()
|
||||
if(is_half==True):
|
||||
model=model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
def name2go(wav_name):
|
||||
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
||||
if(os.path.exists(hubert_path)):return
|
||||
wav_path="%s/%s"%(inp_wav_dir,wav_name)
|
||||
tmp_audio = load_audio(wav_path, 32000)
|
||||
tmp_max = np.abs(tmp_audio).max()
|
||||
if tmp_max > 2.2:
|
||||
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
||||
return
|
||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
||||
tmp_audio = librosa.resample(
|
||||
tmp_audio32, orig_sr=32000, target_sr=16000
|
||||
)
|
||||
tensor_wav16 = torch.from_numpy(tmp_audio)
|
||||
if (is_half == True):
|
||||
tensor_wav16=tensor_wav16.half().to(device)
|
||||
else:
|
||||
tensor_wav16 = tensor_wav16.to(device)
|
||||
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
|
||||
wavfile.write(
|
||||
"%s/%s"%(wav32dir,wav_name),
|
||||
32000,
|
||||
tmp_audio32.astype("int16"),
|
||||
)
|
||||
# torch.save(ssl,hubert_path )
|
||||
my_save(ssl,hubert_path )
|
||||
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=os.path.basename(wav_name)
|
||||
name2go(wav_name)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
81
GPT_SoVITS/prepare_datasets/3-get-semantic.py
Normal file
81
GPT_SoVITS/prepare_datasets/3-get-semantic.py
Normal file
@ -0,0 +1,81 @@
|
||||
import os
|
||||
inp_text= os.environ.get("inp_text")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
pretrained_s2G= os.environ.get("pretrained_s2G")
|
||||
s2config_path= os.environ.get("s2config_path")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import math,traceback
|
||||
import multiprocessing
|
||||
import sys,pdb
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from random import shuffle
|
||||
import torch.multiprocessing as mp
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
import logging,librosa,utils,torch
|
||||
from module.models import SynthesizerTrn
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
# from config import pretrained_s2G
|
||||
|
||||
# inp_text=sys.argv[1]
|
||||
# exp_name=sys.argv[2]
|
||||
# i_part=sys.argv[3]
|
||||
# all_parts=sys.argv[4]
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5]
|
||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||
|
||||
|
||||
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
||||
semantic_path="%s/6-name2semantic-%s.tsv"%(opt_dir,i_part)
|
||||
if(os.path.exists(semantic_path)==False):
|
||||
os.makedirs(opt_dir,exist_ok=True)
|
||||
|
||||
device="cuda:0"
|
||||
hps = utils.get_hparams_from_file(s2config_path)
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model)
|
||||
if(is_half==True):
|
||||
vq_model=vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
# utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
|
||||
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
|
||||
print(vq_model.load_state_dict(torch.load(pretrained_s2G,map_location="cpu")["weight"], strict=False))
|
||||
|
||||
def name2go(wav_name,lines):
|
||||
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
||||
if(os.path.exists(hubert_path)==False):return
|
||||
ssl_content = torch.load(hubert_path, map_location="cpu")
|
||||
if(is_half==True):
|
||||
ssl_content=ssl_content.half().to(device)
|
||||
else:
|
||||
ssl_content = ssl_content.to(device)
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
|
||||
lines.append("%s\t%s"%(wav_name,semantic))
|
||||
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
|
||||
lines1=[]
|
||||
for line in lines[int(i_part)::int(all_parts)]:
|
||||
# print(line)
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=os.path.basename(wav_name)
|
||||
# name2go(name,lines1)
|
||||
name2go(wav_name,lines1)
|
||||
except:
|
||||
print(line,traceback.format_exc())
|
||||
with open(semantic_path,"w",encoding="utf8")as f:f.write("\n".join(lines1))
|
||||
|
22
GPT_SoVITS/process_ckpt.py
Normal file
22
GPT_SoVITS/process_ckpt.py
Normal file
@ -0,0 +1,22 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
from i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
def savee(ckpt, name, epoch, steps, hps):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
opt["config"] = hps
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch,steps)
|
||||
torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir,name))
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
138
GPT_SoVITS/s1_train.py
Normal file
138
GPT_SoVITS/s1_train.py
Normal file
@ -0,0 +1,138 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
|
||||
import os
|
||||
import pdb
|
||||
|
||||
if("_CUDA_VISIBLE_DEVICES"in os.environ):
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch,platform
|
||||
from pytorch_lightning import seed_everything
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
from pytorch_lightning.loggers import TensorBoardLogger#WandbLogger
|
||||
from pytorch_lightning.strategies import DDPStrategy
|
||||
from AR.data.data_module import Text2SemanticDataModule
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from AR.utils.io import load_yaml_config
|
||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
torch.set_float32_matmul_precision('high')
|
||||
from AR.utils import get_newest_ckpt
|
||||
|
||||
from collections import OrderedDict
|
||||
class my_model_ckpt(ModelCheckpoint):
|
||||
def __init__(self,config,if_save_latest,if_save_every_weights,half_weights_save_dir,exp_name,**kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.if_save_latest=if_save_latest
|
||||
self.if_save_every_weights=if_save_every_weights
|
||||
self.half_weights_save_dir=half_weights_save_dir
|
||||
self.exp_name=exp_name
|
||||
self.config=config
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
|
||||
monitor_candidates = self._monitor_candidates(trainer)
|
||||
if self._every_n_epochs >= 1 and (trainer.current_epoch + 1) % self._every_n_epochs == 0:
|
||||
if(self.if_save_latest==True):####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
|
||||
to_clean=list(os.listdir(self.dirpath))
|
||||
self._save_topk_checkpoint(trainer, monitor_candidates)
|
||||
if (self.if_save_latest == True):
|
||||
for name in to_clean:
|
||||
try:
|
||||
os.remove("%s/%s"%(self.dirpath,name))
|
||||
except:pass
|
||||
if(self.if_save_every_weights==True):
|
||||
to_save_od=OrderedDict()
|
||||
to_save_od["weight"]=OrderedDict()
|
||||
dictt=trainer.strategy._lightning_module.state_dict()
|
||||
for key in dictt:to_save_od["weight"][key]=dictt[key].half()
|
||||
to_save_od["config"]=self.config
|
||||
to_save_od["info"]="GPT-e%s"%(trainer.current_epoch+1)
|
||||
torch.save(to_save_od,"%s/%s-e%s.ckpt"%(self.half_weights_save_dir,self.exp_name,trainer.current_epoch+1))
|
||||
self._save_last_checkpoint(trainer, monitor_candidates)
|
||||
|
||||
|
||||
def main(args):
|
||||
config = load_yaml_config(args.config_file)
|
||||
|
||||
output_dir = Path(config["output_dir"])
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ckpt_dir = output_dir / 'ckpt'
|
||||
ckpt_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
seed_everything(config["train"]["seed"], workers=True)
|
||||
ckpt_callback: ModelCheckpoint = my_model_ckpt(
|
||||
config=config,
|
||||
if_save_latest=config["train"]["if_save_latest"], if_save_every_weights=config["train"]["if_save_every_weights"], half_weights_save_dir=config["train"]["half_weights_save_dir"], exp_name=config["train"]["exp_name"],
|
||||
save_top_k=-1,
|
||||
monitor='top_3_acc',
|
||||
mode='max',
|
||||
save_on_train_epoch_end=True,
|
||||
every_n_epochs=config["train"]["save_every_n_epoch"],
|
||||
dirpath=ckpt_dir,
|
||||
)
|
||||
logger = TensorBoardLogger(
|
||||
name=output_dir.stem,
|
||||
save_dir=output_dir
|
||||
)
|
||||
trainer: Trainer = Trainer(
|
||||
max_epochs=config["train"]["epochs"],
|
||||
accelerator='gpu',
|
||||
# val_check_interval=9999999999999999999999,###不要验证
|
||||
# check_val_every_n_epoch=None,
|
||||
limit_val_batches=0,
|
||||
devices=-1,
|
||||
benchmark=False,
|
||||
fast_dev_run=False,
|
||||
strategy=DDPStrategy(process_group_backend="nccl"if platform.system()!="Windows"else "gloo"),
|
||||
precision=config["train"]["precision"],
|
||||
logger=logger,num_sanity_val_steps=0,
|
||||
callbacks=[ckpt_callback])
|
||||
|
||||
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
|
||||
config, output_dir)
|
||||
|
||||
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
|
||||
config,
|
||||
train_semantic_path=config["train_semantic_path"],
|
||||
train_phoneme_path=config["train_phoneme_path"],
|
||||
# dev_semantic_path=args.dev_semantic_path,
|
||||
# dev_phoneme_path=args.dev_phoneme_path
|
||||
)
|
||||
|
||||
try:
|
||||
# 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
|
||||
newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
|
||||
ckpt_path = ckpt_dir / newest_ckpt_name
|
||||
except Exception:
|
||||
ckpt_path = None
|
||||
print("ckpt_path:", ckpt_path)
|
||||
trainer.fit(model, data_module, ckpt_path=ckpt_path)
|
||||
|
||||
|
||||
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'-c',
|
||||
'--config_file',
|
||||
type=str,
|
||||
default='configs/s1longer.yaml',
|
||||
help='path of config file')
|
||||
# args for dataset
|
||||
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
|
||||
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
|
||||
|
||||
# parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
|
||||
# parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
|
||||
# parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
|
||||
# parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
|
||||
|
||||
args = parser.parse_args()
|
||||
logging.info(str(args))
|
||||
main(args)
|
402
GPT_SoVITS/s2_train.py
Normal file
402
GPT_SoVITS/s2_train.py
Normal file
@ -0,0 +1,402 @@
|
||||
import utils,os
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist,traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging,traceback
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
from random import randint
|
||||
from module import commons
|
||||
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import (
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
feature_loss,
|
||||
kl_loss
|
||||
)
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from process_ckpt import savee
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.set_float32_matmul_precision('medium')#最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
def main():
|
||||
"""Assume Single Node Multi GPUs Training Only"""
|
||||
assert torch.cuda.is_available(), "CPU training is not allowed."
|
||||
|
||||
n_gpus = torch.cuda.device_count()
|
||||
os.environ['MASTER_ADDR'] = 'localhost'
|
||||
os.environ['MASTER_PORT'] = str(randint(20000, 55555))
|
||||
|
||||
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
global global_step
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.data.exp_dir)
|
||||
logger.info(hps)
|
||||
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(backend='gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus,rank=rank)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data)########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[32, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(train_dataset, num_workers=6, shuffle=False, pin_memory=True,
|
||||
collate_fn=collate_fn, batch_sampler=train_sampler,persistent_workers=True,prefetch_factor=16)
|
||||
# if rank == 0:
|
||||
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
||||
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
||||
# batch_size=1, pin_memory=True,
|
||||
# drop_last=False, collate_fn=collate_fn)
|
||||
|
||||
net_g = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model).cuda(rank)
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
print(name,"not requires_grad")
|
||||
|
||||
te_p = list(map(id, net_g.enc_p.text_embedding.parameters()))
|
||||
et_p = list(map(id, net_g.enc_p.encoder_text.parameters()))
|
||||
mrte_p = list(map(id, net_g.enc_p.mrte.parameters()))
|
||||
base_params = filter(lambda p: id(p) not in te_p+et_p+mrte_p and p.requires_grad, net_g.parameters())
|
||||
|
||||
# te_p=net_g.enc_p.text_embedding.parameters()
|
||||
# et_p=net_g.enc_p.encoder_text.parameters()
|
||||
# mrte_p=net_g.enc_p.mrte.parameters()
|
||||
|
||||
optim_g = torch.optim.AdamW(
|
||||
# filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
|
||||
[
|
||||
{"params":base_params,"lr":hps.train.learning_rate},
|
||||
{"params":net_g.enc_p.text_embedding.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.encoder_text.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
{"params":net_g.enc_p.mrte.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
|
||||
],
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
optim_d = torch.optim.AdamW(
|
||||
net_d.parameters(),
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps)
|
||||
net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True)
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "D_*.pth"), net_d, optim_d
|
||||
) # D多半加载没事
|
||||
if rank == 0:
|
||||
logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "G_*.pth"), net_g, optim_g
|
||||
)
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
# global_step = 0
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
if hps.train.pretrained_s2G != "":
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print(
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],strict=False
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
if hps.train.pretrained_s2D != "":
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
|
||||
print(
|
||||
net_d.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
|
||||
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=-1)
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None], logger, [writer, writer_eval])
|
||||
else:
|
||||
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||
[train_loader, None], None, None)
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
|
||||
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
train_loader, eval_loader = loaders
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
net_d.train()
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad=False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(rank, non_blocking=True)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
y_hat, kl_ssl, ids_slice, x_mask, z_mask, \
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q), stats_ssl = net_g(ssl, spec, spec_lengths, text, text_lengths)
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
)
|
||||
|
||||
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
||||
loss_disc_all = loss_disc
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc_all).backward()
|
||||
scaler.unscale_(optim_d)
|
||||
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
||||
scaler.step(optim_d)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
# Generator
|
||||
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
||||
with autocast(enabled=False):
|
||||
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||
|
||||
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||
loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl
|
||||
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
||||
scalar_dict.update(
|
||||
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl_ssl": kl_ssl, "loss/g/kl": loss_kl})
|
||||
|
||||
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
||||
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
||||
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict)
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(global_step)),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(233333333333)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(233333333333)),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
logger.info(
|
||||
"saving ckpt %s_e%s:%s"
|
||||
% (
|
||||
hps.name,
|
||||
epoch,
|
||||
savee(
|
||||
ckpt,
|
||||
hps.name + "_e%s_s%s" % (epoch, global_step),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
|
||||
if rank == 0:
|
||||
logger.info('====> Epoch: {}'.format(epoch))
|
||||
|
||||
|
||||
|
||||
def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
generator.eval()
|
||||
image_dict = {}
|
||||
audio_dict = {}
|
||||
print("Evaluating ...")
|
||||
with torch.no_grad():
|
||||
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in enumerate(eval_loader):
|
||||
print(111)
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
for test in [0, 1]:
|
||||
|
||||
y_hat, mask, *_ = generator.module.infer(ssl,spec, spec_lengths,text, text_lengths, test=test)
|
||||
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax)
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.squeeze(1).float(),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax
|
||||
)
|
||||
image_dict.update({
|
||||
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
||||
})
|
||||
audio_dict.update({
|
||||
f"gen/audio_{batch_idx}_{test}": y_hat[0, :, :y_hat_lengths[0]]
|
||||
})
|
||||
image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
||||
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})
|
||||
|
||||
# y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None)
|
||||
# audio_dict.update({
|
||||
# f"gen/audio_{batch_idx}_style_pred": y_hat[0, :, :]
|
||||
# })
|
||||
|
||||
utils.summarize(
|
||||
writer=writer_eval,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
audios=audio_dict,
|
||||
audio_sampling_rate=hps.data.sampling_rate
|
||||
)
|
||||
generator.train()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
15
GPT_SoVITS/text/__init__.py
Normal file
15
GPT_SoVITS/text/__init__.py
Normal file
@ -0,0 +1,15 @@
|
||||
from text.symbols import *
|
||||
|
||||
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
||||
return phones
|
||||
|
167
GPT_SoVITS/text/chinese.py
Normal file
167
GPT_SoVITS/text/chinese.py
Normal file
@ -0,0 +1,167 @@
|
||||
import os
|
||||
import pdb
|
||||
import re
|
||||
|
||||
import cn2an
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
|
||||
import sys
|
||||
sys.path.append("/data/docker/liujing04/gpt-vits/gpt-vits-master")
|
||||
|
||||
from text.symbols import punctuation
|
||||
from text.tone_sandhi import ToneSandhi
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in
|
||||
open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()}
|
||||
|
||||
import jieba.posseg as psg
|
||||
|
||||
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…',
|
||||
'$': '.',
|
||||
'/': ',',
|
||||
'—': "-"
|
||||
}
|
||||
|
||||
tone_modifier = ToneSandhi()
|
||||
|
||||
def replace_punctuation(text):
|
||||
text = text.replace("嗯", "恩").replace("呣","母")
|
||||
pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text)
|
||||
|
||||
return replaced_text
|
||||
|
||||
def g2p(text):
|
||||
pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation))
|
||||
sentences = [i for i in re.split(pattern, text) if i.strip()!='']
|
||||
phones, word2ph = _g2p(sentences)
|
||||
return phones, word2ph
|
||||
|
||||
|
||||
def _get_initials_finals(word):
|
||||
initials = []
|
||||
finals = []
|
||||
orig_initials = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.INITIALS)
|
||||
orig_finals = lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for c, v in zip(orig_initials, orig_finals):
|
||||
initials.append(c)
|
||||
finals.append(v)
|
||||
return initials, finals
|
||||
|
||||
|
||||
def _g2p(segments):
|
||||
phones_list = []
|
||||
word2ph = []
|
||||
for seg in segments:
|
||||
pinyins = []
|
||||
# Replace all English words in the sentence
|
||||
seg = re.sub('[a-zA-Z]+', '', seg)
|
||||
seg_cut = psg.lcut(seg)
|
||||
initials = []
|
||||
finals = []
|
||||
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
||||
for word, pos in seg_cut:
|
||||
if pos == 'eng':
|
||||
continue
|
||||
sub_initials, sub_finals = _get_initials_finals(word)
|
||||
sub_finals = tone_modifier.modified_tone(word, pos,
|
||||
sub_finals)
|
||||
initials.append(sub_initials)
|
||||
finals.append(sub_finals)
|
||||
|
||||
# assert len(sub_initials) == len(sub_finals) == len(word)
|
||||
initials = sum(initials, [])
|
||||
finals = sum(finals, [])
|
||||
#
|
||||
for c, v in zip(initials, finals):
|
||||
raw_pinyin = c+v
|
||||
# NOTE: post process for pypinyin outputs
|
||||
# we discriminate i, ii and iii
|
||||
if c == v:
|
||||
assert c in punctuation
|
||||
phone = [c]
|
||||
word2ph.append(1)
|
||||
else:
|
||||
v_without_tone = v[:-1]
|
||||
tone = v[-1]
|
||||
|
||||
pinyin = c+v_without_tone
|
||||
assert tone in '12345'
|
||||
|
||||
if c:
|
||||
# 多音节
|
||||
v_rep_map = {
|
||||
"uei": 'ui',
|
||||
'iou': 'iu',
|
||||
'uen': 'un',
|
||||
}
|
||||
if v_without_tone in v_rep_map.keys():
|
||||
pinyin = c+v_rep_map[v_without_tone]
|
||||
else:
|
||||
# 单音节
|
||||
pinyin_rep_map = {
|
||||
'ing': 'ying',
|
||||
'i': 'yi',
|
||||
'in': 'yin',
|
||||
'u': 'wu',
|
||||
}
|
||||
if pinyin in pinyin_rep_map.keys():
|
||||
pinyin = pinyin_rep_map[pinyin]
|
||||
else:
|
||||
single_rep_map = {
|
||||
'v': 'yu',
|
||||
'e': 'e',
|
||||
'i': 'y',
|
||||
'u': 'w',
|
||||
}
|
||||
if pinyin[0] in single_rep_map.keys():
|
||||
pinyin = single_rep_map[pinyin[0]]+pinyin[1:]
|
||||
|
||||
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
||||
new_c, new_v = pinyin_to_symbol_map[pinyin].split(' ')
|
||||
new_v = new_v + tone
|
||||
phone = [new_c, new_v]
|
||||
word2ph.append(len(phone))
|
||||
|
||||
phones_list += phone
|
||||
return phones_list, word2ph
|
||||
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
||||
for number in numbers:
|
||||
text = text.replace(number, cn2an.an2cn(number), 1)
|
||||
text = replace_punctuation(text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
text = "啊——但是《原神》是由,米哈\游自主,研发的一款全.新开放世界.冒险游戏"
|
||||
text = "呣呣呣~就是…大人的鼹鼠党吧?"
|
||||
text = "你好"
|
||||
text = text_normalize(text)
|
||||
print(g2p(text))
|
||||
|
||||
|
||||
# # 示例用法
|
||||
# text = "这是一个示例文本:,你好!这是一个测试..."
|
||||
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
57
GPT_SoVITS/text/cleaner.py
Normal file
57
GPT_SoVITS/text/cleaner.py
Normal file
@ -0,0 +1,57 @@
|
||||
from text import chinese, japanese, cleaned_text_to_sequence, symbols, english
|
||||
|
||||
language_module_map = {
|
||||
'zh': chinese,
|
||||
"ja": japanese,
|
||||
'en': english
|
||||
}
|
||||
special = [
|
||||
('%', 'zh', "SP"),
|
||||
('¥', 'zh', "SP2"),
|
||||
('^', 'zh', "SP3"),
|
||||
# ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧
|
||||
]
|
||||
def clean_text(text, language):
|
||||
for special_s, special_l, target_symbol in special:
|
||||
if special_s in text and language == special_l:
|
||||
return clean_special(text, language, special_s, target_symbol)
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
if(language=="zh"):
|
||||
phones, word2ph = language_module.g2p(norm_text)
|
||||
assert len(phones) == sum(word2ph)
|
||||
assert len(norm_text) == len(word2ph)
|
||||
else:
|
||||
phones = language_module.g2p(norm_text)
|
||||
word2ph=None
|
||||
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def clean_special(text, language, special_s, target_symbol):
|
||||
"""
|
||||
特殊静音段sp符号处理
|
||||
"""
|
||||
text = text.replace(special_s, ",")
|
||||
language_module = language_module_map[language]
|
||||
norm_text = language_module.text_normalize(text)
|
||||
phones = language_module.g2p(norm_text)
|
||||
new_ph = []
|
||||
for ph in phones:
|
||||
assert ph in symbols
|
||||
if ph == ',':
|
||||
new_ph.append(target_symbol)
|
||||
else:
|
||||
new_ph.append(ph)
|
||||
return new_ph
|
||||
|
||||
def text_to_sequence(text, language):
|
||||
phones = clean_text(text)
|
||||
return cleaned_text_to_sequence(phones)
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(clean_text("你好%啊啊啊额、还是到付红四方。", 'zh'))
|
||||
|
||||
|
129530
GPT_SoVITS/text/cmudict.rep
Normal file
129530
GPT_SoVITS/text/cmudict.rep
Normal file
File diff suppressed because it is too large
Load Diff
BIN
GPT_SoVITS/text/cmudict_cache.pickle
Normal file
BIN
GPT_SoVITS/text/cmudict_cache.pickle
Normal file
Binary file not shown.
109
GPT_SoVITS/text/english.py
Normal file
109
GPT_SoVITS/text/english.py
Normal file
@ -0,0 +1,109 @@
|
||||
import pickle
|
||||
import os
|
||||
import re
|
||||
from g2p_en import G2p
|
||||
|
||||
from string import punctuation
|
||||
|
||||
from text import symbols
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep')
|
||||
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle')
|
||||
_g2p = G2p()
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
|
||||
|
||||
def replace_phs(phs):
|
||||
rep_map = {
|
||||
';': ',',
|
||||
':': ',',
|
||||
'\'': '-',
|
||||
'"': '-'
|
||||
}
|
||||
phs_new = []
|
||||
for ph in phs:
|
||||
if ph in symbols:
|
||||
phs_new.append(ph)
|
||||
elif ph in rep_map.keys():
|
||||
phs_new.append(rep_map[ph])
|
||||
else:
|
||||
print('ph not in symbols: ', ph)
|
||||
return phs_new
|
||||
|
||||
def read_dict():
|
||||
g2p_dict = {}
|
||||
start_line = 49
|
||||
with open(CMU_DICT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= start_line:
|
||||
line = line.strip()
|
||||
word_split = line.split(' ')
|
||||
word = word_split[0]
|
||||
|
||||
syllable_split = word_split[1].split(' - ')
|
||||
g2p_dict[word] = []
|
||||
for syllable in syllable_split:
|
||||
phone_split = syllable.split(' ')
|
||||
g2p_dict[word].append(phone_split)
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def cache_dict(g2p_dict, file_path):
|
||||
with open(file_path, 'wb') as pickle_file:
|
||||
pickle.dump(g2p_dict, pickle_file)
|
||||
|
||||
|
||||
def get_dict():
|
||||
if os.path.exists(CACHE_PATH):
|
||||
with open(CACHE_PATH, 'rb') as pickle_file:
|
||||
g2p_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
g2p_dict = read_dict()
|
||||
cache_dict(g2p_dict, CACHE_PATH)
|
||||
|
||||
return g2p_dict
|
||||
|
||||
eng_dict = get_dict()
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: eng text normalize
|
||||
return text.replace(";", ",")
|
||||
|
||||
def g2p(text):
|
||||
|
||||
phones = []
|
||||
words = re.split(r"([,;.\-\?\!\s+])", text)
|
||||
for w in words:
|
||||
if w.upper() in eng_dict:
|
||||
phns = eng_dict[w.upper()]
|
||||
for ph in phns:
|
||||
phones += ph
|
||||
else:
|
||||
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
||||
for ph in phone_list:
|
||||
if ph in arpa:
|
||||
phones.append(ph)
|
||||
else:
|
||||
phones.append(ph)
|
||||
|
||||
return replace_phs(phones)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(get_dict())
|
||||
print(g2p("hello"))
|
||||
print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
||||
# all_phones = set()
|
||||
# for k, syllables in eng_dict.items():
|
||||
# for group in syllables:
|
||||
# for ph in group:
|
||||
# all_phones.add(ph)
|
||||
# print(all_phones)
|
98
GPT_SoVITS/text/japanese.py
Normal file
98
GPT_SoVITS/text/japanese.py
Normal file
@ -0,0 +1,98 @@
|
||||
# modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
|
||||
import re
|
||||
import sys
|
||||
|
||||
import pyopenjtalk
|
||||
|
||||
from text import symbols
|
||||
|
||||
# Regular expression matching Japanese without punctuation marks:
|
||||
_japanese_characters = re.compile(
|
||||
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# Regular expression matching non-Japanese characters or punctuation marks:
|
||||
_japanese_marks = re.compile(
|
||||
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
||||
|
||||
# List of (symbol, Japanese) pairs for marks:
|
||||
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
('%', 'パーセント')
|
||||
]]
|
||||
|
||||
|
||||
# List of (consonant, sokuon) pairs:
|
||||
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'Q([↑↓]*[kg])', r'k#\1'),
|
||||
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
||||
(r'Q([↑↓]*[sʃ])', r's\1'),
|
||||
(r'Q([↑↓]*[pb])', r'p#\1')
|
||||
]]
|
||||
|
||||
# List of (consonant, hatsuon) pairs:
|
||||
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
||||
(r'N([↑↓]*[pbm])', r'm\1'),
|
||||
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
||||
(r'N([↑↓]*[tdn])', r'n\1'),
|
||||
(r'N([↑↓]*[kg])', r'ŋ\1')
|
||||
]]
|
||||
|
||||
|
||||
|
||||
def post_replace_ph(ph):
|
||||
rep_map = {
|
||||
':': ',',
|
||||
';': ',',
|
||||
',': ',',
|
||||
'。': '.',
|
||||
'!': '!',
|
||||
'?': '?',
|
||||
'\n': '.',
|
||||
"·": ",",
|
||||
'、': ",",
|
||||
'...': '…'
|
||||
}
|
||||
if ph in rep_map.keys():
|
||||
ph = rep_map[ph]
|
||||
if ph in symbols:
|
||||
return ph
|
||||
if ph not in symbols:
|
||||
ph = 'UNK'
|
||||
return ph
|
||||
|
||||
def symbols_to_japanese(text):
|
||||
for regex, replacement in _symbols_to_japanese:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def preprocess_jap(text):
|
||||
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
||||
text = symbols_to_japanese(text)
|
||||
sentences = re.split(_japanese_marks, text)
|
||||
marks = re.findall(_japanese_marks, text)
|
||||
text = []
|
||||
for i, sentence in enumerate(sentences):
|
||||
if re.match(_japanese_characters, sentence):
|
||||
p = pyopenjtalk.g2p(sentence)
|
||||
text += p.split(" ")
|
||||
|
||||
if i < len(marks):
|
||||
text += [marks[i].replace(' ', '')]
|
||||
return text
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: jap text normalize
|
||||
return text
|
||||
|
||||
def g2p(norm_text):
|
||||
phones = preprocess_jap(norm_text)
|
||||
phones = [post_replace_ph(i) for i in phones]
|
||||
# todo: implement tones and word2ph
|
||||
return phones
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
for line in open("../../../Downloads/transcript_utf8.txt").readlines():
|
||||
text = line.split(":")[1]
|
||||
phones = g2p(text)
|
||||
print(phones)
|
429
GPT_SoVITS/text/opencpop-strict.txt
Normal file
429
GPT_SoVITS/text/opencpop-strict.txt
Normal file
@ -0,0 +1,429 @@
|
||||
a AA a
|
||||
ai AA ai
|
||||
an AA an
|
||||
ang AA ang
|
||||
ao AA ao
|
||||
ba b a
|
||||
bai b ai
|
||||
ban b an
|
||||
bang b ang
|
||||
bao b ao
|
||||
bei b ei
|
||||
ben b en
|
||||
beng b eng
|
||||
bi b i
|
||||
bian b ian
|
||||
biao b iao
|
||||
bie b ie
|
||||
bin b in
|
||||
bing b ing
|
||||
bo b o
|
||||
bu b u
|
||||
ca c a
|
||||
cai c ai
|
||||
can c an
|
||||
cang c ang
|
||||
cao c ao
|
||||
ce c e
|
||||
cei c ei
|
||||
cen c en
|
||||
ceng c eng
|
||||
cha ch a
|
||||
chai ch ai
|
||||
chan ch an
|
||||
chang ch ang
|
||||
chao ch ao
|
||||
che ch e
|
||||
chen ch en
|
||||
cheng ch eng
|
||||
chi ch ir
|
||||
chong ch ong
|
||||
chou ch ou
|
||||
chu ch u
|
||||
chua ch ua
|
||||
chuai ch uai
|
||||
chuan ch uan
|
||||
chuang ch uang
|
||||
chui ch ui
|
||||
chun ch un
|
||||
chuo ch uo
|
||||
ci c i0
|
||||
cong c ong
|
||||
cou c ou
|
||||
cu c u
|
||||
cuan c uan
|
||||
cui c ui
|
||||
cun c un
|
||||
cuo c uo
|
||||
da d a
|
||||
dai d ai
|
||||
dan d an
|
||||
dang d ang
|
||||
dao d ao
|
||||
de d e
|
||||
dei d ei
|
||||
den d en
|
||||
deng d eng
|
||||
di d i
|
||||
dia d ia
|
||||
dian d ian
|
||||
diao d iao
|
||||
die d ie
|
||||
ding d ing
|
||||
diu d iu
|
||||
dong d ong
|
||||
dou d ou
|
||||
du d u
|
||||
duan d uan
|
||||
dui d ui
|
||||
dun d un
|
||||
duo d uo
|
||||
e EE e
|
||||
ei EE ei
|
||||
en EE en
|
||||
eng EE eng
|
||||
er EE er
|
||||
fa f a
|
||||
fan f an
|
||||
fang f ang
|
||||
fei f ei
|
||||
fen f en
|
||||
feng f eng
|
||||
fo f o
|
||||
fou f ou
|
||||
fu f u
|
||||
ga g a
|
||||
gai g ai
|
||||
gan g an
|
||||
gang g ang
|
||||
gao g ao
|
||||
ge g e
|
||||
gei g ei
|
||||
gen g en
|
||||
geng g eng
|
||||
gong g ong
|
||||
gou g ou
|
||||
gu g u
|
||||
gua g ua
|
||||
guai g uai
|
||||
guan g uan
|
||||
guang g uang
|
||||
gui g ui
|
||||
gun g un
|
||||
guo g uo
|
||||
ha h a
|
||||
hai h ai
|
||||
han h an
|
||||
hang h ang
|
||||
hao h ao
|
||||
he h e
|
||||
hei h ei
|
||||
hen h en
|
||||
heng h eng
|
||||
hong h ong
|
||||
hou h ou
|
||||
hu h u
|
||||
hua h ua
|
||||
huai h uai
|
||||
huan h uan
|
||||
huang h uang
|
||||
hui h ui
|
||||
hun h un
|
||||
huo h uo
|
||||
ji j i
|
||||
jia j ia
|
||||
jian j ian
|
||||
jiang j iang
|
||||
jiao j iao
|
||||
jie j ie
|
||||
jin j in
|
||||
jing j ing
|
||||
jiong j iong
|
||||
jiu j iu
|
||||
ju j v
|
||||
jv j v
|
||||
juan j van
|
||||
jvan j van
|
||||
jue j ve
|
||||
jve j ve
|
||||
jun j vn
|
||||
jvn j vn
|
||||
ka k a
|
||||
kai k ai
|
||||
kan k an
|
||||
kang k ang
|
||||
kao k ao
|
||||
ke k e
|
||||
kei k ei
|
||||
ken k en
|
||||
keng k eng
|
||||
kong k ong
|
||||
kou k ou
|
||||
ku k u
|
||||
kua k ua
|
||||
kuai k uai
|
||||
kuan k uan
|
||||
kuang k uang
|
||||
kui k ui
|
||||
kun k un
|
||||
kuo k uo
|
||||
la l a
|
||||
lai l ai
|
||||
lan l an
|
||||
lang l ang
|
||||
lao l ao
|
||||
le l e
|
||||
lei l ei
|
||||
leng l eng
|
||||
li l i
|
||||
lia l ia
|
||||
lian l ian
|
||||
liang l iang
|
||||
liao l iao
|
||||
lie l ie
|
||||
lin l in
|
||||
ling l ing
|
||||
liu l iu
|
||||
lo l o
|
||||
long l ong
|
||||
lou l ou
|
||||
lu l u
|
||||
luan l uan
|
||||
lun l un
|
||||
luo l uo
|
||||
lv l v
|
||||
lve l ve
|
||||
ma m a
|
||||
mai m ai
|
||||
man m an
|
||||
mang m ang
|
||||
mao m ao
|
||||
me m e
|
||||
mei m ei
|
||||
men m en
|
||||
meng m eng
|
||||
mi m i
|
||||
mian m ian
|
||||
miao m iao
|
||||
mie m ie
|
||||
min m in
|
||||
ming m ing
|
||||
miu m iu
|
||||
mo m o
|
||||
mou m ou
|
||||
mu m u
|
||||
na n a
|
||||
nai n ai
|
||||
nan n an
|
||||
nang n ang
|
||||
nao n ao
|
||||
ne n e
|
||||
nei n ei
|
||||
nen n en
|
||||
neng n eng
|
||||
ni n i
|
||||
nian n ian
|
||||
niang n iang
|
||||
niao n iao
|
||||
nie n ie
|
||||
nin n in
|
||||
ning n ing
|
||||
niu n iu
|
||||
nong n ong
|
||||
nou n ou
|
||||
nu n u
|
||||
nuan n uan
|
||||
nun n un
|
||||
nuo n uo
|
||||
nv n v
|
||||
nve n ve
|
||||
o OO o
|
||||
ou OO ou
|
||||
pa p a
|
||||
pai p ai
|
||||
pan p an
|
||||
pang p ang
|
||||
pao p ao
|
||||
pei p ei
|
||||
pen p en
|
||||
peng p eng
|
||||
pi p i
|
||||
pian p ian
|
||||
piao p iao
|
||||
pie p ie
|
||||
pin p in
|
||||
ping p ing
|
||||
po p o
|
||||
pou p ou
|
||||
pu p u
|
||||
qi q i
|
||||
qia q ia
|
||||
qian q ian
|
||||
qiang q iang
|
||||
qiao q iao
|
||||
qie q ie
|
||||
qin q in
|
||||
qing q ing
|
||||
qiong q iong
|
||||
qiu q iu
|
||||
qu q v
|
||||
qv q v
|
||||
quan q van
|
||||
qvan q van
|
||||
que q ve
|
||||
qve q ve
|
||||
qun q vn
|
||||
qvn q vn
|
||||
ran r an
|
||||
rang r ang
|
||||
rao r ao
|
||||
re r e
|
||||
ren r en
|
||||
reng r eng
|
||||
ri r ir
|
||||
rong r ong
|
||||
rou r ou
|
||||
ru r u
|
||||
rua r ua
|
||||
ruan r uan
|
||||
rui r ui
|
||||
run r un
|
||||
ruo r uo
|
||||
sa s a
|
||||
sai s ai
|
||||
san s an
|
||||
sang s ang
|
||||
sao s ao
|
||||
se s e
|
||||
sen s en
|
||||
seng s eng
|
||||
sha sh a
|
||||
shai sh ai
|
||||
shan sh an
|
||||
shang sh ang
|
||||
shao sh ao
|
||||
she sh e
|
||||
shei sh ei
|
||||
shen sh en
|
||||
sheng sh eng
|
||||
shi sh ir
|
||||
shou sh ou
|
||||
shu sh u
|
||||
shua sh ua
|
||||
shuai sh uai
|
||||
shuan sh uan
|
||||
shuang sh uang
|
||||
shui sh ui
|
||||
shun sh un
|
||||
shuo sh uo
|
||||
si s i0
|
||||
song s ong
|
||||
sou s ou
|
||||
su s u
|
||||
suan s uan
|
||||
sui s ui
|
||||
sun s un
|
||||
suo s uo
|
||||
ta t a
|
||||
tai t ai
|
||||
tan t an
|
||||
tang t ang
|
||||
tao t ao
|
||||
te t e
|
||||
tei t ei
|
||||
teng t eng
|
||||
ti t i
|
||||
tian t ian
|
||||
tiao t iao
|
||||
tie t ie
|
||||
ting t ing
|
||||
tong t ong
|
||||
tou t ou
|
||||
tu t u
|
||||
tuan t uan
|
||||
tui t ui
|
||||
tun t un
|
||||
tuo t uo
|
||||
wa w a
|
||||
wai w ai
|
||||
wan w an
|
||||
wang w ang
|
||||
wei w ei
|
||||
wen w en
|
||||
weng w eng
|
||||
wo w o
|
||||
wu w u
|
||||
xi x i
|
||||
xia x ia
|
||||
xian x ian
|
||||
xiang x iang
|
||||
xiao x iao
|
||||
xie x ie
|
||||
xin x in
|
||||
xing x ing
|
||||
xiong x iong
|
||||
xiu x iu
|
||||
xu x v
|
||||
xv x v
|
||||
xuan x van
|
||||
xvan x van
|
||||
xue x ve
|
||||
xve x ve
|
||||
xun x vn
|
||||
xvn x vn
|
||||
ya y a
|
||||
yan y En
|
||||
yang y ang
|
||||
yao y ao
|
||||
ye y E
|
||||
yi y i
|
||||
yin y in
|
||||
ying y ing
|
||||
yo y o
|
||||
yong y ong
|
||||
you y ou
|
||||
yu y v
|
||||
yv y v
|
||||
yuan y van
|
||||
yvan y van
|
||||
yue y ve
|
||||
yve y ve
|
||||
yun y vn
|
||||
yvn y vn
|
||||
za z a
|
||||
zai z ai
|
||||
zan z an
|
||||
zang z ang
|
||||
zao z ao
|
||||
ze z e
|
||||
zei z ei
|
||||
zen z en
|
||||
zeng z eng
|
||||
zha zh a
|
||||
zhai zh ai
|
||||
zhan zh an
|
||||
zhang zh ang
|
||||
zhao zh ao
|
||||
zhe zh e
|
||||
zhei zh ei
|
||||
zhen zh en
|
||||
zheng zh eng
|
||||
zhi zh ir
|
||||
zhong zh ong
|
||||
zhou zh ou
|
||||
zhu zh u
|
||||
zhua zh ua
|
||||
zhuai zh uai
|
||||
zhuan zh uan
|
||||
zhuang zh uang
|
||||
zhui zh ui
|
||||
zhun zh un
|
||||
zhuo zh uo
|
||||
zi z i0
|
||||
zong z ong
|
||||
zou z ou
|
||||
zu z u
|
||||
zuan z uan
|
||||
zui z ui
|
||||
zun z un
|
||||
zuo z uo
|
24
GPT_SoVITS/text/symbols.py
Normal file
24
GPT_SoVITS/text/symbols.py
Normal file
@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
# punctuation = ['!', '?', '…', ",", ".","@"]#@是SP停顿
|
||||
punctuation = ['!', '?', '…', ",", "."]#@是SP停顿
|
||||
punctuation.append("-")
|
||||
pu_symbols = punctuation + ["SP", 'SP2', 'SP3', "UNK"]
|
||||
# pu_symbols = punctuation + ["SP", 'SP2', 'SP3','SP4', "UNK"]
|
||||
pad = '_'
|
||||
|
||||
c = ['AA', 'EE', 'OO', 'b', 'c', 'ch', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 'sh', 't', 'w', 'x', 'y', 'z', 'zh']
|
||||
v = ['E1', 'En1', 'a1', 'ai1', 'an1', 'ang1', 'ao1', 'e1', 'ei1', 'en1', 'eng1', 'er1', 'i1', 'i01', 'ia1', 'ian1', 'iang1', 'iao1', 'ie1', 'in1', 'ing1', 'iong1', 'ir1', 'iu1', 'o1', 'ong1', 'ou1', 'u1', 'ua1', 'uai1', 'uan1', 'uang1', 'ui1', 'un1', 'uo1', 'v1', 'van1', 've1', 'vn1', 'E2', 'En2', 'a2', 'ai2', 'an2', 'ang2', 'ao2', 'e2', 'ei2', 'en2', 'eng2', 'er2', 'i2', 'i02', 'ia2', 'ian2', 'iang2', 'iao2', 'ie2', 'in2', 'ing2', 'iong2', 'ir2', 'iu2', 'o2', 'ong2', 'ou2', 'u2', 'ua2', 'uai2', 'uan2', 'uang2', 'ui2', 'un2', 'uo2', 'v2', 'van2', 've2', 'vn2', 'E3', 'En3', 'a3', 'ai3', 'an3', 'ang3', 'ao3', 'e3', 'ei3', 'en3', 'eng3', 'er3', 'i3', 'i03', 'ia3', 'ian3', 'iang3', 'iao3', 'ie3', 'in3', 'ing3', 'iong3', 'ir3', 'iu3', 'o3', 'ong3', 'ou3', 'u3', 'ua3', 'uai3', 'uan3', 'uang3', 'ui3', 'un3', 'uo3', 'v3', 'van3', 've3', 'vn3', 'E4', 'En4', 'a4', 'ai4', 'an4', 'ang4', 'ao4', 'e4', 'ei4', 'en4', 'eng4', 'er4', 'i4', 'i04', 'ia4', 'ian4', 'iang4', 'iao4', 'ie4', 'in4', 'ing4', 'iong4', 'ir4', 'iu4', 'o4', 'ong4', 'ou4', 'u4', 'ua4', 'uai4', 'uan4', 'uang4', 'ui4', 'un4', 'uo4', 'v4', 'van4', 've4', 'vn4', 'E5', 'En5', 'a5', 'ai5', 'an5', 'ang5', 'ao5', 'e5', 'ei5', 'en5', 'eng5', 'er5', 'i5', 'i05', 'ia5', 'ian5', 'iang5', 'iao5', 'ie5', 'in5', 'ing5', 'iong5', 'ir5', 'iu5', 'o5', 'ong5', 'ou5', 'u5', 'ua5', 'uai5', 'uan5', 'uang5', 'ui5', 'un5', 'uo5', 'v5', 'van5', 've5', 'vn5']
|
||||
|
||||
v_without_tone = ['E', 'En', 'a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'i0', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'ir', 'iu', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn']
|
||||
|
||||
# japanese
|
||||
ja_symbols = ['I', 'N', 'U', 'a', 'b', 'by', 'ch', 'cl', 'd', 'dy', 'e', 'f', 'g', 'gy', 'h', 'hy', 'i', 'j', 'k', 'ky',
|
||||
'm', 'my', 'n', 'ny', 'o', 'p', 'py', 'r', 'ry', 's', 'sh', 't', 'ts', 'u', 'v', 'w', 'y', 'z']
|
||||
|
||||
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
|
||||
|
||||
symbols = [pad] + c + v + ja_symbols + pu_symbols + list(arpa)
|
||||
symbols = sorted(set(symbols))
|
||||
if __name__ == '__main__':
|
||||
print(len(symbols))
|
358
GPT_SoVITS/text/tone_sandhi.py
Normal file
358
GPT_SoVITS/text/tone_sandhi.py
Normal file
@ -0,0 +1,358 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import jieba
|
||||
from pypinyin import lazy_pinyin
|
||||
from pypinyin import Style
|
||||
|
||||
|
||||
class ToneSandhi():
|
||||
def __init__(self):
|
||||
self.must_neural_tone_words = {
|
||||
'麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝',
|
||||
'难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊',
|
||||
'里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去',
|
||||
'软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号',
|
||||
'认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当',
|
||||
'蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻',
|
||||
'舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂',
|
||||
'胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆',
|
||||
'老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂',
|
||||
'精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿',
|
||||
'窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台',
|
||||
'码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算',
|
||||
'白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨',
|
||||
'琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快',
|
||||
'爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜',
|
||||
'溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔',
|
||||
'棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事',
|
||||
'木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾',
|
||||
'收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼',
|
||||
'抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实',
|
||||
'扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头',
|
||||
'念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼',
|
||||
'干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数',
|
||||
'屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气',
|
||||
'实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈',
|
||||
'姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方',
|
||||
'大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴',
|
||||
'嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦',
|
||||
'咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝',
|
||||
'叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹',
|
||||
'功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息',
|
||||
'凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
|
||||
'佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
|
||||
'交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
|
||||
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
|
||||
'父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
|
||||
'幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
|
||||
'凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
|
||||
'扫把', '惦记'
|
||||
}
|
||||
self.must_not_neural_tone_words = {
|
||||
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
|
||||
}
|
||||
self.punc = ":,;。?!“”‘’':,;.?!"
|
||||
|
||||
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
||||
# e.g.
|
||||
# word: "家里"
|
||||
# pos: "s"
|
||||
# finals: ['ia1', 'i3']
|
||||
def _neural_sandhi(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
|
||||
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
||||
for j, item in enumerate(word):
|
||||
if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
|
||||
"n", "v", "a"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
finals[j] = finals[j][:-1] + "5"
|
||||
ge_idx = word.find("个")
|
||||
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) >= 1 and word[-1] in "的地得":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 走了, 看着, 去过
|
||||
elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
elif len(word) > 1 and word[-1] in "们子" and pos in {
|
||||
"r", "n"
|
||||
} and word not in self.must_not_neural_tone_words:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 桌上, 地下, 家里
|
||||
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# e.g. 上来, 下去
|
||||
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
# 个做量词
|
||||
elif (ge_idx >= 1 and
|
||||
(word[ge_idx - 1].isnumeric() or
|
||||
word[ge_idx - 1] in "几有两半多各整每做是")) or word == '个':
|
||||
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
||||
else:
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
finals[-1] = finals[-1][:-1] + "5"
|
||||
|
||||
word_list = self._split_word(word)
|
||||
finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
|
||||
for i, word in enumerate(word_list):
|
||||
# conventional neural in Chinese
|
||||
if word in self.must_neural_tone_words or word[
|
||||
-2:] in self.must_neural_tone_words:
|
||||
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
||||
finals = sum(finals_list, [])
|
||||
return finals
|
||||
|
||||
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# e.g. 看不懂
|
||||
if len(word) == 3 and word[1] == "不":
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
# "不" before tone4 should be bu2, e.g. 不怕
|
||||
if char == "不" and i + 1 < len(word) and finals[i +
|
||||
1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
return finals
|
||||
|
||||
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
# "一" in number sequences, e.g. 一零零, 二一零
|
||||
if word.find("一") != -1 and all(
|
||||
[item.isnumeric() for item in word if item != "一"]):
|
||||
return finals
|
||||
# "一" between reduplication words shold be yi5, e.g. 看一看
|
||||
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
||||
finals[1] = finals[1][:-1] + "5"
|
||||
# when "一" is ordinal word, it should be yi1
|
||||
elif word.startswith("第一"):
|
||||
finals[1] = finals[1][:-1] + "1"
|
||||
else:
|
||||
for i, char in enumerate(word):
|
||||
if char == "一" and i + 1 < len(word):
|
||||
# "一" before tone4 should be yi2, e.g. 一段
|
||||
if finals[i + 1][-1] == "4":
|
||||
finals[i] = finals[i][:-1] + "2"
|
||||
# "一" before non-tone4 should be yi4, e.g. 一天
|
||||
else:
|
||||
# "一" 后面如果是标点,还读一声
|
||||
if word[i + 1] not in self.punc:
|
||||
finals[i] = finals[i][:-1] + "4"
|
||||
return finals
|
||||
|
||||
def _split_word(self, word: str) -> List[str]:
|
||||
word_list = jieba.cut_for_search(word)
|
||||
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
||||
first_subword = word_list[0]
|
||||
first_begin_idx = word.find(first_subword)
|
||||
if first_begin_idx == 0:
|
||||
second_subword = word[len(first_subword):]
|
||||
new_word_list = [first_subword, second_subword]
|
||||
else:
|
||||
second_subword = word[:-len(first_subword)]
|
||||
new_word_list = [second_subword, first_subword]
|
||||
return new_word_list
|
||||
|
||||
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
||||
if len(word) == 2 and self._all_tone_three(finals):
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
elif len(word) == 3:
|
||||
word_list = self._split_word(word)
|
||||
if self._all_tone_three(finals):
|
||||
# disyllabic + monosyllabic, e.g. 蒙古/包
|
||||
if len(word_list[0]) == 2:
|
||||
finals[0] = finals[0][:-1] + "2"
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
# monosyllabic + disyllabic, e.g. 纸/老虎
|
||||
elif len(word_list[0]) == 1:
|
||||
finals[1] = finals[1][:-1] + "2"
|
||||
else:
|
||||
finals_list = [
|
||||
finals[:len(word_list[0])], finals[len(word_list[0]):]
|
||||
]
|
||||
if len(finals_list) == 2:
|
||||
for i, sub in enumerate(finals_list):
|
||||
# e.g. 所有/人
|
||||
if self._all_tone_three(sub) and len(sub) == 2:
|
||||
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
||||
# e.g. 好/喜欢
|
||||
elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \
|
||||
finals_list[0][-1][-1] == "3":
|
||||
|
||||
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
||||
finals = sum(finals_list, [])
|
||||
# split idiom into two words who's length is 2
|
||||
elif len(word) == 4:
|
||||
finals_list = [finals[:2], finals[2:]]
|
||||
finals = []
|
||||
for sub in finals_list:
|
||||
if self._all_tone_three(sub):
|
||||
sub[0] = sub[0][:-1] + "2"
|
||||
finals += sub
|
||||
|
||||
return finals
|
||||
|
||||
def _all_tone_three(self, finals: List[str]) -> bool:
|
||||
return all(x[-1] == "3" for x in finals)
|
||||
|
||||
# merge "不" and the word behind it
|
||||
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
last_word = ""
|
||||
for word, pos in seg:
|
||||
if last_word == "不":
|
||||
word = last_word + word
|
||||
if word != "不":
|
||||
new_seg.append((word, pos))
|
||||
last_word = word[:]
|
||||
if last_word == "不":
|
||||
new_seg.append((last_word, 'd'))
|
||||
last_word = ""
|
||||
return new_seg
|
||||
|
||||
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
||||
# function 2: merge single "一" and the word behind it
|
||||
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
||||
# e.g.
|
||||
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
||||
# output seg: [['听一听', 'v']]
|
||||
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
# function 1
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "一" and i + 1 < len(seg) and seg[i - 1][
|
||||
0] == seg[i + 1][0] and seg[i - 1][1] == "v":
|
||||
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
||||
else:
|
||||
if i - 2 >= 0 and seg[i - 1][0] == "一" and seg[i - 2][
|
||||
0] == word and pos == "v":
|
||||
continue
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
seg = new_seg
|
||||
new_seg = []
|
||||
# function 2
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and new_seg[-1][0] == "一":
|
||||
new_seg[-1][0] = new_seg[-1][0] + word
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
# the first and the second words are all_tone_three
|
||||
def _merge_continuous_three_tones(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and self._all_tone_three(
|
||||
sub_finals_list[i - 1]) and self._all_tone_three(
|
||||
sub_finals_list[i]) and not merge_last[i - 1]:
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
|
||||
return new_seg
|
||||
|
||||
def _is_reduplication(self, word: str) -> bool:
|
||||
return len(word) == 2 and word[0] == word[1]
|
||||
|
||||
# the last char of first word and the first char of second word is tone_three
|
||||
def _merge_continuous_three_tones_2(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
sub_finals_list = [
|
||||
lazy_pinyin(
|
||||
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
||||
for (word, pos) in seg
|
||||
]
|
||||
assert len(sub_finals_list) == len(seg)
|
||||
merge_last = [False] * len(seg)
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
|
||||
merge_last[i - 1]:
|
||||
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
||||
if not self._is_reduplication(seg[i - 1][0]) and len(
|
||||
seg[i - 1][0]) + len(seg[i][0]) <= 3:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
merge_last[i] = True
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if i - 1 >= 0 and word == "儿" and seg[i-1][0] != "#":
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def _merge_reduplication(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
new_seg = []
|
||||
for i, (word, pos) in enumerate(seg):
|
||||
if new_seg and word == new_seg[-1][0]:
|
||||
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
||||
else:
|
||||
new_seg.append([word, pos])
|
||||
return new_seg
|
||||
|
||||
def pre_merge_for_modify(
|
||||
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
||||
seg = self._merge_bu(seg)
|
||||
try:
|
||||
seg = self._merge_yi(seg)
|
||||
except:
|
||||
print("_merge_yi failed")
|
||||
seg = self._merge_reduplication(seg)
|
||||
try:
|
||||
seg = self._merge_continuous_three_tones(seg)
|
||||
except:
|
||||
print("_merge_continuous_three_tones failed")
|
||||
try:
|
||||
seg = self._merge_continuous_three_tones_2(seg)
|
||||
except:
|
||||
print("_merge_continuous_three_tones_2 failed")
|
||||
|
||||
seg = self._merge_er(seg)
|
||||
return seg
|
||||
|
||||
def modified_tone(self, word: str, pos: str,
|
||||
finals: List[str]) -> List[str]:
|
||||
finals = self._bu_sandhi(word, finals)
|
||||
finals = self._yi_sandhi(word, finals)
|
||||
finals = self._neural_sandhi(word, pos, finals)
|
||||
finals = self._three_sandhi(word, finals)
|
||||
return finals
|
298
GPT_SoVITS/utils.py
Normal file
298
GPT_SoVITS/utils.py
Normal file
@ -0,0 +1,298 @@
|
||||
import os
|
||||
import glob
|
||||
import sys
|
||||
import argparse
|
||||
import logging
|
||||
import json
|
||||
import subprocess
|
||||
import traceback
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from scipy.io.wavfile import read
|
||||
import torch
|
||||
import logging
|
||||
logging.getLogger('numba').setLevel(logging.ERROR)
|
||||
logging.getLogger('matplotlib').setLevel(logging.ERROR)
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
iteration = checkpoint_dict['iteration']
|
||||
learning_rate = checkpoint_dict['learning_rate']
|
||||
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
||||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
saved_state_dict = checkpoint_dict['model']
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
# assert "quantizer" not in k
|
||||
# print("load", k)
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
print("error, %s is not in the checkpoint" % k)#shape不对也会,比如text_embedding当cleaner修改时
|
||||
new_state_dict[k] = v
|
||||
if hasattr(model, 'module'):
|
||||
model.module.load_state_dict(new_state_dict)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict)
|
||||
print("load ")
|
||||
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
||||
checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path))
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save({'model': state_dict,
|
||||
'iteration': iteration,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'learning_rate': learning_rate}, checkpoint_path)
|
||||
|
||||
|
||||
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats='HWC')
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
print(x)
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||||
interpolation='none')
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||||
interpolation='none')
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = 'Decoder timestep'
|
||||
if info is not None:
|
||||
xlabel += '\n\n' + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel('Encoder timestep')
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
data, sampling_rate = librosa.load(full_path, sr=None)
|
||||
return torch.FloatTensor(data), sampling_rate
|
||||
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding='utf-8') as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True, stage=1):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-c', '--config', type=str, default="./configs/s2.json",help='JSON file for configuration')
|
||||
parser.add_argument('-p', '--pretrain', type=str, required=False,default=None,help='pretrain dir')
|
||||
parser.add_argument('-rs', '--resume_step', type=int, required=False,default=None,help='resume step')
|
||||
# parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
|
||||
# parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
|
||||
# parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config_path = args.config
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.pretrain = args.pretrain
|
||||
hparams.resume_step = args.resume_step
|
||||
# hparams.data.exp_dir = args.exp_dir
|
||||
if stage ==1:
|
||||
model_dir = hparams.s1_ckpt_dir
|
||||
else:
|
||||
model_dir = hparams.s2_ckpt_dir
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
|
||||
with open(config_save_path, "w") as f:
|
||||
f.write(data)
|
||||
return hparams
|
||||
|
||||
|
||||
|
||||
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
||||
"""Freeing up space by deleting saved ckpts
|
||||
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
import re
|
||||
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
||||
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
||||
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
||||
sort_key = time_key if sort_by_time else name_key
|
||||
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
|
||||
key=sort_key)
|
||||
to_del = [os.path.join(path_to_models, fn) for fn in
|
||||
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
||||
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||
del_routine = lambda x: [os.remove(x), del_info(x)]
|
||||
rs = [del_routine(fn) for fn in to_del]
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
))
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]))
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams():
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(load_wav_to_torch('/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac'))
|
Loading…
x
Reference in New Issue
Block a user