import os gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth") cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base") bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large") infer_ttswebui=os.environ.get("infer_ttswebui",9872) infer_ttswebui=int(infer_ttswebui) if("_CUDA_VISIBLE_DEVICES"in os.environ): os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"] is_half=eval(os.environ.get("is_half","True")) import gradio as gr from transformers import AutoModelForMaskedLM, AutoTokenizer import sys,torch,numpy as np from pathlib import Path import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile # torch.backends.cuda.sdp_kernel("flash") # torch.backends.cuda.enable_flash_sdp(True) # torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0 # torch.backends.cuda.enable_math_sdp(True) from random import shuffle from AR.utils import get_newest_ckpt from glob import glob from tqdm import tqdm from feature_extractor import cnhubert cnhubert.cnhubert_base_path=cnhubert_base_path from io import BytesIO from module.models import SynthesizerTrn from AR.models.t2s_lightning_module import Text2SemanticLightningModule from AR.utils.io import load_yaml_config from text import cleaned_text_to_sequence from text.cleaner import text_to_sequence, clean_text from time import time as ttime from module.mel_processing import spectrogram_torch from my_utils import load_audio device="cuda" tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model=AutoModelForMaskedLM.from_pretrained(bert_path) if(is_half==True):bert_model=bert_model.half().to(device) else:bert_model=bert_model.to(device) # bert_model=bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) # if(is_half==True):phone_level_feature=phone_level_feature.half() return phone_level_feature.T n_semantic = 1024 dict_s2=torch.load(sovits_path,map_location="cpu") hps=dict_s2["config"] class DictToAttrRecursive: def __init__(self, input_dict): for key, value in input_dict.items(): if isinstance(value, dict): # 如果值是字典,递归调用构造函数 setattr(self, key, DictToAttrRecursive(value)) else: setattr(self, key, value) hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate="25hz" dict_s1=torch.load(gpt_path,map_location="cpu") config=dict_s1["config"] ssl_model=cnhubert.get_model() if(is_half==True):ssl_model=ssl_model.half().to(device) else:ssl_model=ssl_model.to(device) vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) if(is_half==True):vq_model=vq_model.half().to(device) else:vq_model=vq_model.to(device) vq_model.eval() print(vq_model.load_state_dict(dict_s2["weight"],strict=False)) hz = 50 max_sec = config['data']['max_sec'] # t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if(is_half==True):t2s_model=t2s_model.half() t2s_model=t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) def get_spepc(hps, filename): audio=load_audio(filename,int(hps.data.sampling_rate)) audio=torch.FloatTensor(audio) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False) return spec dict_language={ "中文":"zh", "英文":"en", "日文":"ja" } def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language): t0 = ttime() prompt_text=prompt_text.strip("\n") prompt_language,text=prompt_language,text.strip("\n") with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙 wav16k = torch.from_numpy(wav16k) if(is_half==True):wav16k=wav16k.half().to(device) else:wav16k=wav16k.to(device) ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] t1 = ttime() prompt_language=dict_language[prompt_language] text_language=dict_language[text_language] phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) phones1=cleaned_text_to_sequence(phones1) texts=text.split("\n") audio_opt = [] zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32) for text in texts: phones2, word2ph2, norm_text2 = clean_text(text, text_language) phones2 = cleaned_text_to_sequence(phones2) if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device) else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device) if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device) else:bert2 = torch.zeros((1024, len(phones2))).to(bert1) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) t2 = ttime() with torch.no_grad(): # pred_semantic = t2s_model.model.infer( pred_semantic,idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=config['inference']['top_k'], early_stop_num=hz * max_sec) t3 = ttime() # print(pred_semantic.shape,idx) pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 refer = get_spepc(hps, ref_wav_path)#.to(device) if(is_half==True):refer=refer.half().to(device) else:refer=refer.to(device) # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分 audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16) splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号 def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if (todo_text[-1] not in splits): todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while (1): if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if (todo_text[i_split_head] in splits): i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp=inp.strip("\n") inps=split(inp) split_idx=list(range(0,len(inps),5)) split_idx[-1]=None if(len(split_idx)>1): opts=[] for idx in range(len(split_idx)-1): opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]])) else: opts=[inp] return "\n".join(opts) def cut2(inp): inp=inp.strip("\n") inps=split(inp) if(len(inps)<2):return [inp] opts=[] summ=0 tmp_str="" for i in range(len(inps)): summ+=len(inps[i]) tmp_str+=inps[i] if(summ>50): summ=0 opts.append(tmp_str) tmp_str="" if(tmp_str!=""):opts.append(tmp_str) if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起 opts[-2]=opts[-2]+opts[-1] opts=opts[:-1] return "\n".join(opts) def cut3(inp): inp=inp.strip("\n") return "\n".join(["%s。"%item for item in inp.strip("。").split("。")]) with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( value= "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE." ) # with gr.Tabs(): # with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): with gr.Group(): gr.Markdown( value= "*请上传并填写参考信息" ) with gr.Row(): inp_ref = gr.Audio(label="请上传参考音频", type="filepath") prompt_text= gr.Textbox(label="参考音频的文本",value="") prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文") gr.Markdown( value= "*请填写需要合成的目标文本" ) with gr.Row(): text=gr.Textbox(label="需要合成的文本",value="") text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文") inference_button=gr.Button("合成语音", variant="primary") output = gr.Audio(label="输出的语音") inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output]) gr.Markdown( value= "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。" ) with gr.Row(): text_inp=gr.Textbox(label="需要合成的切分前文本",value="") button1 = gr.Button("凑五句一切", variant="primary") button2 = gr.Button("凑50字一切", variant="primary") button3 = gr.Button("按中文句号。切", variant="primary") text_opt = gr.Textbox(label="切分后文本", value="") button1.click(cut1,[text_inp],[text_opt]) button2.click(cut2,[text_inp],[text_opt]) button3.click(cut3,[text_inp],[text_opt]) gr.Markdown( value= "后续将支持混合语种编码文本输入。" ) app.queue(concurrency_count=511, max_size=1022).launch( server_name="0.0.0.0", inbrowser=True, server_port=infer_ttswebui, quiet=True, )