GPT-SoVITS/GPT_SoVITS/inference_webui.py
2024-01-16 17:38:48 +08:00

272 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth")
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base")
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui=os.environ.get("infer_ttswebui",9872)
infer_ttswebui=int(infer_ttswebui)
if("_CUDA_VISIBLE_DEVICES"in os.environ):
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
is_half=eval(os.environ.get("is_half","True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys,torch,numpy as np
from pathlib import Path
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
# torch.backends.cuda.sdp_kernel("flash")
# torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
# torch.backends.cuda.enable_math_sdp(True)
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
device="cuda"
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
n_semantic = 1024
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate="25hz"
dict_s1=torch.load(gpt_path,map_location="cpu")
config=dict_s1["config"]
ssl_model=cnhubert.get_model()
if(is_half==True):ssl_model=ssl_model.half().to(device)
else:ssl_model=ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if(is_half==True):vq_model=vq_model.half().to(device)
else:vq_model=vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"],strict=False))
hz = 50
max_sec = config['data']['max_sec']
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if(is_half==True):t2s_model=t2s_model.half()
t2s_model=t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
def get_spepc(hps, filename):
audio=load_audio(filename,int(hps.data.sampling_rate))
audio=torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
return spec
dict_language={
"中文":"zh",
"英文":"en",
"日文":"ja"
}
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language):
t0 = ttime()
prompt_text=prompt_text.strip("\n")
prompt_language,text=prompt_language,text.strip("\n")
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
wav16k = torch.from_numpy(wav16k)
if(is_half==True):wav16k=wav16k.half().to(device)
else:wav16k=wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language=dict_language[prompt_language]
text_language=dict_language[text_language]
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1=cleaned_text_to_sequence(phones1)
texts=text.split("\n")
audio_opt = []
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic,idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config['inference']['top_k'],
early_stop_num=hz * max_sec)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path)#.to(device)
if(is_half==True):refer=refer.half().to(device)
else:refer=refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)
splits={"","","","",",",".","?","!","~",":","","","",}#不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "").replace("——", "")
if (todo_text[-1] not in splits): todo_text += ""
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while (1):
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if (todo_text[i_split_head] in splits):
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp=inp.strip("\n")
inps=split(inp)
split_idx=list(range(0,len(inps),5))
split_idx[-1]=None
if(len(split_idx)>1):
opts=[]
for idx in range(len(split_idx)-1):
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]]))
else:
opts=[inp]
return "\n".join(opts)
def cut2(inp):
inp=inp.strip("\n")
inps=split(inp)
if(len(inps)<2):return [inp]
opts=[]
summ=0
tmp_str=""
for i in range(len(inps)):
summ+=len(inps[i])
tmp_str+=inps[i]
if(summ>50):
summ=0
opts.append(tmp_str)
tmp_str=""
if(tmp_str!=""):opts.append(tmp_str)
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起
opts[-2]=opts[-2]+opts[-1]
opts=opts[:-1]
return "\n".join(opts)
def cut3(inp):
inp=inp.strip("\n")
return "\n".join(["%s"%item for item in inp.strip("").split("")])
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
)
# with gr.Tabs():
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=
"*请上传并填写参考信息"
)
with gr.Row():
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
prompt_text= gr.Textbox(label="参考音频的文本",value="")
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文")
gr.Markdown(
value=
"*请填写需要合成的目标文本"
)
with gr.Row():
text=gr.Textbox(label="需要合成的文本",value="")
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文")
inference_button=gr.Button("合成语音", variant="primary")
output = gr.Audio(label="输出的语音")
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output])
gr.Markdown(
value=
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
)
with gr.Row():
text_inp=gr.Textbox(label="需要合成的切分前文本",value="")
button1 = gr.Button("凑五句一切", variant="primary")
button2 = gr.Button("凑50字一切", variant="primary")
button3 = gr.Button("按中文句号。切", variant="primary")
text_opt = gr.Textbox(label="切分后文本", value="")
button1.click(cut1,[text_inp],[text_opt])
button2.click(cut2,[text_inp],[text_opt])
button3.click(cut3,[text_inp],[text_opt])
gr.Markdown(
value=
"后续将支持混合语种编码文本输入。"
)
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=True,
server_port=infer_ttswebui,
quiet=True,
)