mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
129 lines
4.5 KiB
Python
129 lines
4.5 KiB
Python
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
|
import os,sys
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from typing import Dict
|
|
|
|
import torch
|
|
from pytorch_lightning import LightningModule
|
|
from AR.models.t2s_model import Text2SemanticDecoder
|
|
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
|
from AR.modules.optim import ScaledAdam
|
|
|
|
|
|
class Text2SemanticLightningModule(LightningModule):
|
|
def __init__(self, config, output_dir,is_train=True):
|
|
super().__init__()
|
|
self.config = config
|
|
self.top_k = 3
|
|
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
|
pretrained_s1=config.get("pretrained_s1")
|
|
if(pretrained_s1 and is_train):
|
|
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
|
print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["weight"]))
|
|
if is_train:
|
|
self.automatic_optimization = False
|
|
self.save_hyperparameters()
|
|
self.eval_dir = output_dir / 'eval'
|
|
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
def training_step(self, batch: Dict, batch_idx: int):
|
|
|
|
opt = self.optimizers()
|
|
scheduler = self.lr_schedulers()
|
|
loss, acc = self.model.forward(
|
|
batch['phoneme_ids'], batch['phoneme_ids_len'],
|
|
batch['semantic_ids'], batch['semantic_ids_len'],
|
|
batch['bert_feature'])
|
|
self.manual_backward(loss)
|
|
if batch_idx > 0 and batch_idx % 4 == 0:
|
|
opt.step()
|
|
opt.zero_grad()
|
|
scheduler.step()
|
|
|
|
self.log(
|
|
"total_loss",
|
|
loss,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
prog_bar=True,
|
|
sync_dist=True)
|
|
self.log(
|
|
"lr",
|
|
scheduler.get_last_lr()[0],
|
|
on_epoch=True,
|
|
prog_bar=True,
|
|
sync_dist=True)
|
|
self.log(
|
|
f"top_{self.top_k}_acc",
|
|
acc,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
prog_bar=True,
|
|
sync_dist=True)
|
|
|
|
def validation_step(self, batch: Dict, batch_idx: int):return
|
|
# # get loss
|
|
# loss, acc = self.model.forward(
|
|
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
|
# batch['semantic_ids'], batch['semantic_ids_len'],
|
|
# batch['bert_feature']
|
|
# )
|
|
#
|
|
# self.log(
|
|
# "val_total_loss",
|
|
# loss,
|
|
# on_step=True,
|
|
# on_epoch=True,
|
|
# prog_bar=True,
|
|
# sync_dist=True)
|
|
# self.log(
|
|
# f"val_top_{self.top_k}_acc",
|
|
# acc,
|
|
# on_step=True,
|
|
# on_epoch=True,
|
|
# prog_bar=True,
|
|
# sync_dist=True)
|
|
#
|
|
# # get infer output
|
|
# semantic_len = batch['semantic_ids'].size(1)
|
|
# prompt_len = min(int(semantic_len * 0.5), 150)
|
|
# prompt = batch['semantic_ids'][:, :prompt_len]
|
|
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
|
# batch['phoneme_ids_len'], prompt,
|
|
# batch['bert_feature']
|
|
# )
|
|
# save_name = f'semantic_toks_{batch_idx}.pt'
|
|
# save_path = os.path.join(self.eval_dir, save_name)
|
|
# torch.save(pred_semantic.detach().cpu(), save_path)
|
|
|
|
def configure_optimizers(self):
|
|
model_parameters = self.model.parameters()
|
|
parameters_names = []
|
|
parameters_names.append([
|
|
name_param_pair[0]
|
|
for name_param_pair in self.model.named_parameters()
|
|
])
|
|
lm_opt = ScaledAdam(
|
|
model_parameters,
|
|
lr=0.01,
|
|
betas=(0.9, 0.95),
|
|
clipping_scale=2.0,
|
|
parameters_names=parameters_names,
|
|
show_dominant_parameters=False,
|
|
clipping_update_period=1000, )
|
|
|
|
return {
|
|
"optimizer": lm_opt,
|
|
"lr_scheduler": {
|
|
"scheduler":
|
|
WarmupCosineLRSchedule(
|
|
lm_opt,
|
|
init_lr=self.config['optimizer']['lr_init'],
|
|
peak_lr=self.config['optimizer']['lr'],
|
|
end_lr=self.config['optimizer']['lr_end'],
|
|
warmup_steps=self.config['optimizer']['warmup_steps'],
|
|
total_steps=self.config['optimizer']['decay_steps'])
|
|
}
|
|
}
|