mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
import os
|
|
inp_text= os.environ.get("inp_text")
|
|
exp_name= os.environ.get("exp_name")
|
|
i_part= os.environ.get("i_part")
|
|
all_parts= os.environ.get("all_parts")
|
|
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
|
opt_dir= os.environ.get("opt_dir")
|
|
pretrained_s2G= os.environ.get("pretrained_s2G")
|
|
s2config_path= os.environ.get("s2config_path")
|
|
is_half=eval(os.environ.get("is_half","True"))
|
|
import math,traceback
|
|
import multiprocessing
|
|
import sys,pdb
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from random import shuffle
|
|
import torch.multiprocessing as mp
|
|
from glob import glob
|
|
from tqdm import tqdm
|
|
import logging,librosa,utils,torch
|
|
from module.models import SynthesizerTrn
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
# from config import pretrained_s2G
|
|
|
|
# inp_text=sys.argv[1]
|
|
# exp_name=sys.argv[2]
|
|
# i_part=sys.argv[3]
|
|
# all_parts=sys.argv[4]
|
|
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5]
|
|
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
|
|
|
|
|
hubert_dir="%s/4-cnhubert"%(opt_dir)
|
|
semantic_path="%s/6-name2semantic-%s.tsv"%(opt_dir,i_part)
|
|
if(os.path.exists(semantic_path)==False):
|
|
os.makedirs(opt_dir,exist_ok=True)
|
|
|
|
device="cuda:0"
|
|
hps = utils.get_hparams_from_file(s2config_path)
|
|
vq_model = SynthesizerTrn(
|
|
hps.data.filter_length // 2 + 1,
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
n_speakers=hps.data.n_speakers,
|
|
**hps.model)
|
|
if(is_half==True):
|
|
vq_model=vq_model.half().to(device)
|
|
else:
|
|
vq_model = vq_model.to(device)
|
|
vq_model.eval()
|
|
# utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
|
|
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
|
|
print(vq_model.load_state_dict(torch.load(pretrained_s2G,map_location="cpu")["weight"], strict=False))
|
|
|
|
def name2go(wav_name,lines):
|
|
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
|
if(os.path.exists(hubert_path)==False):return
|
|
ssl_content = torch.load(hubert_path, map_location="cpu")
|
|
if(is_half==True):
|
|
ssl_content=ssl_content.half().to(device)
|
|
else:
|
|
ssl_content = ssl_content.to(device)
|
|
codes = vq_model.extract_latent(ssl_content)
|
|
semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
|
|
lines.append("%s\t%s"%(wav_name,semantic))
|
|
|
|
with open(inp_text,"r",encoding="utf8")as f:
|
|
lines=f.read().strip("\n").split("\n")
|
|
|
|
lines1=[]
|
|
for line in lines[int(i_part)::int(all_parts)]:
|
|
# print(line)
|
|
try:
|
|
# wav_name,text=line.split("\t")
|
|
wav_name, spk_name, language, text = line.split("|")
|
|
wav_name=os.path.basename(wav_name)
|
|
# name2go(name,lines1)
|
|
name2go(wav_name,lines1)
|
|
except:
|
|
print(line,traceback.format_exc())
|
|
with open(semantic_path,"w",encoding="utf8")as f:f.write("\n".join(lines1))
|
|
|