Add files via upload

This commit is contained in:
RVC-Boss 2024-01-16 17:38:48 +08:00 committed by GitHub
parent 143d32f621
commit 41ca6028d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
65 changed files with 139856 additions and 0 deletions

View File

View File

View File

@ -0,0 +1,157 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/bucketsampler.py
import itertools
import math
import random
from random import shuffle
from typing import Iterator
from typing import Optional
from typing import TypeVar
import torch
import torch.distributed as dist
from torch.utils.data import Dataset
from torch.utils.data import Sampler
__all__ = [
"DistributedBucketSampler",
]
T_co = TypeVar('T_co', covariant=True)
class DistributedBucketSampler(Sampler[T_co]):
r"""
sort the dataset wrt. input length
divide samples into buckets
sort within buckets
divide buckets into batches
sort batches
"""
def __init__(self,
dataset: Dataset,
num_replicas: Optional[int]=None,
rank: Optional[int]=None,
shuffle: bool=True,
seed: int=0,
drop_last: bool=False,
batch_size: int=32) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError(
"Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError(
"Requires distributed package to be available")
rank = dist.get_rank()
torch.cuda.set_device(rank)
if rank >= num_replicas or rank < 0:
raise ValueError("Invalid rank {}, rank should be in the interval"
" [0, {}]".format(rank, num_replicas - 1))
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(
self.
dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) /
self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(
len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed
self.batch_size = batch_size
self.id_with_length = self._get_sample_lengths()
self.id_buckets = self.make_buckets(bucket_width=2.0)
def _get_sample_lengths(self):
id_with_lengths = []
for i in range(len(self.dataset)):
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
id_with_lengths.sort(key=lambda x: x[1])
return id_with_lengths
def make_buckets(self, bucket_width: float=2.0):
buckets = []
cur = []
max_sec = bucket_width
for id, sec in self.id_with_length:
if sec < max_sec:
cur.append(id)
else:
buckets.append(cur)
cur = [id]
max_sec += bucket_width
if len(cur) > 0:
buckets.append(cur)
return buckets
def __iter__(self) -> Iterator[T_co]:
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
random.seed(self.epoch + self.seed)
shuffled_bucket = []
for buc in self.id_buckets:
buc_copy = buc.copy()
shuffle(buc_copy)
shuffled_bucket.append(buc_copy)
grouped_batch_size = self.batch_size * self.num_replicas
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
batches = [
shuffled_bucket[b * grouped_batch_size:(b + 1) *
grouped_batch_size] for b in range(n_batch)
]
shuffle(batches)
indices = list(itertools.chain(*batches))
else:
# type: ignore[arg-type]
indices = list(range(len(self.dataset)))
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size /
len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch: int) -> None:
r"""
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch

View File

@ -0,0 +1,66 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/data_module.py
from pytorch_lightning import LightningDataModule
from AR.data.bucket_sampler import DistributedBucketSampler
from AR.data.dataset import Text2SemanticDataset
from torch.utils.data import DataLoader
class Text2SemanticDataModule(LightningDataModule):
def __init__(self, config, train_semantic_path, train_phoneme_path,dev_semantic_path=None, dev_phoneme_path=None):
super().__init__()
self.config = config
self.train_semantic_path = train_semantic_path
self.train_phoneme_path = train_phoneme_path
self.dev_semantic_path = dev_semantic_path
self.dev_phoneme_path = dev_phoneme_path
self.num_workers = self.config['data']['num_workers']
def prepare_data(self):
pass
def setup(self, stage=None, output_logs=False):
self._train_dataset = Text2SemanticDataset(
phoneme_path=self.train_phoneme_path,
semantic_path=self.train_semantic_path,
max_sec=self.config['data']['max_sec'],
pad_val=self.config['data']['pad_val'])
self._dev_dataset = self._train_dataset
# self._dev_dataset = Text2SemanticDataset(
# phoneme_path=self.dev_phoneme_path,
# semantic_path=self.dev_semantic_path,
# max_sample=self.config['data']['max_eval_sample'],
# max_sec=self.config['data']['max_sec'],
# pad_val=self.config['data']['pad_val'])
def train_dataloader(self):
batch_size = self.config['train']['batch_size']
sampler = DistributedBucketSampler(
self._train_dataset, batch_size=batch_size)
return DataLoader(
self._train_dataset,
batch_size=batch_size,
sampler=sampler,
collate_fn=self._train_dataset.collate,
num_workers=self.num_workers,
persistent_workers=True,
prefetch_factor=16
)
def val_dataloader(self):
return DataLoader(
self._dev_dataset,
batch_size=1,
shuffle=False,
collate_fn=self._train_dataset.collate,
num_workers=max(self.num_workers,12),
persistent_workers=True,
prefetch_factor=16
)
# 这个会使用到嘛?
def test_dataloader(self):
return DataLoader(
self._dev_dataset,
batch_size=1,
shuffle=False,
collate_fn=self._train_dataset.collate)

View File

@ -0,0 +1,302 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/t2s_dataset.py
import pdb
import sys
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
import traceback,os
from typing import Dict
from typing import List
import numpy as np
import pandas as pd
import torch,json
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from transformers import AutoTokenizer
from text import cleaned_text_to_sequence
# from config import exp_dir
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
seq = sequences[0]
ndim = seq.ndim
if axis < 0:
axis += ndim
dtype = seq.dtype
pad_value = dtype.type(pad_value)
seq_lengths = [seq.shape[axis] for seq in sequences]
max_length = np.max(seq_lengths)
padded_sequences = []
for seq, length in zip(sequences, seq_lengths):
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (
ndim - axis - 1)
padded_seq = np.pad(
seq, padding, mode='constant', constant_values=pad_value)
padded_sequences.append(padded_seq)
batch = np.stack(padded_sequences)
return batch
class Text2SemanticDataset(Dataset):
"""dataset class for text tokens to semantic model training."""
def __init__(self,
phoneme_path: str,
semantic_path: str,
max_sample: int = None,
max_sec: int = 100,
pad_val: int = 1024,
# min value of phoneme/sec
min_ps_ratio: int = 3,
# max value of phoneme/sec
max_ps_ratio: int = 25) -> None:
super().__init__()
self.semantic_data = pd.read_csv(semantic_path, delimiter='\t', encoding="utf-8")
# get dict
self.path2=phoneme_path#"%s/2-name2text.txt"%exp_dir#phoneme_path
self.path3="%s/3-bert"%(os.path.basename(phoneme_path))#"%s/3-bert"%exp_dir#bert_dir
self.path6=semantic_path#"%s/6-name2semantic.tsv"%exp_dir#semantic_path
assert os.path.exists(self.path2)
assert os.path.exists(self.path6)
self.phoneme_data={}
with open(self.path2,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
for line in lines:
tmp=line.split("\t")
if(len(tmp)!=4):continue
self.phoneme_data[tmp[0]]=[tmp[1],tmp[2],tmp[3]]
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
# pad for semantic tokens
self.PAD: int = pad_val
# self.hz = 25
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
# self.hz=int(data[:-2])#
self.hz=int(os.environ.get("hz","25hz")[:-2])
# max seconds of semantic token
self.max_sec = max_sec
self.min_ps_ratio = min_ps_ratio
self.max_ps_ratio = max_ps_ratio
if max_sample is not None:
self.semantic_data = self.semantic_data[:max_sample]
# {idx: (semantic, phoneme)}
# semantic list, phoneme list
self.semantic_phoneme = []
self.item_names = []
self.inited = False
if not self.inited:
# 调用初始化函数
self.init_batch()
self.inited = True
del self.semantic_data
del self.phoneme_data
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
def init_batch(self):
semantic_data_len = len(self.semantic_data)
phoneme_data_len = len(self.phoneme_data.keys())
print("semantic_data_len:", semantic_data_len)
print("phoneme_data_len:", phoneme_data_len)
idx = 0
num_not_in = 0
num_deleted_bigger = 0
num_deleted_ps = 0
for i in range(semantic_data_len):
# 先依次遍历
# get str
item_name = self.semantic_data['item_name'][i]
# print(self.phoneme_data)
try:
phoneme, word2ph, text = self.phoneme_data[item_name]
except Exception:
traceback.print_exc()
# print(f"{item_name} not in self.phoneme_data !")
num_not_in += 1
continue
semantic_str = self.semantic_data['semantic_audio'][i]
# get token list
semantic_ids = [int(idx) for idx in semantic_str.split(' ')]
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
# 过滤掉太长的样本
if len(semantic_ids) > self.max_sec * self.hz:#########1###根据token个数推测总时长过滤时长60sconfig里#40*25=1k
num_deleted_bigger += 1
continue
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
phoneme = phoneme.split(' ')
try:
phoneme_ids = cleaned_text_to_sequence(phoneme)
except:
traceback.print_exc()
# print(f"{item_name} not in self.phoneme_data !")
num_not_in += 1
continue
# if len(phoneme_ids) >400:###########2改为恒定限制为semantic/2.5就行
if len(phoneme_ids) >self.max_sec * self.hz/2.5:###########2改为恒定限制为semantic/2.5就行
num_deleted_ps += 1
continue
# if len(semantic_ids) > 1000:###########3
# num_deleted_bigger += 1
# continue
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio:##########4#3~25#每秒多少个phone
num_deleted_ps += 1
# print(item_name)
continue
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
idx += 1
self.item_names.append(item_name)
min_num=100#20直接不补#30补了也不存ckpt
leng =len(self.semantic_phoneme)
if(leng<min_num):
tmp1=self.semantic_phoneme
tmp2=self.item_names
self.semantic_phoneme=[]
self.item_names=[]
for _ in range(max(2,int(min_num/leng))):
self.semantic_phoneme+=tmp1
self.item_names+=tmp2
if num_not_in > 0:
print(f"there are {num_not_in} semantic datas not in phoneme datas")
if num_deleted_bigger > 0:
print(
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
)
if num_deleted_ps > 0:
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
print(
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
)
'''
there are 31 semantic datas not in phoneme datas
deleted 34 audios who's duration are bigger than 54 seconds
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
dataset.__len__(): 366463
'''
# 345410 for LibriTTS
print("dataset.__len__():", self.__len__())
def __get_item_names__(self) -> List[str]:
return self.item_names
def __len__(self) -> int:
return len(self.semantic_phoneme)
def __getitem__(self, idx: int) -> Dict:
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
item_name = self.item_names[idx]
phoneme_ids_len = len(phoneme_ids)
# semantic tokens target
semantic_ids_len = len(semantic_ids)
flag=0
path_bert = "%s/%s.pt" % (self.path3, item_name)
if(os.path.exists(path_bert)==True):bert_feature = torch.load(path_bert,map_location="cpu")
else:flag=1
if(flag==1):
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
bert_feature=None
else:
assert bert_feature.shape[-1] == len(phoneme_ids)
return {
'idx': idx,
'phoneme_ids': phoneme_ids,
'phoneme_ids_len': phoneme_ids_len,
'semantic_ids': semantic_ids,
'semantic_ids_len': semantic_ids_len,
'bert_feature': bert_feature,
}
def get_sample_length(self, idx: int):
semantic_ids = self.semantic_phoneme[idx][0]
sec = 1.0 * len(semantic_ids) / self.hz
return sec
def collate(self, examples: List[Dict]) -> Dict:
sample_index: List[int] = []
phoneme_ids: List[torch.Tensor] = []
phoneme_ids_lens: List[int] = []
semantic_ids: List[torch.Tensor] = []
semantic_ids_lens: List[int] = []
# return
for item in examples:
sample_index.append(item["idx"])
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
phoneme_ids_lens.append(item["phoneme_ids_len"])
semantic_ids_lens.append(item["semantic_ids_len"])
# pad 0
phoneme_ids = batch_sequences(phoneme_ids)
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
# # convert each batch to torch.tensor
phoneme_ids = torch.tensor(phoneme_ids)
semantic_ids = torch.tensor(semantic_ids)
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
semantic_ids_lens = torch.tensor(semantic_ids_lens)
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
bert_padded.zero_()
for idx, item in enumerate(examples):
bert = item['bert_feature']
if(bert!=None):
bert_padded[idx, :, :bert.shape[-1]] = bert
return {
# List[int]
"ids": sample_index,
# torch.Tensor (B, max_phoneme_length)
"phoneme_ids": phoneme_ids,
# torch.Tensor (B)
"phoneme_ids_len": phoneme_ids_lens,
# torch.Tensor (B, max_semantic_ids_length)
"semantic_ids": semantic_ids,
# torch.Tensor (B)
"semantic_ids_len": semantic_ids_lens,
# torch.Tensor (B, 1024, max_phoneme_length)
"bert_feature": bert_padded,
}
if __name__ == '__main__':
root_dir = '/data/docker/liujing04/gpt-vits/prepare/dump_mix/'
dataset = Text2SemanticDataset(
phoneme_path=root_dir + 'phoneme_train.npy',
semantic_path=root_dir + 'semantic_train.tsv')
batch_size = 12
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate,
shuffle=False)
for i, batch in enumerate(dataloader):
if(i%1000==0):print(i)
# if i == 0:
# print('batch["ids"]:', batch["ids"])
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
# batch["phoneme_ids"].shape)
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
# batch["phoneme_ids_len"].shape)
# print('batch["semantic_ids"]:', batch["semantic_ids"],
# batch["semantic_ids"].shape)
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
# batch["semantic_ids_len"].shape)

View File

View File

@ -0,0 +1,128 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
import os,sys
now_dir = os.getcwd()
sys.path.append(now_dir)
from typing import Dict
import torch
from pytorch_lightning import LightningModule
from AR.models.t2s_model import Text2SemanticDecoder
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
from AR.modules.optim import ScaledAdam
class Text2SemanticLightningModule(LightningModule):
def __init__(self, config, output_dir,is_train=True):
super().__init__()
self.config = config
self.top_k = 3
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
pretrained_s1=config.get("pretrained_s1")
if(pretrained_s1 and is_train):
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["weight"]))
if is_train:
self.automatic_optimization = False
self.save_hyperparameters()
self.eval_dir = output_dir / 'eval'
self.eval_dir.mkdir(parents=True, exist_ok=True)
def training_step(self, batch: Dict, batch_idx: int):
opt = self.optimizers()
scheduler = self.lr_schedulers()
loss, acc = self.model.forward(
batch['phoneme_ids'], batch['phoneme_ids_len'],
batch['semantic_ids'], batch['semantic_ids_len'],
batch['bert_feature'])
self.manual_backward(loss)
if batch_idx > 0 and batch_idx % 4 == 0:
opt.step()
opt.zero_grad()
scheduler.step()
self.log(
"total_loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True)
self.log(
"lr",
scheduler.get_last_lr()[0],
on_epoch=True,
prog_bar=True,
sync_dist=True)
self.log(
f"top_{self.top_k}_acc",
acc,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True)
def validation_step(self, batch: Dict, batch_idx: int):return
# # get loss
# loss, acc = self.model.forward(
# batch['phoneme_ids'], batch['phoneme_ids_len'],
# batch['semantic_ids'], batch['semantic_ids_len'],
# batch['bert_feature']
# )
#
# self.log(
# "val_total_loss",
# loss,
# on_step=True,
# on_epoch=True,
# prog_bar=True,
# sync_dist=True)
# self.log(
# f"val_top_{self.top_k}_acc",
# acc,
# on_step=True,
# on_epoch=True,
# prog_bar=True,
# sync_dist=True)
#
# # get infer output
# semantic_len = batch['semantic_ids'].size(1)
# prompt_len = min(int(semantic_len * 0.5), 150)
# prompt = batch['semantic_ids'][:, :prompt_len]
# pred_semantic = self.model.infer(batch['phoneme_ids'],
# batch['phoneme_ids_len'], prompt,
# batch['bert_feature']
# )
# save_name = f'semantic_toks_{batch_idx}.pt'
# save_path = os.path.join(self.eval_dir, save_name)
# torch.save(pred_semantic.detach().cpu(), save_path)
def configure_optimizers(self):
model_parameters = self.model.parameters()
parameters_names = []
parameters_names.append([
name_param_pair[0]
for name_param_pair in self.model.named_parameters()
])
lm_opt = ScaledAdam(
model_parameters,
lr=0.01,
betas=(0.9, 0.95),
clipping_scale=2.0,
parameters_names=parameters_names,
show_dominant_parameters=False,
clipping_update_period=1000, )
return {
"optimizer": lm_opt,
"lr_scheduler": {
"scheduler":
WarmupCosineLRSchedule(
lm_opt,
init_lr=self.config['optimizer']['lr_init'],
peak_lr=self.config['optimizer']['lr'],
end_lr=self.config['optimizer']['lr_end'],
warmup_steps=self.config['optimizer']['warmup_steps'],
total_steps=self.config['optimizer']['decay_steps'])
}
}

View File

@ -0,0 +1,298 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
import torch
from tqdm import tqdm
from AR.models.utils import make_pad_mask
from AR.models.utils import topk_sampling,sample,logits_to_probs,multinomial_sample_one_no_sync
from AR.modules.embedding import SinePositionalEmbedding
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024
}
class Text2SemanticDecoder(nn.Module):
def __init__(self, config, norm_first=False, top_k=3):
super(Text2SemanticDecoder, self).__init__()
self.model_dim = config['model']["hidden_dim"]
self.embedding_dim = config['model']["embedding_dim"]
self.num_head = config['model']["head"]
self.num_layers = config['model']["n_layer"]
self.norm_first = norm_first
self.vocab_size = config['model']["vocab_size"]
self.phoneme_vocab_size = config['model']["phoneme_vocab_size"]
self.p_dropout = config['model']["dropout"]
self.EOS = config['model']["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
# should be same as num of kmeans bin
# assert self.EOS == 1024
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_audio_embedding = TokenEmbedding(
self.embedding_dim, self.vocab_size, self.p_dropout)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
nhead=self.num_head,
dim_feedforward=self.model_dim * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first, ),
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None, )
self.ar_predict_layer = nn.Linear(
self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction='sum')
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
average="micro",
multidim_average="global",
ignore_index=self.EOS, )
def forward(self, x, x_lens, y, y_lens, bert_feature):
'''
x: phoneme_ids
y: semantic_ids
'''
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1,2))
x = self.ar_text_position(x)
x_mask = make_pad_mask(x_lens)
y_mask = make_pad_mask(y_lens)
y_mask_int = y_mask.type(torch.int64)
codes = y.type(torch.int64) * (1 - y_mask_int)
# Training
# AR Decoder
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
x_len = x_lens.max()
y_len = y_lens.max()
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
ar_xy_padding_mask = xy_padding_mask
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True, )
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1, ),
(x_len, 0),
value=False, )
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_head, -1, -1)
.reshape(bsz * self.num_head, 1, src_len))
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
# x 和完整的 y 一次性输入模型
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask, )
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
# loss
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
loss = F.cross_entropy(logits, targets, reduction='sum')
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
return loss, acc
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
def infer(self,
x,
x_lens,
prompts,
bert_feature,
top_k: int=-100,
early_stop_num: int=-1,
temperature: float=1.0):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1,2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
prefix_len = y.shape[1]
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
for _ in tqdm(range(1500)):
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
# x 和逐渐增长的 y 一起输入给模型
xy_pos = torch.concat([x, y_pos], dim=1)
y_len = y.shape[1]
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True, )
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False, )
xy_attn_mask = torch.concat(
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask, )
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = topk_sampling(
logits, top_k=top_k, top_p=1.0, temperature=temperature)
if early_stop_num != -1 and (y.shape[1] - prefix_len
) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True
if stop:
if prompts.shape[1] == y.shape[1]:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print('bad zero prediction')
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
# print(samples.shape)#[1,1]#第一个1是bs
# import os
# os._exit(2333)
y = torch.concat([y, samples], dim=1)
return y
def pad_y_eos(self, y, y_mask_int, eos_id):
targets = F.pad(
y, (0, 1), value=0) + eos_id * F.pad(
y_mask_int, (0, 1), value=1)
# 错位
return targets[:, :-1], targets[:, 1:]
def infer_panel(self,
x,#####全部文本token
x_lens,
prompts,####参考音频token
bert_feature,
top_k: int=-100,
early_stop_num: int=-1,
temperature: float=1.0):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1,2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
prefix_len = y.shape[1]
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
# print(1111111,self.num_layers)
cache={
"all_stage":self.num_layers,
"k":[None]*self.num_layers,###根据配置自己手写
"v":[None]*self.num_layers,
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
"y_emb":None,##只需要对最新的samples求emb再拼历史的就行
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
# "xy_dec":None,###不需要本来只需要最后一个做logits
"first_infer":1,
"stage":0
}
for idx in tqdm(range(1500)):
if(cache["first_infer"]==1):
y_emb = self.ar_audio_embedding(y)
else:
y_emb = torch.cat([cache["y_emb"],self.ar_audio_embedding(y[:,-1:])],1)
cache["y_emb"]=y_emb
y_pos = self.ar_audio_position(y_emb)
# x 和逐渐增长的 y 一起输入给模型
if(cache["first_infer"]==1):
xy_pos = torch.concat([x, y_pos], dim=1)
else:
xy_pos=y_pos[:,-1:]
y_len = y_pos.shape[1]
###以下3个不做缓存
if (cache["first_infer"] == 1):
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True, )
y_attn_mask = F.pad(###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False, )
xy_attn_mask = torch.concat(
[x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
else:
###最右边一列(是错的)
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
# xy_attn_mask[:,-1]=False
###最下面一行(是对的)
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool, device=xy_pos.device)
# pdb.set_trace()
###缓存重头戏
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,cache=cache )
logits = self.ar_predict_layer(xy_dec[:, -1])##不用改如果用了cache的默认就是只有一帧取最后一帧一样的
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
if early_stop_num != -1 and (y.shape[1] - prefix_len
) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(
logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True
if stop:
if prompts.shape[1] == y.shape[1]:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print('bad zero prediction')
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
# print(samples.shape)#[1,1]#第一个1是bs
y = torch.concat([y, samples], dim=1)
cache["first_infer"]=0
return y,idx

View File

@ -0,0 +1,162 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/utils.py\
import torch
import torch.nn.functional as F
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def make_pad_mask(lengths: torch.Tensor, max_len: int=0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
#>>> lengths = torch.tensor([1, 3, 2, 5])
#>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
def top_k_top_p_filtering(logits,
top_k=0,
top_p=1.0,
filter_value=-float("Inf"),
min_tokens_to_keep=1):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep),
logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
from typing import Optional, Tuple
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
previous_tokens=previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(
logits,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
probs = logits_to_probs(
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs

View File

View File

@ -0,0 +1,397 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
from typing import Optional
from typing import Tuple
import torch
from torch import Tensor
from torch.nn import Linear
from torch.nn import Module
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.init import xavier_uniform_
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.parameter import Parameter
from torch.nn import functional as F
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
F.multi_head_attention_forward=multi_head_attention_forward_patched
class MultiheadAttention(Module):
r"""Allows the model to jointly attend to information
from different representation subspaces as described in the paper:
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Multi-Head Attention is defined as:
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
``forward()`` will use a special optimized implementation if all of the following
conditions are met:
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
restriction will be loosened in the future.)
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
- training is disabled (using ``.eval()``)
- dropout is 0
- ``add_bias_kv`` is ``False``
- ``add_zero_attn`` is ``False``
- ``batch_first`` is ``True`` and the input is batched
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
nor ``attn_mask`` is passed
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
``query``/``key``/``value`` to represent padding more efficiently than using a
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
will be returned, and an additional speedup proportional to the fraction of the input
that is padding can be expected.
Args:
embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
Default: ``False``.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Examples::
>>> # xdoctest: +SKIP
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__constants__ = ["batch_first"]
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
linear1_cls=Linear,
linear2_cls=Linear,
device=None,
dtype=None, ) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = (self.kdim == embed_dim and
self.vdim == embed_dim)
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert (self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
if add_bias_kv:
self.bias_k = Parameter(
torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(
torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
if linear1_cls == Linear:
if not self._qkv_same_embed_dim:
self.q_proj_weight = Parameter(
torch.empty((embed_dim, embed_dim), **factory_kwargs))
self.k_proj_weight = Parameter(
torch.empty((embed_dim, self.kdim), **factory_kwargs))
self.v_proj_weight = Parameter(
torch.empty((embed_dim, self.vdim), **factory_kwargs))
self.register_parameter("in_proj_weight", None)
else:
self.in_proj_weight = Parameter(
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = Parameter(
torch.empty(3 * embed_dim, **factory_kwargs))
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = NonDynamicallyQuantizableLinear(
embed_dim, embed_dim, bias=bias, **factory_kwargs)
self._reset_parameters()
else:
if not self._qkv_same_embed_dim:
raise NotImplementedError
else:
self.in_proj_linear = linear1_cls(
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
self.in_proj_weight = self.in_proj_linear.weight
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = self.in_proj_linear.bias
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = linear2_cls(
embed_dim, embed_dim, bias=bias, **factory_kwargs)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
self.add_zero_attn = add_zero_attn
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.0)
constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if "_qkv_same_embed_dim" not in state:
state["_qkv_same_embed_dim"] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor]=None,
need_weights: bool=True,
attn_mask: Optional[Tensor]=None,
average_attn_weights: bool=True,cache=None
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
Queries are compared against key-value pairs to produce the output.
See "Attention Is All You Need" for more details.
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
See "Attention Is All You Need" for more details.
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
See "Attention Is All You Need" for more details.
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
Binary and byte masks are supported.
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
Default: ``True``.
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
the attention weight.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
Outputs:
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
embedding dimension ``embed_dim``.
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
.. note::
`batch_first` argument is ignored for unbatched inputs.
"""
is_batched = query.dim() == 3
if key_padding_mask is not None:
_kpm_dtype = key_padding_mask.dtype
if _kpm_dtype != torch.bool and not torch.is_floating_point(
key_padding_mask):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
why_not_fast_path = ""
if not is_batched:
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
elif query is not key or key is not value:
# When lifting this restriction, don't forget to either
# enforce that the dtypes all match or test cases where
# they don't!
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
elif (self.in_proj_bias is not None and
query.dtype != self.in_proj_bias.dtype):
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
elif (self.in_proj_weight is not None and
query.dtype != self.in_proj_weight.dtype):
# this case will fail anyway, but at least they'll get a useful error message.
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
elif self.training:
why_not_fast_path = "training is enabled"
elif not self.batch_first:
why_not_fast_path = "batch_first was not True"
elif self.bias_k is not None:
why_not_fast_path = "self.bias_k was not None"
elif self.bias_v is not None:
why_not_fast_path = "self.bias_v was not None"
elif self.dropout:
why_not_fast_path = f"dropout was {self.dropout}, required zero"
elif self.add_zero_attn:
why_not_fast_path = "add_zero_attn was enabled"
elif not self._qkv_same_embed_dim:
why_not_fast_path = "_qkv_same_embed_dim was not True"
elif attn_mask is not None:
why_not_fast_path = "attn_mask was not None"
elif query.is_nested and key_padding_mask is not None:
why_not_fast_path = (
"key_padding_mask is not supported with NestedTensor input")
elif self.num_heads % 2 == 1:
why_not_fast_path = "num_heads is odd"
elif torch.is_autocast_enabled():
why_not_fast_path = "autocast is enabled"
if not why_not_fast_path:
tensor_args = (query, key, value, self.in_proj_weight,
self.in_proj_bias, self.out_proj.weight,
self.out_proj.bias, )
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
if torch.overrides.has_torch_function(tensor_args):
why_not_fast_path = "some Tensor argument has_torch_function"
elif not all([(x is None or x.is_cuda or "cpu" in str(x.device))
for x in tensor_args]):
why_not_fast_path = (
"some Tensor argument is neither CUDA nor CPU")
elif torch.is_grad_enabled() and any(
[x is not None and x.requires_grad for x in tensor_args]):
why_not_fast_path = (
"grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad")
if not why_not_fast_path:
return torch._native_multi_head_attention(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
key_padding_mask
if key_padding_mask is not None else attn_mask,
need_weights,
average_attn_weights,
1 if key_padding_mask is not None else 0
if attn_mask is not None else None, )
any_nested = query.is_nested or key.is_nested or value.is_nested
assert not any_nested, (
"MultiheadAttention does not support NestedTensor outside of its fast path. "
+ f"The fast path was not hit because {why_not_fast_path}")
if self.batch_first and is_batched:
# make sure that the transpose op does not affect the "is" property
if key is value:
if query is key:
query = key = value = query.transpose(1, 0)
else:
query, key = [x.transpose(1, 0) for x in (query, key)]
value = key
else:
query, key, value = [
x.transpose(1, 0) for x in (query, key, value)
]
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
average_attn_weights=average_attn_weights,cache=cache )
else:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
average_attn_weights=average_attn_weights,cache=cache )
if self.batch_first and is_batched:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights

View File

@ -0,0 +1,78 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
import math
import torch
from torch import nn
class TokenEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
vocab_size: int,
dropout: float=0.0, ):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.dropout = torch.nn.Dropout(p=dropout)
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
@property
def weight(self) -> torch.Tensor:
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index:index + 1]
def forward(self, x: torch.Tensor):
x = self.word_embeddings(x)
x = self.dropout(x)
return x
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float=0.0,
scale: bool=False,
alpha: bool=False, ):
super().__init__()
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.embedding_dim)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
else:
position = torch.arange(
0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
-(math.log(10000.0) / self.embedding_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor) -> torch.Tensor:
self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * self.pe[:, :x.size(1)]
return self.dropout(output)

View File

@ -0,0 +1,85 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py
import math
import torch
from matplotlib import pyplot as plt
from torch import nn
from torch.optim import Adam
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
"""
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
"""
def __init__(self,
optimizer,
init_lr,
peak_lr,
end_lr,
warmup_steps=10000,
total_steps=400000,
current_step=0):
self.init_lr = init_lr
self.peak_lr = peak_lr
self.end_lr = end_lr
self.optimizer = optimizer
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
self._current_step = current_step
self.lr = init_lr
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self._last_lr = [self.lr]
def set_lr(self, lr):
self._last_lr = [g['lr'] for g in self.optimizer.param_groups]
for g in self.optimizer.param_groups:
# g['lr'] = lr
g['lr'] = self.end_lr###锁定用线性
def step(self):
if self._current_step < self.warmup_steps:
lr = self.init_lr + self._warmup_rate * self._current_step
elif self._current_step > self.total_steps:
lr = self.end_lr
else:
decay_ratio = (self._current_step - self.warmup_steps) / (
self.total_steps - self.warmup_steps)
if decay_ratio < 0.0 or decay_ratio > 1.0:
raise RuntimeError(
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
)
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
self.lr=lr=self.end_lr=0.002###锁定用线性###不听话,直接锁定!
self.set_lr(lr)
self.lr = lr
self._current_step += 1
return self.lr
if __name__ == '__main__':
m = nn.Linear(10, 10)
opt = Adam(m.parameters(), lr=1e-4)
s = WarmupCosineLRSchedule(
opt,
1e-6,
2e-4,
1e-6,
warmup_steps=2000,
total_steps=20000,
current_step=0)
lrs = []
for i in range(25000):
s.step()
lrs.append(s.lr)
print(s.lr)
plt.plot(lrs)
plt.plot(range(0, 25000), lrs)
plt.show()

View File

@ -0,0 +1,622 @@
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
from collections import defaultdict
from typing import List
from typing import Tuple
import torch
from torch import Tensor
from torch.optim import Optimizer
class BatchedOptimizer(Optimizer):
"""
This class adds to class Optimizer the capability to optimize parameters in batches:
it will stack the parameters and their grads for you so the optimizer can work
on tensors with an extra leading dimension. This is intended for speed with GPUs,
as it reduces the number of kernels launched in the optimizer.
Args:
params:
"""
def __init__(self, params, defaults):
super(BatchedOptimizer, self).__init__(params, defaults)
@contextlib.contextmanager
def batched_params(self, param_group, group_params_names):
"""
This function returns (technically, yields) a list of
of tuples (p, state), where
p is a `fake` parameter that is stacked (over axis 0) from real parameters
that share the same shape, and its gradient is also stacked;
`state` is the state corresponding to this batch of parameters
(it will be physically located in the "state" for one of the real
parameters, the last one that has any particular shape and dtype).
This function is decorated as a context manager so that it can
write parameters back to their "real" locations.
The idea is, instead of doing:
<code>
for p in group["params"]:
state = self.state[p]
...
</code>
you can do:
<code>
with self.batched_params(group["params"]) as batches:
for p, state, p_names in batches:
...
</code>
Args:
group: a parameter group, which is a list of parameters; should be
one of self.param_groups.
group_params_names: name for each parameter in group,
which is List[str].
"""
batches = defaultdict(
list
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
batches_names = defaultdict(
list
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
assert len(param_group) == len(group_params_names)
for p, named_p in zip(param_group, group_params_names):
key = (str(p.dtype), *p.shape)
batches[key].append(p)
batches_names[key].append(named_p)
batches_names_keys = list(batches_names.keys())
sorted_idx = sorted(
range(len(batches_names)), key=lambda i: batches_names_keys[i])
batches_names = [
batches_names[batches_names_keys[idx]] for idx in sorted_idx
]
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
stacked_params_dict = dict()
# turn batches into a list, in deterministic order.
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
# one for each batch in `batches`.
tuples = []
for batch, batch_names in zip(batches, batches_names):
p = batch[0]
# we arbitrarily store the state in the
# state corresponding to the 1st parameter in the
# group. class Optimizer will take care of saving/loading state.
state = self.state[p]
p_stacked = torch.stack(batch)
grad = torch.stack([
torch.zeros_like(p) if p.grad is None else p.grad for p in batch
])
p_stacked.grad = grad
stacked_params_dict[key] = p_stacked
tuples.append((p_stacked, state, batch_names))
yield tuples # <-- calling code will do the actual optimization here!
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
for i, p in enumerate(batch): # batch is list of Parameter
p.copy_(stacked_params[i])
class ScaledAdam(BatchedOptimizer):
"""
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
proportional to the norm of that parameter; and also learn the scale of the parameter,
in log space, subject to upper and lower limits (as if we had factored each parameter as
param = underlying_param * log_scale.exp())
Args:
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
lr: The learning rate. We will typically use a learning rate schedule that starts
at 0.03 and decreases over time, i.e. much higher than other common
optimizers.
clipping_scale: (e.g. 2.0)
A scale for gradient-clipping: if specified, the normalized gradients
over the whole model will be clipped to have 2-norm equal to
`clipping_scale` times the median 2-norm over the most recent period
of `clipping_update_period` minibatches. By "normalized gradients",
we mean after multiplying by the rms parameter value for this tensor
[for non-scalars]; this is appropriate because our update is scaled
by this quantity.
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
Must satisfy 0 < beta <= beta2 < 1.
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
scale of each parameter tensor and scalar parameters of the mode..
If each parameter were decomposed
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
would be a the scaling factor on the learning rate of p_scale.
eps: A general-purpose epsilon to prevent division by zero
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
learning the scale on the parameters (we'll constrain the rms of each non-scalar
parameter tensor to be >= this value)
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
learning the scale on the parameters (we'll constrain the rms of each non-scalar
parameter tensor to be <= this value)
scalar_max: Maximum absolute value for scalar parameters (applicable if your
model has any parameters with numel() == 1).
size_update_period: The periodicity, in steps, with which we update the size (scale)
of the parameter tensor. This is provided to save a little time
in the update.
clipping_update_period: if clipping_scale is specified, this is the period
"""
def __init__(
self,
params,
lr=3e-02,
clipping_scale=None,
betas=(0.9, 0.98),
scalar_lr_scale=0.1,
eps=1.0e-08,
param_min_rms=1.0e-05,
param_max_rms=3.0,
scalar_max=10.0,
size_update_period=4,
clipping_update_period=100,
parameters_names=None,
show_dominant_parameters=True, ):
assert parameters_names is not None, (
"Please prepare parameters_names,"
"which is a List[List[str]]. Each List[str] is for a group"
"and each str is for a parameter")
defaults = dict(
lr=lr,
clipping_scale=clipping_scale,
betas=betas,
scalar_lr_scale=scalar_lr_scale,
eps=eps,
param_min_rms=param_min_rms,
param_max_rms=param_max_rms,
scalar_max=scalar_max,
size_update_period=size_update_period,
clipping_update_period=clipping_update_period, )
super(ScaledAdam, self).__init__(params, defaults)
assert len(self.param_groups) == len(parameters_names)
self.parameters_names = parameters_names
self.show_dominant_parameters = show_dominant_parameters
def __setstate__(self, state):
super(ScaledAdam, self).__setstate__(state)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
batch = True
for group, group_params_names in zip(self.param_groups,
self.parameters_names):
with self.batched_params(group["params"],
group_params_names) as batches:
# batches is list of pairs (stacked_param, state). stacked_param is like
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
# a stacking dim, it is not a real dim.
if (len(batches[0][1]) ==
0): # if len(first state) == 0: not yet initialized
clipping_scale = 1
else:
clipping_scale = self._get_clipping_scale(group, batches)
for p, state, _ in batches:
# Perform optimization step.
# grad is not going to be None, we handled that when creating the batches.
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
"ScaledAdam optimizer does not support sparse gradients"
)
# State initialization
if len(state) == 0:
self._init_state(group, p, state)
self._step_one_batch(group, p, state, clipping_scale)
return loss
def _init_state(self, group: dict, p: Tensor, state: dict):
"""
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
is actually the batch dimension, corresponding to batched-together
parameters of a given shape.
Args:
group: Dict to look up configuration values.
p: The parameter that we are initializing the state for
state: Dict from string to whatever state we are initializing
"""
size_update_period = group["size_update_period"]
state["step"] = 0
kwargs = {"device": p.device, "dtype": p.dtype}
# 'delta' implements conventional momentum. There are
# several different kinds of update going on, so rather than
# compute "exp_avg" like in Adam, we store and decay a
# parameter-change "delta", which combines all forms of
# update. this is equivalent to how it's done in Adam,
# except for the first few steps.
state["delta"] = torch.zeros_like(
p, memory_format=torch.preserve_format)
batch_size = p.shape[0]
numel = p.numel() // batch_size
numel = p.numel()
if numel > 1:
# "param_rms" just periodically records the scalar root-mean-square value of
# the parameter tensor.
# it has a shape like (batch_size, 1, 1, 1, 1)
param_rms = (
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
state["param_rms"] = param_rms
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
state["scale_grads"] = torch.zeros(size_update_period,
*param_rms.shape, **kwargs)
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format)
def _get_clipping_scale(self,
group: dict,
tuples: List[Tuple[Tensor, dict, List[str]]]
) -> float:
"""
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
by this amount before applying the rest of the update.
Args:
group: the parameter group, an item in self.param_groups
tuples: a list of tuples of (param, state, param_names)
where param is a batched set of parameters,
with a .grad (1st dim is batch dim)
and state is the state-dict where optimization parameters are kept.
param_names is a List[str] while each str is name for a parameter
in batched set of parameters "param".
"""
assert len(tuples) >= 1
clipping_scale = group["clipping_scale"]
(first_p, first_state, _) = tuples[0]
step = first_state["step"]
if clipping_scale is None or step == 0:
# no clipping. return early on step == 0 because the other
# parameters' state won't have been initialized yet.
return 1.0
clipping_update_period = group["clipping_update_period"]
tot_sumsq = torch.tensor(0.0, device=first_p.device)
for (p, state, param_names) in tuples:
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
"ScaledAdam optimizer does not support sparse gradients")
if p.numel() == p.shape[0]: # a batch of scalars
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
else:
tot_sumsq += ((grad * state["param_rms"])**2).sum()
tot_norm = tot_sumsq.sqrt()
if "model_norms" not in first_state:
first_state["model_norms"] = torch.zeros(
clipping_update_period, device=p.device)
first_state["model_norms"][step % clipping_update_period] = tot_norm
if step % clipping_update_period == 0:
# Print some stats.
# We don't reach here if step == 0 because we would have returned
# above.
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
quartiles = []
for n in range(0, 5):
index = min(
clipping_update_period - 1,
(clipping_update_period // 4) * n, )
quartiles.append(sorted_norms[index].item())
median = quartiles[2]
threshold = clipping_scale * median
first_state["model_norm_threshold"] = threshold
percent_clipped = (first_state["num_clipped"] * 100.0 /
clipping_update_period
if "num_clipped" in first_state else 0.0)
first_state["num_clipped"] = 0
quartiles = " ".join(["%.3e" % x for x in quartiles])
logging.info(
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
)
if step < clipping_update_period:
return 1.0 # We have not yet estimated a norm to clip to.
else:
try:
model_norm_threshold = first_state["model_norm_threshold"]
except KeyError:
logging.info(
"Warning: model_norm_threshold not in state: possibly "
"you changed config when restarting, adding clipping_scale option?"
)
return 1.0
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
if ans < 1.0:
first_state["num_clipped"] += 1
if ans < 0.1:
logging.warn(
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
)
if self.show_dominant_parameters:
assert p.shape[0] == len(param_names)
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
return ans
def _show_gradient_dominating_parameter(
self, tuples: List[Tuple[Tensor, dict, List[str]]],
tot_sumsq: Tensor):
"""
Show information of parameter wihch dominanting tot_sumsq.
Args:
tuples: a list of tuples of (param, state, param_names)
where param is a batched set of parameters,
with a .grad (1st dim is batch dim)
and state is the state-dict where optimization parameters are kept.
param_names is a List[str] while each str is name for a parameter
in batched set of parameters "param".
tot_sumsq: sumsq of all parameters. Though it's could be calculated
from tuples, we still pass it to save some time.
"""
all_sumsq_orig = {}
for (p, state, batch_param_names) in tuples:
# p is a stacked batch parameters.
batch_grad = p.grad
if p.numel() == p.shape[0]: # a batch of scalars
batch_sumsq_orig = batch_grad**2
# Dummpy values used by following `zip` statement.
batch_rms_orig = torch.ones(p.shape[0])
else:
batch_rms_orig = state["param_rms"]
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
dim=list(range(1, batch_grad.ndim)))
for name, sumsq_orig, rms, grad in zip(batch_param_names,
batch_sumsq_orig,
batch_rms_orig, batch_grad):
proportion_orig = sumsq_orig / tot_sumsq
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
assert torch.isclose(
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
torch.tensor(1.0), )
sorted_by_proportion = {
k: v
for k, v in sorted(
all_sumsq_orig.items(),
key=lambda item: item[1][0],
reverse=True, )
}
dominant_param_name = next(iter(sorted_by_proportion))
(dominant_proportion, dominant_sumsq, dominant_rms,
dominant_grad, ) = sorted_by_proportion[dominant_param_name]
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
f" with proportion {dominant_proportion:.2f},"
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
f"={dominant_sumsq:.3e},"
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
f" orig_rms_sq={(dominant_rms**2).item():.3e}")
def _step_one_batch(self,
group: dict,
p: Tensor,
state: dict,
clipping_scale: float):
"""
Do the step for one parameter, which is actually going to be a batch of
`real` parameters, with dim 0 as the batch dim.
Args:
group: dict to look up configuration values
p: parameter to update (actually multiple parameters stacked together
as a batch)
state: state-dict for p, to look up the optimizer state
"""
lr = group["lr"]
size_update_period = group["size_update_period"]
beta1 = group["betas"][0]
grad = p.grad
if clipping_scale != 1.0:
grad = grad * clipping_scale
step = state["step"]
delta = state["delta"]
delta.mul_(beta1)
batch_size = p.shape[0]
numel = p.numel() // batch_size
if numel > 1:
# Update the size/scale of p, and set param_rms
scale_grads = state["scale_grads"]
scale_grads[step % size_update_period] = (p * grad).sum(
dim=list(range(1, p.ndim)), keepdim=True)
if step % size_update_period == size_update_period - 1:
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
param_rms.copy_((p**2)
.mean(dim=list(range(1, p.ndim)), keepdim=True)
.sqrt())
if step > 0:
# self._size_update() learns the overall scale on the
# parameter, by shrinking or expanding it.
self._size_update(group, scale_grads, p, state)
if numel == 1:
# For parameters with 1 element we just use regular Adam.
# Updates delta.
self._step_scalar(group, p, state)
else:
self._step(group, p, state)
state["step"] = step + 1
def _size_update(self,
group: dict,
scale_grads: Tensor,
p: Tensor,
state: dict) -> None:
"""
Called only where p.numel() > 1, this updates the scale of the parameter.
If we imagine: p = underlying_param * scale.exp(), and we are doing
gradient descent on underlying param and on scale, this function does the update
on `scale`.
Args:
group: dict to look up configuration values
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
grads w.r.t. the scales.
p: The parameter to update
state: The state-dict of p
"""
param_rms = state["param_rms"]
beta1, beta2 = group["betas"]
size_lr = group["lr"] * group["scalar_lr_scale"]
param_min_rms = group["param_min_rms"]
param_max_rms = group["param_max_rms"]
eps = group["eps"]
step = state["step"]
batch_size = p.shape[0]
size_update_period = scale_grads.shape[0]
# correct beta2 for the size update period: we will have
# faster decay at this level.
beta2_corr = beta2**size_update_period
scale_exp_avg_sq = state[
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
scale_exp_avg_sq.mul_(beta2_corr).add_(
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
# The 1st time we reach here is when size_step == 1.
size_step = (step + 1) // size_update_period
bias_correction2 = 1 - beta2_corr**size_step
# we don't bother with bias_correction1; this will help prevent divergence
# at the start of training.
denom = scale_exp_avg_sq.sqrt() + eps
scale_step = (-size_lr * (bias_correction2**0.5) *
scale_grads.sum(dim=0) / denom)
is_too_small = param_rms < param_min_rms
is_too_large = param_rms > param_max_rms
# when the param gets too small, just don't shrink it any further.
scale_step.masked_fill_(is_too_small, 0.0)
# when it gets too large, stop it from getting any larger.
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
delta = state["delta"]
# the factor of (1-beta1) relates to momentum.
delta.add_(p * scale_step, alpha=(1 - beta1))
def _step(self, group: dict, p: Tensor, state: dict):
"""
This function does the core update of self.step(), in the case where the members of
the batch have more than 1 element.
Args:
group: A dict which will be used to look up configuration values
p: The parameter to be updated
grad: The grad of p
state: The state-dict corresponding to parameter p
This function modifies p.
"""
grad = p.grad
lr = group["lr"]
beta1, beta2 = group["betas"]
eps = group["eps"]
param_min_rms = group["param_min_rms"]
step = state["step"]
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
this_step = state["step"] - (state["zero_step"]
if "zero_step" in state else 0)
bias_correction2 = 1 - beta2**(this_step + 1)
if bias_correction2 < 0.99:
# note: not in-place.
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
denom = exp_avg_sq.sqrt()
denom += eps
grad = grad / denom
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
delta = state["delta"]
delta.add_(grad * alpha)
p.add_(delta)
def _step_scalar(self, group: dict, p: Tensor, state: dict):
"""
A simplified form of the core update for scalar tensors, where we cannot get a good
estimate of the parameter rms.
"""
beta1, beta2 = group["betas"]
scalar_max = group["scalar_max"]
eps = group["eps"]
lr = group["lr"] * group["scalar_lr_scale"]
grad = p.grad
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
# slower update at the start will help stability anyway.
bias_correction2 = 1 - beta2**(state["step"] + 1)
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
delta = state["delta"]
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
p.clamp_(min=-scalar_max, max=scalar_max)
p.add_(delta)

View File

@ -0,0 +1,388 @@
from torch.nn.functional import *
from torch.nn.functional import _mha_shape_check,_canonical_mask,_none_or_dtype,_in_projection_packed
# import torch
# Tensor = torch.Tensor
# from typing import Callable, List, Optional, Tuple, Union
def multi_head_attention_forward_patched(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,cache=None
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
Default: `True`
Note: `needs_weight` defaults to `True`, but should be set to `False`
For best performance when attention weights are not nedeeded.
*Setting needs_weights to `True`
leads to a significant performance degradation.*
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
is_causal: If specified, applies a causal mask as attention mask, and ignores
attn_mask for computing scaled dot product attention.
Default: ``False``.
.. warning::
is_causal is provides a hint that the attn_mask is the
causal mask.Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
when ``need_weights=True.``. Default: True
Shape:
Inputs:
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a FloatTensor is provided, it will be directly added to the value.
If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
"""
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
if has_torch_function(tens_ops):
return handle_torch_function(
multi_head_attention_forward,
tens_ops,
query,
key,
value,
embed_dim_to_check,
num_heads,
in_proj_weight,
in_proj_bias,
bias_k,
bias_v,
add_zero_attn,
dropout_p,
out_proj_weight,
out_proj_bias,
training=training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
is_causal=is_causal,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight,
k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight,
static_k=static_k,
static_v=static_v,
average_attn_weights=average_attn_weights,cache=cache
)
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
# is batched, run the computation and before returning squeeze the
# batch dimension so that the output doesn't carry this temporary batch dimension.
if not is_batched:
# unsqueeze if the input is unbatched
query = query.unsqueeze(1)
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.unsqueeze(0)
# set up shape vars
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
key_padding_mask = _canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=_none_or_dtype(attn_mask),
other_name="attn_mask",
target_type=query.dtype
)
if is_causal and attn_mask is None:
raise RuntimeError(
"Need attn_mask if specifying the is_causal hint. "
"You may use the Transformer module method "
"`generate_square_subsequent_mask` to create this mask."
)
if is_causal and key_padding_mask is None and not need_weights:
# when we have a kpm or need weights, we need attn_mask
# Otherwise, we use the is_causal hint go as is_causal
# indicator to SDPA.
attn_mask = None
else:
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
if key_padding_mask is not None:
# We have the attn_mask, and use that to merge kpm into it.
# Turn off use of is_causal hint, as the merged mask is no
# longer causal.
is_causal = False
assert embed_dim == embed_dim_to_check, \
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
if isinstance(embed_dim, torch.Tensor):
# embed_dim can be a tensor when JIT tracing
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
if use_separate_proj_weight:
# allow MHA to have different embedding dimensions when separate projection weights are used
assert key.shape[:2] == value.shape[:2], \
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
else:
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
#
# compute in-projection
#
if not use_separate_proj_weight:
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
else:
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
if in_proj_bias is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = in_proj_bias.chunk(3)
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
if(cache!=None):
if(cache["first_infer"]==1):
cache["k"][cache["stage"]]=k
# print(0,cache["k"].shape)
cache["v"][cache["stage"]]=v
else:###12个layer每个都要留自己的cache_kv
# print(1,cache["k"].shape)
cache["k"][cache["stage"]]=torch.cat([cache["k"][cache["stage"]],k],0)##本来时序是1但是proj的时候可能transpose了所以时序到0维了
cache["v"][cache["stage"]]=torch.cat([cache["v"][cache["stage"]],v],0)
# print(2, cache["k"].shape)
src_len = cache["k"][cache["stage"]].shape[0]
k=cache["k"][cache["stage"]]
v=cache["v"][cache["stage"]]
# if attn_mask is not None:
# attn_mask=attn_mask[-1:,]
# print(attn_mask.shape,attn_mask)
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
# print(2333,cache)
# prep attention mask
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=q.dtype,
check_other=False,
)
if attn_mask is not None:
# ensure attn_mask's dim is 3
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
# add bias along batch dimension (currently second)
if bias_k is not None and bias_v is not None:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert bias_k is None
assert bias_v is None
#
# reshape q, k, v for multihead attention and make em batch first
#
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is None:
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_k.size(0) == bsz * num_heads, \
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
assert static_k.size(2) == head_dim, \
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
k = static_k
if static_v is None:
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_v.size(0) == bsz * num_heads, \
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
assert static_v.size(2) == head_dim, \
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
v = static_v
# add zero attention along batch dimension (now first)
if add_zero_attn:
zero_attn_shape = (bsz * num_heads, 1, head_dim)
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
# update source sequence length after adjustments
src_len = k.size(1)
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
else:
attn_mask = attn_mask + key_padding_mask
# adjust dropout probability
if not training:
dropout_p = 0.0
#
# (deep breath) calculate attention and out projection
#
if need_weights:
B, Nt, E = q.shape
q_scaled = q / math.sqrt(E)
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
if attn_mask is not None:
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
else:
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
attn_output_weights = softmax(attn_output_weights, dim=-1)
if dropout_p > 0.0:
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
attn_output = torch.bmm(attn_output_weights, v)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
# optionally average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
if average_attn_weights:
attn_output_weights = attn_output_weights.mean(dim=1)
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
attn_output_weights = attn_output_weights.squeeze(0)
return attn_output, attn_output_weights
else:
# attn_mask can be either (L,S) or (N*num_heads, L, S)
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
# in order to match the input for SDPA of (N, num_heads, L, S)
if attn_mask is not None:
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
attn_mask = attn_mask.unsqueeze(0)
else:
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
q = q.view(bsz, num_heads, tgt_len, head_dim)
k = k.view(bsz, num_heads, src_len, head_dim)
v = v.view(bsz, num_heads, src_len, head_dim)
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
return attn_output, None

View File

@ -0,0 +1,319 @@
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import random
from typing import Optional
from typing import Tuple
from typing import Union
import torch
import torch.nn as nn
from torch import Tensor
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
Memory-efficient derivative computation:
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
Now, s'(x) = s(x) * (1-s(x)).
double_swish'(x) = x * s'(x) + s(x).
= x * s(x) * (1-s(x)) + s(x).
= double_swish(x) * (1-s(x)) + s(x)
... so we just need to remember s(x) but not x itself.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
requires_grad = x.requires_grad
x_dtype = x.dtype
if x.dtype == torch.float16:
x = x.to(torch.float32)
s = torch.sigmoid(x - 1.0)
y = x * s
if requires_grad:
deriv = y * (1 - s) + s
# notes on derivative of x * sigmoid(x - 1):
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
# floors), should be expectation-preserving.
floor = -0.043637
ceil = 1.2
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)
) + torch.rand_like(deriv)
if __name__ == "__main__":
# for self-testing only.
assert d_scaled.min() >= 0.0
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
(d, ) = ctx.saved_tensors
# the same constants as used in forward pass.
floor = -0.043637
ceil = 1.2
d = d * ((ceil - floor) / 255.0) + floor
return y_grad * d
class DoubleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x * torch.sigmoid(x - 1.0)
return DoubleSwishFunction.apply(x)
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
scale_factor: Tensor,
sign_factor: Optional[Tensor],
channel_dim: int, ) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
xgt0 = x > 0
if sign_factor is None:
ctx.save_for_backward(xgt0, scale_factor)
else:
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
if len(ctx.saved_tensors) == 3:
xgt0, scale_factor, sign_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
sign_factor = sign_factor.unsqueeze(-1)
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
else:
xgt0, scale_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
neg_delta_grad = x_grad.abs() * factor
return (x_grad - neg_delta_grad, None, None, None, )
def _compute_scale_factor(
x: Tensor,
channel_dim: int,
min_abs: float,
max_abs: float,
gain_factor: float,
max_factor: float, ) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
if min_abs == 0.0:
below_threshold = 0.0
else:
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
# x_abs)_mean , min_abs.
below_threshold = (
(min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
min=0, max=max_factor)
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
min=0, max=max_factor)
return below_threshold - above_threshold
def _compute_sign_factor(
x: Tensor,
channel_dim: int,
min_positive: float,
max_positive: float,
gain_factor: float,
max_factor: float, ) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
if min_positive == 0.0:
factor1 = 0.0
else:
# 0 if proportion_positive >= min_positive, else can be
# as large as max_factor.
factor1 = ((min_positive - proportion_positive) *
(gain_factor / min_positive)).clamp_(
min=0, max=max_factor)
if max_positive == 1.0:
factor2 = 0.0
else:
# 0 if self.proportion_positive <= max_positive, else can be
# as large as -max_factor.
factor2 = ((proportion_positive - max_positive) *
(gain_factor / (1.0 - max_positive))).clamp_(
min=0, max=max_factor)
sign_factor = factor1 - factor2
# require min_positive != 0 or max_positive != 1:
assert not isinstance(sign_factor, float)
return sign_factor
class ActivationBalancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
max_factor: the maximum factor by which we modify the derivatives for
either the sign constraint or the magnitude constraint;
e.g. with max_factor=0.02, the the derivatives would be multiplied by
values in the range [0.98..1.02].
sign_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_positive and max_positive
are violated.
scale_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_abs and max_abs
are violated.
min_abs: the minimum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_abs: the maximum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
min_prob: determines the minimum probability with which we modify the
gradients for the {min,max}_positive and {min,max}_abs constraints,
on each forward(). This is done randomly to prevent all layers
from doing it at the same time. Early in training we may use
higher probabilities than this; it will decay to this value.
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
min_positive: float=0.05,
max_positive: float=0.95,
max_factor: float=0.04,
sign_gain_factor: float=0.01,
scale_gain_factor: float=0.02,
min_abs: float=0.2,
max_abs: float=100.0,
min_prob: float=0.1, ):
super(ActivationBalancer, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.max_factor = max_factor
self.min_abs = min_abs
self.max_abs = max_abs
self.min_prob = min_prob
self.sign_gain_factor = sign_gain_factor
self.scale_gain_factor = scale_gain_factor
# count measures how many times the forward() function has been called.
# We occasionally sync this to a tensor called `count`, that exists to
# make sure it is synced to disk when we load and save the model.
self.cpu_count = 0
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
def forward(self, x: Tensor) -> Tensor:
if (torch.jit.is_scripting() or not x.requires_grad or
torch.jit.is_tracing()):
return _no_op(x)
count = self.cpu_count
self.cpu_count += 1
if random.random() < 0.01:
# Occasionally sync self.cpu_count with self.count.
# count affects the decay of 'prob'. don't do this on every iter,
# because syncing with the GPU is slow.
self.cpu_count = max(self.cpu_count, self.count.item())
self.count.fill_(self.cpu_count)
# the prob of doing some work exponentially decreases from 0.5 till it hits
# a floor at min_prob (==0.1, by default)
prob = max(self.min_prob, 0.5**(1 + (count / 4000.0)))
if random.random() < prob:
sign_gain_factor = 0.5
if self.min_positive != 0.0 or self.max_positive != 1.0:
sign_factor = _compute_sign_factor(
x,
self.channel_dim,
self.min_positive,
self.max_positive,
gain_factor=self.sign_gain_factor / prob,
max_factor=self.max_factor, )
else:
sign_factor = None
scale_factor = _compute_scale_factor(
x.detach(),
self.channel_dim,
min_abs=self.min_abs,
max_abs=self.max_abs,
gain_factor=self.scale_gain_factor / prob,
max_factor=self.max_factor, )
return ActivationBalancerFunction.apply(
x,
scale_factor,
sign_factor,
self.channel_dim, )
else:
return _no_op(x)
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0,
min_prob=0.25) -> nn.Sequential:
"""
ActivationBalancer -> DoubleSwish
"""
balancer = ActivationBalancer(
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
return nn.Sequential(
balancer,
DoubleSwish(), )

View File

@ -0,0 +1,347 @@
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
import copy
import numbers
from functools import partial
from typing import Any
from typing import Callable
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
from AR.modules.activation import MultiheadAttention
from AR.modules.scaling import BalancedDoubleSwish
from torch import nn
from torch import Tensor
from torch.nn import functional as F
_shape_t = Union[int, List[int], torch.Size]
class LayerNorm(nn.Module):
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: float=1e-5,
elementwise_affine: bool=True,
device=None,
dtype=None, ) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape, ) # type: ignore[assignment]
self.normalized_shape = tuple(
normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs))
self.bias = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return (F.layer_norm(
input,
self.normalized_shape,
self.weight,
self.bias,
self.eps, ), embedding, )
assert embedding is None
return F.layer_norm(input, self.normalized_shape, self.weight,
self.bias, self.eps)
def extra_repr(self) -> str:
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__))
class IdentityNorm(nn.Module):
def __init__(
self,
d_model: int,
eps: float=1e-5,
device=None,
dtype=None, ) -> None:
super(IdentityNorm, self).__init__()
def forward(self, input: Tensor, embedding: Any=None) -> Tensor:
if isinstance(input, tuple):
return input
assert embedding is None
return input
class TransformerEncoder(nn.Module):
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ["norm"]
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
src: Tensor,
mask: Optional[Tensor]=None,
src_key_padding_mask: Optional[Tensor]=None,
return_layer_states: bool=False,cache=None ) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
return_layer_states: return layers' state (optional).
Shape:
see the docs in Transformer class.
"""
if return_layer_states:
layer_states = [] # layers' output
output = src
for mod in self.layers:
output = mod(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask, cache=cache)
layer_states.append(output[0])
if self.norm is not None:
output = self.norm(output)
return layer_states, output
output = src
for mod in self.layers:
output = mod(output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask, cache=cache)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerEncoderLayer(nn.Module):
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int=2048,
dropout: float=0.1,
activation: Union[str, Callable[[Tensor], Tensor]]=F.relu,
batch_first: bool=False,
norm_first: bool=False,
device=None,
dtype=None,
linear1_self_attention_cls: nn.Module=nn.Linear,
linear2_self_attention_cls: nn.Module=nn.Linear,
linear1_feedforward_cls: nn.Module=nn.Linear,
linear2_feedforward_cls: nn.Module=nn.Linear,
layer_norm_cls: nn.Module=LayerNorm,
layer_norm_eps: float=1e-5,
adaptive_layer_norm=False, ) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerEncoderLayer, self).__init__()
# print(233333333333,d_model,nhead)
# import os
# os._exit(2333333)
self.self_attn = MultiheadAttention(
d_model,#512 16
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs, )
# Implementation of Feedforward model
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward,
**factory_kwargs)
self.dropout = nn.Dropout(dropout)
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model,
**factory_kwargs)
self.norm_first = norm_first
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
elif isinstance(activation, partial):
activation = activation(d_model)
elif activation == BalancedDoubleSwish:
activation = BalancedDoubleSwish(d_model)
# # We can't test self.activation in forward() in TorchScript,
# # so stash some information about it instead.
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
# self.activation_relu_or_gelu = 1
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
# self.activation_relu_or_gelu = 2
# else:
# self.activation_relu_or_gelu = 0
self.activation = activation
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if layer_norm_cls == IdentityNorm:
norm2 = BalancedBasicNorm(
d_model, eps=layer_norm_eps, **factory_kwargs)
else:
norm2 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs)
if adaptive_layer_norm:
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
else:
self.norm1 = norm1
self.norm2 = norm2
def __setstate__(self, state):
super(TransformerEncoderLayer, self).__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor]=None,
src_key_padding_mask: Optional[Tensor]=None,cache=None ) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
x, stage_embedding = src, None
is_src_tuple = False
if isinstance(src, tuple):
x, stage_embedding = src
is_src_tuple = True
if src_key_padding_mask is not None:
_skpm_dtype = src_key_padding_mask.dtype
if _skpm_dtype != torch.bool and not torch.is_floating_point(
src_key_padding_mask):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
if self.norm_first:
x = x + self._sa_block(
self.norm1(x, stage_embedding),
src_mask,
src_key_padding_mask,cache=cache )
x = x + self._ff_block(self.norm2(x, stage_embedding))
else:
x = self.norm1(
x + self._sa_block(x, src_mask, src_key_padding_mask,cache=cache),
stage_embedding, )
x = self.norm2(x + self._ff_block(x), stage_embedding)
if is_src_tuple:
return (x, stage_embedding)
return x
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],cache=None ) -> Tensor:
# print(x.shape,attn_mask.shape,key_padding_mask)
#torch.Size([1, 188, 512]) torch.Size([188, 188]) None
# import os
# os._exit(23333)
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,cache=cache )[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor=None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1, )
return (weight * self.norm(input) + bias, embedding)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1, )
return weight * self.norm(input) + bias
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

View File

@ -0,0 +1,80 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/phonemizer.py
import itertools
import re
from typing import Dict
from typing import List
import regex
from gruut import sentences
from gruut.const import Sentence
from gruut.const import Word
from AR.text_processing.symbols import SYMBOL_TO_ID
class GruutPhonemizer:
def __init__(self, language: str):
self._phonemizer = sentences
self.lang = language
self.symbol_to_id = SYMBOL_TO_ID
self._special_cases_dict: Dict[str] = {
r"\.\.\.": "... ",
";": "; ",
":": ": ",
",": ", ",
r"\.": ". ",
"!": "! ",
r"\?": "? ",
"": "",
"": "",
"«": "«",
"»": "»"
}
self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
def _normalize_punctuation(self, text: str) -> str:
text = regex.sub(fr"\pZ+{self._punctuation_regexp}", r"\1", text)
text = regex.sub(fr"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
text = regex.sub(r"\pZ+", r" ", text)
return text.strip()
def _convert_punctuation(self, word: Word) -> str:
if not word.phonemes:
return ''
if word.phonemes[0] in ['', '|']:
return word.text.strip()
phonemes = ''.join(word.phonemes)
# remove modifier characters ˈˌː with regex
phonemes = re.sub(r'[ˈˌː͡]', '', phonemes)
return phonemes.strip()
def phonemize(self, text: str, espeak: bool=False) -> str:
text_to_phonemize: str = self._normalize_punctuation(text)
sents: List[Sentence] = [
sent
for sent in self._phonemizer(
text_to_phonemize, lang="en-us", espeak=espeak)
]
words: List[str] = [
self._convert_punctuation(word) for word in itertools.chain(*sents)
]
return ' '.join(words)
def transform(self, phonemes):
# convert phonemes to ids
# dictionary is in symbols.py
return [
self.symbol_to_id[p] for p in phonemes
if p in self.symbol_to_id.keys()
]
if __name__ == "__main__":
phonemizer = GruutPhonemizer("en-us")
# text -> IPA
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
print("phonemes:", phonemes)
print("len(phonemes):", len(phonemes))
phoneme_ids = phonemizer.transform(phonemes)
print("phoneme_ids:", phoneme_ids)
print("len(phoneme_ids):", len(phoneme_ids))

View File

@ -0,0 +1,9 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/symbols.py
PAD = '_'
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'"
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
SPACE_ID = SYMBOLS.index(" ")
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}

View File

@ -0,0 +1,37 @@
import re
def str2bool(str):
return True if str.lower() == 'true' else False
def get_newest_ckpt(string_list):
# 定义一个正则表达式模式,用于匹配字符串中的数字
pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
extracted_info = []
for string in string_list:
match = re.match(pattern, string)
if match:
epoch = int(match.group(1))
step = int(match.group(2))
extracted_info.append((epoch, step, string))
# 按照 epoch 后面的数字和 step 后面的数字进行排序
sorted_info = sorted(
extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
# 获取最新的 ckpt 文件名
newest_ckpt = sorted_info[0][2]
return newest_ckpt
# 文本存在且不为空时 return True
def check_txt_file(file_path):
try:
with open(file_path, 'r') as file:
text = file.readline().strip()
assert text.strip() != ''
return text
except Exception:
return False
return False

View File

@ -0,0 +1,38 @@
#!/usr/bin/env python3
"""Initialize modules for espnet2 neural networks."""
import torch
from typeguard import check_argument_types
def initialize(model: torch.nn.Module, init: str):
"""Initialize weights of a neural network module.
Parameters are initialized using the given method or distribution.
Custom initialization routines can be implemented into submodules
as function `espnet_initialization_fn` within the custom module.
Args:
model: Target.
init: Method of initialization.
"""
assert check_argument_types()
print("init with", init)
# weight init
for p in model.parameters():
if p.dim() > 1:
if init == "xavier_uniform":
torch.nn.init.xavier_uniform_(p.data)
elif init == "xavier_normal":
torch.nn.init.xavier_normal_(p.data)
elif init == "kaiming_uniform":
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
elif init == "kaiming_normal":
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
else:
raise ValueError("Unknown initialization: " + init)
# bias init
for name, p in model.named_parameters():
if ".bias" in name and p.dim() == 1:
p.data.zero_()

32
GPT_SoVITS/AR/utils/io.py Normal file
View File

@ -0,0 +1,32 @@
import sys
import torch
import yaml
def load_yaml_config(path):
with open(path) as f:
config = yaml.full_load(f)
return config
def save_config_to_yaml(config, path):
assert path.endswith('.yaml')
with open(path, 'w') as f:
f.write(yaml.dump(config))
f.close()
def write_args(args, path):
args_dict = dict((name, getattr(args, name)) for name in dir(args)
if not name.startswith('_'))
with open(path, 'a') as args_file:
args_file.write('==> torch version: {}\n'.format(torch.__version__))
args_file.write(
'==> cudnn version: {}\n'.format(torch.backends.cudnn.version()))
args_file.write('==> Cmd:\n')
args_file.write(str(sys.argv))
args_file.write('\n==> args:\n')
for k, v in sorted(args_dict.items()):
args_file.write(' %s: %s\n' % (str(k), str(v)))
args_file.close()

View File

@ -0,0 +1,31 @@
train:
seed: 1234
epochs: 300
batch_size: 8
gradient_accumulation: 4
save_every_n_epoch: 1
precision: 16
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 54
num_workers: 1
pad_val: 1024 # same with EOS in model
model:
vocab_size: 1025
phoneme_vocab_size: 512
embedding_dim: 512
hidden_dim: 512
head: 16
linear_units: 2048
n_layer: 12
dropout: 0
EOS: 1024
inference:
top_k: 5

View File

@ -0,0 +1,31 @@
train:
seed: 1234
epochs: 300
batch_size: 8
gradient_accumulation: 4
save_every_n_epoch: 1
precision: 16-mixed
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 54
num_workers: 1
pad_val: 1024 # same with EOS in model
model:
vocab_size: 1025
phoneme_vocab_size: 512
embedding_dim: 1024
hidden_dim: 1024
head: 16
linear_units: 2048
n_layer: 16
dropout: 0
EOS: 1024
inference:
top_k: 5

View File

@ -0,0 +1,31 @@
train:
seed: 1234
epochs: 300
batch_size: 12
gradient_accumulation: 4
save_every_n_epoch: 1
precision: 16-mixed
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 54
num_workers: 1
pad_val: 1024 # same with EOS in model
model:
vocab_size: 1025
phoneme_vocab_size: 512
embedding_dim: 1024
hidden_dim: 1024
head: 16
linear_units: 2048
n_layer: 6
dropout: 0
EOS: 1024
inference:
top_k: 5

View File

@ -0,0 +1,31 @@
train:
seed: 1234
epochs: 20
batch_size: 8
save_every_n_epoch: 1
precision: 16-mixed
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 54
num_workers: 4
pad_val: 1024 # same with EOS in model
model:
vocab_size: 1025
phoneme_vocab_size: 512
embedding_dim: 512
hidden_dim: 512
head: 16
linear_units: 2048
n_layer: 24
dropout: 0
EOS: 1024
random_bert: 0
inference:
top_k: 5

View File

@ -0,0 +1,77 @@
train:
seed: 1234
epochs: 100
batch_size: 6
gradient_accumulation: 4
save_every_n_epoch: 1
precision: 32
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 40
num_workers: 1
pad_val: 1024 # same with EOS in model
model:
saving_path: "ckpt/"
resume_checkpoint: null
vocoder_config_path: "quantizer/new_ckpt/config.json"
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
datadir: "/home/liweiche/GigaSpeech/wavs"
metapath: "/home/liweiche/GigaSpeech/train2.json"
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
sampledir: "logs/"
pretrained_path: null
lr: 0.0001
batch_size: 200.0
train_bucket_size: 8192
training_step: 800000
optim_flat_percent: 0.0
warmup_step: 50
adam_beta1: 0.9
adam_beta2: 0.98
ffd_size: 3072
hidden_size: 768
enc_nlayers: 6
dec_nlayers: 6
nheads: 12
ar_layer: 4
ar_ffd_size: 1024
ar_hidden_size: 256
ar_nheads: 4
aligner_softmax_temp: 1.0
layer_norm_eps: 0.00001
speaker_embed_dropout: 0.05
label_smoothing: 0.0
val_check_interval: 5000
check_val_every_n_epoch: 1
precision: "fp16"
nworkers: 16
distributed: true
accelerator: "ddp"
version: null
accumulate_grad_batches: 1
use_repetition_token: true
use_repetition_gating: false
repetition_penalty: 1.0
sampling_temperature: 1.0
top_k: -1
min_top_k: 3
top_p: 0.8
sample_num: 4
length_penalty_max_length: 15000
length_penalty_max_prob: 0.95
max_input_length: 2048
max_output_length: 2000
sample_rate: 16000
n_codes: 1024
n_cluster_groups: 1
phone_context_window: 4
phoneset_size: 1000
inference:
top_k: 5

View File

@ -0,0 +1,90 @@
{
"train": {
"log_interval": 100,
"eval_interval": 500,
"seed": 1234,
"epochs": 100,
"learning_rate": 0.0001,
"betas": [
0.8,
0.99
],
"eps": 1e-09,
"batch_size": 32,
"fp16_run": true,
"lr_decay": 0.999875,
"segment_size": 20480,
"init_lr_ratio": 1,
"warmup_epochs": 0,
"c_mel": 45,
"c_kl": 1.0,
"text_low_lr_rate": 0.4
},
"data": {
"max_wav_value": 32768.0,
"sampling_rate": 32000,
"filter_length": 2048,
"hop_length": 640,
"win_length": 2048,
"n_mel_channels": 128,
"mel_fmin": 0.0,
"mel_fmax": null,
"add_blank": true,
"n_speakers": 300,
"cleaned_text": true
},
"model": {
"inter_channels": 192,
"hidden_channels": 192,
"filter_channels": 768,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": 0.1,
"resblock": "1",
"resblock_kernel_sizes": [
3,
7,
11
],
"resblock_dilation_sizes": [
[
1,
3,
5
],
[
1,
3,
5
],
[
1,
3,
5
]
],
"upsample_rates": [
10,
8,
2,
2,
2
],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [
16,
16,
8,
2,
2
],
"n_layers_q": 3,
"use_spectral_norm": false,
"gin_channels": 512,
"semantic_frame_rate": "25hz",
"freeze_quantizer": true
},
"s2_ckpt_dir": "logs/s2/big2k1",
"content_module": "cnhubert"
}

View File

@ -0,0 +1,32 @@
gpu:
n_card: 1
n_process_per_card: 2
io:
text_path: D:\RVC1006\GPT-SoVITS\GPT_SoVITS
save_every_n_epoch: 1
precision: 16-mixed
gradient_clip: 1.0
optimizer:
lr: 0.01
lr_init: 0.00001
lr_end: 0.0001
warmup_steps: 2000
decay_steps: 40000
data:
max_eval_sample: 8
max_sec: 54
num_workers: 1
pad_val: 1024 # same with EOS in model
model:
vocab_size: 1025
phoneme_vocab_size: 512
embedding_dim: 512
hidden_dim: 512
head: 16
linear_units: 2048
n_layer: 24
dropout: 0
EOS: 1024
random_bert: 0
inference:
top_k: 5

View File

@ -0,0 +1,6 @@
from . import cnhubert, whisper_enc
content_module_map = {
'cnhubert': cnhubert,
'whisper': whisper_enc
}

View File

@ -0,0 +1,97 @@
import time
import librosa
import torch
import torch.nn.functional as F
import soundfile as sf
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
from transformers import (
Wav2Vec2FeatureExtractor,
HubertModel,
Wav2Vec2Model,
)
import utils
import torch.nn as nn
cnhubert_base_path=None
class CNHubert(nn.Module):
def __init__(self):
super().__init__()
self.model = HubertModel.from_pretrained(cnhubert_base_path)
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(cnhubert_base_path)
def forward(self, x):
input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
feats = self.model(input_values)["last_hidden_state"]
return feats
# class CNHubertLarge(nn.Module):
# def __init__(self):
# super().__init__()
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
# def forward(self, x):
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
# feats = self.model(input_values)["last_hidden_state"]
# return feats
#
# class CVec(nn.Module):
# def __init__(self):
# super().__init__()
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
# def forward(self, x):
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
# feats = self.model(input_values)["last_hidden_state"]
# return feats
#
# class cnw2v2base(nn.Module):
# def __init__(self):
# super().__init__()
# self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
# def forward(self, x):
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
# feats = self.model(input_values)["last_hidden_state"]
# return feats
def get_model():
model = CNHubert()
model.eval()
return model
# def get_large_model():
# model = CNHubertLarge()
# model.eval()
# return model
#
# def get_model_cvec():
# model = CVec()
# model.eval()
# return model
#
# def get_model_cnw2v2base():
# model = cnw2v2base()
# model.eval()
# return model
def get_content(hmodel, wav_16k_tensor):
with torch.no_grad():
feats = hmodel(wav_16k_tensor)
return feats.transpose(1,2)
if __name__ == '__main__':
model = get_model()
src_path = "/Users/Shared/原音频2.wav"
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
model = model
wav_16k_tensor = wav_16k_tensor
feats = get_content(model,wav_16k_tensor)
print(feats.shape)

View File

@ -0,0 +1,22 @@
import torch
def get_model():
import whisper
model = whisper.load_model("small", device='cpu')
return model.encoder
def get_content(model=None, wav_16k_tensor=None):
from whisper import log_mel_spectrogram, pad_or_trim
dev = next(model.parameters()).device
mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
# if torch.cuda.is_available():
# mel = mel.to(torch.float16)
feature_len = mel.shape[-1] // 2
assert mel.shape[-1] < 3000, "输入音频过长只允许输入30以内音频"
with torch.no_grad():
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[:1, :feature_len, :].transpose(1,2)
return feature

View File

@ -0,0 +1,272 @@
import os
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth")
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base")
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui=os.environ.get("infer_ttswebui",9872)
infer_ttswebui=int(infer_ttswebui)
if("_CUDA_VISIBLE_DEVICES"in os.environ):
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
is_half=eval(os.environ.get("is_half","True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys,torch,numpy as np
from pathlib import Path
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
# torch.backends.cuda.sdp_kernel("flash")
# torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
# torch.backends.cuda.enable_math_sdp(True)
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
device="cuda"
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
n_semantic = 1024
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate="25hz"
dict_s1=torch.load(gpt_path,map_location="cpu")
config=dict_s1["config"]
ssl_model=cnhubert.get_model()
if(is_half==True):ssl_model=ssl_model.half().to(device)
else:ssl_model=ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if(is_half==True):vq_model=vq_model.half().to(device)
else:vq_model=vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"],strict=False))
hz = 50
max_sec = config['data']['max_sec']
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if(is_half==True):t2s_model=t2s_model.half()
t2s_model=t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
def get_spepc(hps, filename):
audio=load_audio(filename,int(hps.data.sampling_rate))
audio=torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
return spec
dict_language={
"中文":"zh",
"英文":"en",
"日文":"ja"
}
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language):
t0 = ttime()
prompt_text=prompt_text.strip("\n")
prompt_language,text=prompt_language,text.strip("\n")
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
wav16k = torch.from_numpy(wav16k)
if(is_half==True):wav16k=wav16k.half().to(device)
else:wav16k=wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language=dict_language[prompt_language]
text_language=dict_language[text_language]
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1=cleaned_text_to_sequence(phones1)
texts=text.split("\n")
audio_opt = []
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic,idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config['inference']['top_k'],
early_stop_num=hz * max_sec)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path)#.to(device)
if(is_half==True):refer=refer.half().to(device)
else:refer=refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)
splits={"","","","",",",".","?","!","~",":","","","",}#不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "").replace("——", "")
if (todo_text[-1] not in splits): todo_text += ""
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while (1):
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if (todo_text[i_split_head] in splits):
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp=inp.strip("\n")
inps=split(inp)
split_idx=list(range(0,len(inps),5))
split_idx[-1]=None
if(len(split_idx)>1):
opts=[]
for idx in range(len(split_idx)-1):
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]]))
else:
opts=[inp]
return "\n".join(opts)
def cut2(inp):
inp=inp.strip("\n")
inps=split(inp)
if(len(inps)<2):return [inp]
opts=[]
summ=0
tmp_str=""
for i in range(len(inps)):
summ+=len(inps[i])
tmp_str+=inps[i]
if(summ>50):
summ=0
opts.append(tmp_str)
tmp_str=""
if(tmp_str!=""):opts.append(tmp_str)
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起
opts[-2]=opts[-2]+opts[-1]
opts=opts[:-1]
return "\n".join(opts)
def cut3(inp):
inp=inp.strip("\n")
return "\n".join(["%s"%item for item in inp.strip("").split("")])
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
)
# with gr.Tabs():
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=
"*请上传并填写参考信息"
)
with gr.Row():
inp_ref = gr.Audio(label="请上传参考音频", type="filepath")
prompt_text= gr.Textbox(label="参考音频的文本",value="")
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"],value="中文")
gr.Markdown(
value=
"*请填写需要合成的目标文本"
)
with gr.Row():
text=gr.Textbox(label="需要合成的文本",value="")
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"],value="中文")
inference_button=gr.Button("合成语音", variant="primary")
output = gr.Audio(label="输出的语音")
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output])
gr.Markdown(
value=
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
)
with gr.Row():
text_inp=gr.Textbox(label="需要合成的切分前文本",value="")
button1 = gr.Button("凑五句一切", variant="primary")
button2 = gr.Button("凑50字一切", variant="primary")
button3 = gr.Button("按中文句号。切", variant="primary")
text_opt = gr.Textbox(label="切分后文本", value="")
button1.click(cut1,[text_inp],[text_opt])
button2.click(cut2,[text_inp],[text_opt])
button3.click(cut3,[text_inp],[text_opt])
gr.Markdown(
value=
"后续将支持混合语种编码文本输入。"
)
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=True,
server_port=infer_ttswebui,
quiet=True,
)

View File

View File

@ -0,0 +1,514 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module. modules import LayerNorm
class Encoder(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,isflow=False, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
if isflow:
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
self.cond_layer = weight_norm_modules(cond_layer, name='weight')
self.gin_channels = kwargs["gin_channels"]
def forward(self, x, x_mask, g=None):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
if g is not None:
x = self.cond_pre(x)
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
x = commons.fused_add_tanh_sigmoid_multiply(
x,
g_l,
torch.IntTensor([self.hidden_channels]))
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert t_s == t_t, "Local attention is only available for self-attention."
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
import torch.nn as nn
from torch.nn.utils import remove_weight_norm, weight_norm
class Depthwise_Separable_Conv1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode='zeros', # TODO: refine this type
device=None,
dtype=None
):
super().__init__()
self.depth_conv = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
groups=in_channels, stride=stride, padding=padding, dilation=dilation, bias=bias,
padding_mode=padding_mode, device=device, dtype=dtype)
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias,
device=device, dtype=dtype)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def weight_norm(self):
self.depth_conv = weight_norm(self.depth_conv, name='weight')
self.point_conv = weight_norm(self.point_conv, name='weight')
def remove_weight_norm(self):
self.depth_conv = remove_weight_norm(self.depth_conv, name='weight')
self.point_conv = remove_weight_norm(self.point_conv, name='weight')
class Depthwise_Separable_TransposeConv1D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
output_padding=0,
bias=True,
dilation=1,
padding_mode='zeros', # TODO: refine this type
device=None,
dtype=None
):
super().__init__()
self.depth_conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
groups=in_channels, stride=stride, output_padding=output_padding,
padding=padding, dilation=dilation, bias=bias, padding_mode=padding_mode,
device=device, dtype=dtype)
self.point_conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias,
device=device, dtype=dtype)
def forward(self, input):
return self.point_conv(self.depth_conv(input))
def weight_norm(self):
self.depth_conv = weight_norm(self.depth_conv, name='weight')
self.point_conv = weight_norm(self.point_conv, name='weight')
def remove_weight_norm(self):
remove_weight_norm(self.depth_conv, name='weight')
remove_weight_norm(self.point_conv, name='weight')
def weight_norm_modules(module, name='weight', dim=0):
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
module.weight_norm()
return module
else:
return weight_norm(module, name, dim)
def remove_weight_norm_modules(module, name='weight'):
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
module.remove_weight_norm()
else:
remove_weight_norm(module, name)
class FFT(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
proximal_bias=False, proximal_init=True, isflow = False, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
if isflow:
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2*hidden_channels*n_layers, 1)
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
self.cond_layer = weight_norm_modules(cond_layer, name='weight')
self.gin_channels = kwargs["gin_channels"]
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
proximal_init=proximal_init))
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
self.norm_layers_1.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, g = None):
"""
x: decoder input
h: encoder output
"""
if g is not None:
g = self.cond_layer(g)
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
x = x * x_mask
for i in range(self.n_layers):
if g is not None:
x = self.cond_pre(x)
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
x = commons.fused_add_tanh_sigmoid_multiply(
x,
g_l,
torch.IntTensor([self.hidden_channels]))
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
x = x * x_mask
return x
class TransformerCouplingLayer(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
n_layers,
n_heads,
p_dropout=0,
filter_channels=0,
mean_only=False,
wn_sharing_parameter=None,
gin_channels = 0
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels]*2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1,2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x

View File

@ -0,0 +1,189 @@
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(
length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(num_timescales - 1))
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2,3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1. / norm_type)
return total_norm
def squeeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
t = (t // n_sqz) * n_sqz
x = x[:, :, :t]
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
if x_mask is not None:
x_mask = x_mask[:, :, n_sqz - 1::n_sqz]
else:
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
return x_sqz * x_mask, x_mask
def unsqueeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
if x_mask is not None:
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
else:
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
return x_unsqz * x_mask, x_mask

View File

@ -0,0 +1,367 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# This implementation is inspired from
# https://github.com/lucidrains/vector-quantize-pytorch
# which is released under MIT License. Hereafter, the original license:
# MIT License
#
# Copyright (c) 2020 Phil Wang
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Core vector quantization implementation."""
import typing as tp
from einops import rearrange, repeat
import torch
from torch import nn
import torch.nn.functional as F
from tqdm import tqdm
def default(val: tp.Any, d: tp.Any) -> tp.Any:
return val if val is not None else d
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
max_kmeans_samples = 500
samples = samples[:max_kmeans_samples, :]
means = sample_vectors(samples, num_clusters)
print("kmeans start ... ")
for _ in tqdm(range(num_iters)):
diffs = rearrange(samples, "n d -> n () d") - rearrange(
means, "c d -> () c d"
)
dists = -(diffs ** 2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
#broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
#broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
# pre-process
x = self.preprocess(x)
# quantize
embed_ind = self.quantize(x)
# post-process
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
commitment_weight (float): Weight for commitment loss.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim: tp.Optional[int] = None,
decay: float = 0.99,
epsilon: float = 1e-5,
kmeans_init: bool = True,
kmeans_iters: int = 50,
threshold_ema_dead_code: int = 2,
commitment_weight: float = 1.,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
decay=decay, epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code)
self.codebook_size = codebook_size
@property
def codebook(self):
return self._codebook.embed
def encode(self, x):
x = rearrange(x, "b d n -> b n d")
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind):
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
quantize = rearrange(quantize, "b n d -> b d n")
return quantize
def forward(self, x):
device = x.device
x = rearrange(x, "b d n -> b n d")
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
quantize = self.project_out(quantize)
quantize = rearrange(quantize, "b n d -> b d n")
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None):
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
out_quantized = []
n_q = n_q or len(self.layers)
for i, layer in enumerate(self.layers[:n_q]):
quantized, indices, loss = layer(residual)
residual = residual - quantized
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
if layers and i in layers:
out_quantized.append(quantized)
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
return quantized_out, out_indices, out_losses, out_quantized
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int]= None) -> torch.Tensor:
residual = x
all_indices = []
n_q = n_q or len(self.layers)
st = st or 0
for layer in self.layers[st:n_q]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, q_indices: torch.Tensor, st: int=0) -> torch.Tensor:
quantized_out = torch.tensor(0.0, device=q_indices.device)
for i, indices in enumerate(q_indices):
layer = self.layers[st + i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out

View File

@ -0,0 +1,326 @@
import time,logging
import os
import random,traceback
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm
from module import commons
from module.mel_processing import spectrogram_torch
from text import cleaned_text_to_sequence
from utils import load_wav_to_torch, load_filepaths_and_text
import torch.nn.functional as F
from functools import lru_cache
import torch
import requests
from scipy.io import wavfile
from io import BytesIO
# from config import exp_dir
from my_utils import load_audio
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, hparams, val=False):
exp_dir=hparams.exp_dir
self.path2="%s/2-name2text.txt"%exp_dir
self.path4="%s/4-cnhubert"%exp_dir
self.path5="%s/5-wav32k"%exp_dir
assert os.path.exists(self.path2)
assert os.path.exists(self.path4)
assert os.path.exists(self.path5)
names4=set([name[:-3]for name in list(os.listdir(self.path4))])#去除.pt后缀
names5=set(os.listdir(self.path5))
self.phoneme_data={}
with open(self.path2,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
for line in lines:
tmp=line.split("\t")
if(len(tmp)!=4):continue
self.phoneme_data[tmp[0]]=[tmp[1]]
self.audiopaths_sid_text=list(set(self.phoneme_data)&names4&names5)
tmp=self.audiopaths_sid_text
leng=len(tmp)
min_num=100
if(leng<min_num):
self.audiopaths_sid_text=[]
for _ in range(max(2, int(min_num / leng))):
self.audiopaths_sid_text += tmp
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
self.val = val
random.seed(1234)
random.shuffle(self.audiopaths_sid_text)
print("phoneme_data_len:", len(self.phoneme_data.keys()))
print("wav_data_len:", len(self.audiopaths_sid_text))
audiopaths_sid_text_new = []
lengths = []
skipped_phone = 0
skipped_dur = 0
for audiopath in tqdm(self.audiopaths_sid_text):
try:
phoneme = self.phoneme_data[audiopath][0]
phoneme = phoneme.split(' ')
phoneme_ids = cleaned_text_to_sequence(phoneme)
except Exception:
print(f"{audiopath} not in self.phoneme_data !")
skipped_phone += 1
continue
size=os.path.getsize("%s/%s"%(self.path5,audiopath))
duration = size / self.sampling_rate / 2
if (54 > duration > 0.6 or self.val):
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
lengths.append(size // (2 * self.hop_length))
else:
skipped_dur += 1
continue
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
print("total left: ", len(audiopaths_sid_text_new))
assert len(audiopaths_sid_text_new)>1#至少能凑够batch size这里todo
self.audiopaths_sid_text = audiopaths_sid_text_new
self.lengths = lengths
def get_audio_text_speaker_pair(self, audiopath_sid_text):
audiopath, phoneme_ids = audiopath_sid_text
text = torch.FloatTensor(phoneme_ids)
try:
spec, wav = self.get_audio("%s/%s"%(self.path5,audiopath))
with torch.no_grad():
ssl = torch.load("%s/%s.pt"%(self.path4,audiopath),map_location="cpu")
if(ssl.shape[-1]!=spec.shape[-1]):
typee=ssl.dtype
ssl=F.pad(ssl.float(),(0,1),mode="replicate").to(typee)
ssl.requires_grad=False
except:
traceback.print_exc()
spec = torch.zeros(1025, 100)
wav = torch.zeros(1, 100*self.hop_length)
ssl=torch.zeros(1,768,100)
text=text[-1:]
print("load audio or ssl error!!!!!!", audiopath)
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
return (ssl, spec, wav, text)
def get_audio(self, filename):
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的不用再/32768
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
audio=torch.FloatTensor(audio_array)#/32768
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, self.filter_length,self.sampling_rate, self.hop_length, self.win_length,center=False)
spec = torch.squeeze(spec, 0)
return spec, audio_norm
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
# with torch.no_grad():
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
def __len__(self):
return len(self.audiopaths_sid_text)
def random_slice(self, ssl, wav, mel):
assert abs(ssl.shape[-1]- wav.shape[-1]//self.hop_length) < 3, ("first", ssl.shape, wav.shape)
len_mel = mel.shape[1]
if self.val:
reference_mel = mel[:, :len_mel//3]
return reference_mel, ssl, wav, mel
dir = random.randint(0, 1)
sep_point = random.randint(int(len_mel//3), int(len_mel//3*2))
if dir == 0:
reference_mel = mel[:, :sep_point]
ssl = ssl[:, :, sep_point:]
wav2 = wav[:, sep_point*self.hop_length:]
mel = mel[:, sep_point:]
else:
reference_mel = mel[:, sep_point:]
ssl = ssl[:, :, :sep_point]
wav2 = wav[:, :sep_point*self.hop_length]
mel = mel[:, :sep_point]
assert abs(ssl.shape[-1]- wav2.shape[-1]//self.hop_length) < 3, (ssl.shape, wav.shape,wav2.shape, mel.shape, sep_point,self.hop_length, sep_point*self.hop_length, dir)
return reference_mel, ssl, wav2, mel
class TextAudioSpeakerCollate():
""" Zero-pads model inputs and targets
"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]),
dim=0, descending=True)
max_ssl_len = max([x[0].size(2) for x in batch])
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
max_spec_len = max([x[1].size(1) for x in batch])
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
max_wav_len = max([x[2].size(1) for x in batch])
max_text_len = max([x[3].size(0) for x in batch])
ssl_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
text_lengths = torch.LongTensor(len(batch))
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
text_padded = torch.LongTensor(len(batch), max_text_len)
spec_padded.zero_()
wav_padded.zero_()
ssl_padded.zero_()
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
ssl = row[0]
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
ssl_lengths[i] = ssl.size(2)
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
text = row[3]
text_padded[i, :text.size(0)] = text
text_lengths[i] = text.size(0)
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
# print(233333333333333,self.lengths,dir(dataset))
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
# for i in range(len(buckets) - 1, -1, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size

View File

@ -0,0 +1,68 @@
import math
import torch
from torch.nn import functional as F
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
dr = dr.float()
dg = dg.float()
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
dg = dg.float()
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
def mle_loss(z, m, logs, logdet, mask):
l = torch.sum(logs) + 0.5 * torch.sum(torch.exp(-2 * logs) * ((z - m)**2)) # neg normal likelihood w/o the constant term
l = l - torch.sum(logdet) # log jacobian determinant
l = l / torch.sum(torch.ones_like(z) * mask) # averaging across batch, channel and time axes
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
return l

View File

@ -0,0 +1,111 @@
import math
import os
import random
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import numpy as np
import librosa
import librosa.util as librosa_util
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
wnsize_dtype_device = str(win_size) + '_' + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
global mel_basis
dtype_device = str(spec.dtype) + '_' + str(spec.device)
fmax_dtype_device = str(fmax) + '_' + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
dtype_device = str(y.dtype) + '_' + str(y.device)
fmax_dtype_device = str(fmax) + '_' + dtype_device
wnsize_dtype_device = str(win_size) + '_' + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec

784
GPT_SoVITS/module/models.py Normal file
View File

@ -0,0 +1,784 @@
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module import modules
from module import attentions
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from module.commons import init_weights, get_padding
from module.mrte_model import MRTE
from module.quantize import ResidualVectorQuantizer
from text import symbols
from torch.cuda.amp import autocast
class StochasticDurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.n_flows = n_flows
self.gin_channels = gin_channels
self.log_flow = modules.Log()
self.flows = nn.ModuleList()
self.flows.append(modules.ElementwiseAffine(2))
for i in range(n_flows):
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.flows.append(modules.Flip())
self.post_pre = nn.Conv1d(1, filter_channels, 1)
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
self.post_flows = nn.ModuleList()
self.post_flows.append(modules.ElementwiseAffine(2))
for i in range(4):
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.post_flows.append(modules.Flip())
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = torch.detach(x)
x = self.pre(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
logdet_tot_q = 0
h_w = self.post_pre(w)
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
logdet_tot_q += logdet_q
z_u, z1 = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (w - u) * x_mask
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
logdet_tot = 0
z0, logdet = self.log_flow(z0, x_mask)
logdet_tot += logdet
z = torch.cat([z0, z1], 1)
for flow in flows:
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
z0, z1 = torch.split(z, [1, 1], 1)
logw = z0
return logw
class DurationPredictor(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
latent_channels=192):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.latent_channels = latent_channels
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
self.encoder_ssl = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers//2,
kernel_size,
p_dropout)
self.encoder_text = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
self.mrte = MRTE()
self.encoder2 = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers//2,
kernel_size,
p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
y = self.ssl_proj(y * y_mask) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
text_mask = torch.unsqueeze(commons.sequence_mask(text_lengths, text.size(1)), 1).to(y.dtype)
if test == 1 :
text[:, :] = 0
text = self.text_embedding(text).transpose(1, 2)
text = self.encoder_text(text * text_mask, text_mask)
y = self.mrte(y, y_mask, text, text_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask
def extract_latent(self, x):
x = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
return codes.transpose(0,1)
def decode_latent(self, codes, y_mask, refer,refer_mask, ge):
quantized = self.quantizer.decode(codes)
y = self.vq_proj(quantized) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
y = self.mrte(y, y_mask, refer, refer_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask, quantized
class ResidualCouplingBlock(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
gin_channels=gin_channels, mean_only=True))
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
if(g!=None):
g = g.detach()
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class WNEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.norm = modules.LayerNorm(out_channels)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
out = self.proj(x) * x_mask
out = self.norm(out)
return out
class Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class ReferenceEncoder(nn.Module):
'''
inputs --- [N, Ty/r, n_mels*r] mels
outputs --- [N, ref_enc_gru_size]
'''
def __init__(self, spec_channels, gin_channels=0):
super().__init__()
self.spec_channels = spec_channels
ref_enc_filters = [32, 32, 64, 64, 128, 128]
K = len(ref_enc_filters)
filters = [1] + ref_enc_filters
convs = [weight_norm(nn.Conv2d(in_channels=filters[i],
out_channels=filters[i + 1],
kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1))) for i in range(K)]
self.convs = nn.ModuleList(convs)
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels,
hidden_size=256 // 2,
batch_first=True)
self.proj = nn.Linear(128, gin_channels)
def forward(self, inputs):
N = inputs.size(0)
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
for conv in self.convs:
out = conv(out)
# out = wn(out)
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
T = out.size(1)
N = out.size(0)
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
self.gru.flatten_parameters()
memory, out = self.gru(out) # out --- [1, N, 128]
return self.proj(out.squeeze(0)).unsqueeze(-1)
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
for i in range(n_convs):
L = (L - kernel_size + 2 * pad) // stride + 1
return L
class Quantizer_module(torch.nn.Module):
def __init__(self, n_e, e_dim):
super(Quantizer_module, self).__init__()
self.embedding = nn.Embedding(n_e, e_dim)
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
def forward(self, x):
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) - 2 * torch.matmul(x, self.embedding.weight.T)
min_indicies = torch.argmin(d, 1)
z_q = self.embedding(min_indicies)
return z_q, min_indicies
class Quantizer(torch.nn.Module):
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
super(Quantizer, self).__init__()
assert embed_dim % n_code_groups == 0
self.quantizer_modules = nn.ModuleList([
Quantizer_module(n_codes, embed_dim // n_code_groups) for _ in range(n_code_groups)
])
self.n_code_groups = n_code_groups
self.embed_dim = embed_dim
def forward(self, xin):
#B, C, T
B, C, T = xin.shape
xin = xin.transpose(1, 2)
x = xin.reshape(-1, self.embed_dim)
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
min_indicies = []
z_q = []
for _x, m in zip(x, self.quantizer_modules):
_z_q, _min_indicies = m(_x)
z_q.append(_z_q)
min_indicies.append(_min_indicies) #B * T,
z_q = torch.cat(z_q, -1).reshape(xin.shape)
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
z_q = xin + (z_q - xin).detach()
z_q = z_q.transpose(1, 2)
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
return z_q, loss, codes.transpose(1, 2)
def embed(self, x):
#idx: N, 4, T
x=x.transpose(1, 2)
x = torch.split(x, 1, 2)
ret = []
for q, embed in zip(x, self.quantizer_modules):
q = embed.embedding(q.squeeze(-1))
ret.append(q)
ret = torch.cat(ret, -1)
return ret.transpose(1, 2) #N, C, T
class CodePredictor(nn.Module):
def __init__(self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_q=8,
dims=1024,
ssl_dim=768
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
self.ref_enc = modules.MelStyleEncoder(ssl_dim, style_vector_dim=hidden_channels)
self.encoder = attentions.Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.out_proj = nn.Conv1d(hidden_channels, (n_q-1) * dims, 1)
self.n_q = n_q
self.dims = dims
def forward(self, x, x_mask, refer, codes, infer=False):
x = x.detach()
x = self.vq_proj(x * x_mask) * x_mask
g = self.ref_enc(refer, x_mask)
x = x + g
x = self.encoder(x * x_mask, x_mask)
x = self.out_proj(x * x_mask) * x_mask
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(2, 3)
target = codes[1:].transpose(0, 1)
if not infer:
logits = logits.reshape(-1, self.dims)
target = target.reshape(-1)
loss = torch.nn.functional.cross_entropy(logits, target)
return loss
else:
_, top10_preds = torch.topk(logits, 10, dim=-1)
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
print('Top-10 Accuracy:', top3_acc, "%")
pred_codes = torch.argmax(logits, dim=-1)
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
print('Top-1 Accuracy:', acc, "%")
return pred_codes.transpose(0, 1)
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.use_sdp = use_sdp
self.enc_p = TextEncoder(
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
ssl_dim = 768
assert semantic_frame_rate in ['25hz', "50hz"]
self.semantic_frame_rate = semantic_frame_rate
if semantic_frame_rate == '25hz':
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
else:
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
self.quantizer = ResidualVectorQuantizer(
dimension=ssl_dim,
n_q=1,
bins=1024
)
if freeze_quantizer:
self.ssl_proj.requires_grad_(False)
self.quantizer.requires_grad_(False)
# self.enc_p.text_embedding.requires_grad_(False)
# self.enc_p.encoder_text.requires_grad_(False)
# self.enc_p.mrte.requires_grad_(False)
def forward(self, ssl, y, y_lengths, text, text_lengths):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y * y_mask, y_mask)
with autocast(enabled=False):
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl, layers=[0])
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
z_p = self.flow(z, y_mask, g=ge)
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
o = self.dec(z_slice, g=ge)
return o, commit_loss, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y * y_mask, y_mask)
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge, test=test)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=ge, reverse=True)
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o,y_mask, (z, z_p, m_p, logs_p)
@torch.no_grad()
def decode(self, codes,text, refer, noise_scale=0.5):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer * refer_mask, refer_mask)
y_lengths = torch.LongTensor([codes.size(2)*2]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, size=int(quantized.shape[-1] * 2), mode="nearest")
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=ge, reverse=True)
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)

View File

@ -0,0 +1,769 @@
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Conv1d
from torch.nn.utils import weight_norm, remove_weight_norm
from module import commons
from module.commons import init_weights, get_padding
from module.transforms import piecewise_rational_quadratic_transform
import torch.distributions as D
LRELU_SLOPE = 0.1
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class ConvReluNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers-1):
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Module):
"""
Dialted and Depth-Separable Convolution
"""
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(n_layers):
dilation = kernel_size ** i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
groups=channels, dilation=dilation, padding=padding
))
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(torch.nn.Module):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
self.hidden_channels =hidden_channels
self.kernel_size = kernel_size,
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
else:
g_l = torch.zeros_like(x_in)
acts = commons.fused_add_tanh_sigmoid_multiply(
x_in,
g_l,
n_channels_tensor)
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:,:self.hidden_channels,:]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:,self.hidden_channels:,:]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c2(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Log(nn.Module):
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
logdet = torch.sum(-y, [1, 2])
return y, logdet
else:
x = torch.exp(x) * x_mask
return x
class Flip(nn.Module):
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.m = nn.Parameter(torch.zeros(channels,1))
self.logs = nn.Parameter(torch.zeros(channels,1))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + torch.exp(self.logs) * x
y = y * x_mask
logdet = torch.sum(self.logs * x_mask, [1,2])
return y, logdet
else:
x = (x - self.m) * torch.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Module):
def __init__(self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels]*2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1,2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
class ConvFlow(nn.Module):
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.num_bins = num_bins
self.tail_bound = tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_derivatives = h[..., 2 * self.num_bins:]
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails='linear',
tail_bound=self.tail_bound
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1,2])
if not reverse:
return x, logdet
else:
return x
class LinearNorm(nn.Module):
def __init__(self,
in_channels,
out_channels,
bias=True,
spectral_norm=False,
):
super(LinearNorm, self).__init__()
self.fc = nn.Linear(in_channels, out_channels, bias)
if spectral_norm:
self.fc = nn.utils.spectral_norm(self.fc)
def forward(self, input):
out = self.fc(input)
return out
class Mish(nn.Module):
def __init__(self):
super(Mish, self).__init__()
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class Conv1dGLU(nn.Module):
'''
Conv1d + GLU(Gated Linear Unit) with residual connection.
For GLU refer to https://arxiv.org/abs/1612.08083 paper.
'''
def __init__(self, in_channels, out_channels, kernel_size, dropout):
super(Conv1dGLU, self).__init__()
self.out_channels = out_channels
self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.conv1(x)
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
x = x1 * torch.sigmoid(x2)
x = residual + self.dropout(x)
return x
class ConvNorm(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=None,
dilation=1,
bias=True,
spectral_norm=False,
):
super(ConvNorm, self).__init__()
if padding is None:
assert (kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
if spectral_norm:
self.conv = nn.utils.spectral_norm(self.conv)
def forward(self, input):
out = self.conv(input)
return out
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0., spectral_norm=False):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k)
self.w_ks = nn.Linear(d_model, n_head * d_k)
self.w_vs = nn.Linear(d_model, n_head * d_v)
self.attention = ScaledDotProductAttention(temperature=np.power(d_model, 0.5), dropout=dropout)
self.fc = nn.Linear(n_head * d_v, d_model)
self.dropout = nn.Dropout(dropout)
if spectral_norm:
self.w_qs = nn.utils.spectral_norm(self.w_qs)
self.w_ks = nn.utils.spectral_norm(self.w_ks)
self.w_vs = nn.utils.spectral_norm(self.w_vs)
self.fc = nn.utils.spectral_norm(self.fc)
def forward(self, x, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_x, _ = x.size()
residual = x
q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
q = q.permute(2, 0, 1, 3).contiguous().view(-1,
len_x, d_k) # (n*b) x lq x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1,
len_x, d_k) # (n*b) x lk x dk
v = v.permute(2, 0, 1, 3).contiguous().view(-1,
len_x, d_v) # (n*b) x lv x dv
if mask is not None:
slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
else:
slf_mask = None
output, attn = self.attention(q, k, v, mask=slf_mask)
output = output.view(n_head, sz_b, len_x, d_v)
output = output.permute(1, 2, 0, 3).contiguous().view(
sz_b, len_x, -1) # b x lq x (n*dv)
output = self.fc(output)
output = self.dropout(output) + residual
return output, attn
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, dropout):
super().__init__()
self.temperature = temperature
self.softmax = nn.Softmax(dim=2)
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn)
p_attn = self.dropout(attn)
output = torch.bmm(p_attn, v)
return output, attn
class MelStyleEncoder(nn.Module):
''' MelStyleEncoder '''
def __init__(self, n_mel_channels=80,
style_hidden=128,
style_vector_dim=256,
style_kernel_size=5,
style_head=2,
dropout=0.1):
super(MelStyleEncoder, self).__init__()
self.in_dim = n_mel_channels
self.hidden_dim = style_hidden
self.out_dim = style_vector_dim
self.kernel_size = style_kernel_size
self.n_head = style_head
self.dropout = dropout
self.spectral = nn.Sequential(
LinearNorm(self.in_dim, self.hidden_dim),
Mish(),
nn.Dropout(self.dropout),
LinearNorm(self.hidden_dim, self.hidden_dim),
Mish(),
nn.Dropout(self.dropout)
)
self.temporal = nn.Sequential(
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
)
self.slf_attn = MultiHeadAttention(self.n_head, self.hidden_dim,
self.hidden_dim // self.n_head, self.hidden_dim // self.n_head,
self.dropout)
self.fc = LinearNorm(self.hidden_dim, self.out_dim)
def temporal_avg_pool(self, x, mask=None):
if mask is None:
out = torch.mean(x, dim=1)
else:
len_ = (~mask).sum(dim=1).unsqueeze(1)
x = x.masked_fill(mask.unsqueeze(-1), 0)
x = x.sum(dim=1)
out = torch.div(x, len_)
return out
def forward(self, x, mask=None):
x = x.transpose(1,2)
if mask is not None:
mask = (mask.int()==0).squeeze(1)
max_len = x.shape[1]
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
# spectral
x = self.spectral(x)
# temporal
x = x.transpose(1, 2)
x = self.temporal(x)
x = x.transpose(1, 2)
# self-attention
if mask is not None:
x = x.masked_fill(mask.unsqueeze(-1), 0)
x, _ = self.slf_attn(x, mask=slf_attn_mask)
# fc
x = self.fc(x)
# temoral average pooling
w = self.temporal_avg_pool(x, mask=mask)
return w.unsqueeze(-1)
class MelStyleEncoderVAE(nn.Module):
def __init__(self, spec_channels, z_latent_dim, emb_dim):
super().__init__()
self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
self.fc1 = nn.Linear(emb_dim, z_latent_dim)
self.fc2 = nn.Linear(emb_dim, z_latent_dim)
self.fc3 = nn.Linear(z_latent_dim, emb_dim)
self.z_latent_dim = z_latent_dim
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu
def forward(self, inputs, mask=None):
enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
mu = self.fc1(enc_out)
logvar = self.fc2(enc_out)
posterior = D.Normal(mu, torch.exp(logvar))
kl_divergence = D.kl_divergence(posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar)))
loss_kl = kl_divergence.mean()
z = posterior.rsample()
style_embed = self.fc3(z)
return style_embed.unsqueeze(-1), loss_kl
def infer(self, inputs=None, random_sample=False, manual_latent=None):
if manual_latent is None:
if random_sample:
dev = next(self.parameters()).device
posterior = D.Normal(torch.zeros(1, self.z_latent_dim, device=dev),
torch.ones(1, self.z_latent_dim, device=dev))
z = posterior.rsample()
else:
enc_out = self.ref_encoder(inputs.transpose(1, 2))
mu = self.fc1(enc_out)
z = mu
else:
z = manual_latent
style_embed = self.fc3(z)
return style_embed.unsqueeze(-1), z
class ActNorm(nn.Module):
def __init__(self, channels, ddi=False, **kwargs):
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = None
return z
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m ** 2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)
class InvConvNear(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
super().__init__()
assert (n_split % 2 == 0)
self.channels = channels
self.n_split = n_split
self.no_jacobian = no_jacobian
w_init = torch.linalg.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
b, c, t = x.size()
assert (c % self.n_split == 0)
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)
if reverse:
if hasattr(self, "weight_inv"):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
logdet = None
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
if reverse:
return z
else:
return z, logdet
def store_inverse(self):
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)

View File

@ -0,0 +1,160 @@
# This is Multi-reference timbre encoder
import torch
from torch import nn
from torch.nn.utils import remove_weight_norm, weight_norm
from module.attentions import MultiHeadAttention
class MRTE(nn.Module):
def __init__(self,
content_enc_channels=192,
hidden_size=512,
out_channels=192,
kernel_size=5,
n_heads=4,
ge_layer = 2
):
super(MRTE, self).__init__()
self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
self.c_post = nn.Conv1d(hidden_size,out_channels, 1)
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
if(ge==None):ge=0
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
text_enc = self.text_pre(text * text_mask)
if test != None:
if test == 0:
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
elif test == 1:
x = ssl_enc + ge
elif test ==2:
x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
else:
raise ValueError("test should be 0,1,2")
else:
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
x = self.c_post(x * ssl_mask)
return x
class SpeakerEncoder(torch.nn.Module):
def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
super(SpeakerEncoder, self).__init__()
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
class MELEncoder(nn.Module):
def __init__(self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, x):
# print(x.shape,x_lengths.shape)
x = self.pre(x)
x = self.enc(x)
x = self.proj(x)
return x
class WN(torch.nn.Module):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
self.hidden_channels =hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
dilation=dilation, padding=padding)
in_layer = weight_norm(in_layer)
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
acts = fused_add_tanh_sigmoid_multiply(
x_in,
n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:,:self.hidden_channels,:]
x = (x + res_acts)
output = output + res_skip_acts[:,self.hidden_channels:,:]
else:
output = output + res_skip_acts
return output
def remove_weight_norm(self):
for l in self.in_layers:
remove_weight_norm(l)
for l in self.res_skip_layers:
remove_weight_norm(l)
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input, n_channels):
n_channels_int = n_channels[0]
t_act = torch.tanh(input[:, :n_channels_int, :])
s_act = torch.sigmoid(input[:, n_channels_int:, :])
acts = t_act * s_act
return acts
if __name__ == '__main__':
content_enc = torch.randn(3,192,100)
content_mask = torch.ones(3,1,100)
ref_mel = torch.randn(3,128,30)
ref_mask = torch.ones(3,1,30)
model = MRTE()
out = model(content_enc,content_mask,ref_mel,ref_mask)
print(out.shape)

View File

@ -0,0 +1,108 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Residual vector quantizer implementation."""
from dataclasses import dataclass, field
import math
import typing as tp
import torch
from torch import nn
from module.core_vq import ResidualVectorQuantization
@dataclass
class QuantizedResult:
quantized: torch.Tensor
codes: torch.Tensor
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
penalty: tp.Optional[torch.Tensor] = None
metrics: dict = field(default_factory=dict)
class ResidualVectorQuantizer(nn.Module):
"""Residual Vector Quantizer.
Args:
dimension (int): Dimension of the codebooks.
n_q (int): Number of residual vector quantizers used.
bins (int): Codebook size.
decay (float): Decay for exponential moving average over the codebooks.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dimension: int = 256,
n_q: int = 8,
bins: int = 1024,
decay: float = 0.99,
kmeans_init: bool = True,
kmeans_iters: int = 50,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.n_q = n_q
self.dimension = dimension
self.bins = bins
self.decay = decay
self.kmeans_init = kmeans_init
self.kmeans_iters = kmeans_iters
self.threshold_ema_dead_code = threshold_ema_dead_code
self.vq = ResidualVectorQuantization(
dim=self.dimension,
codebook_size=self.bins,
num_quantizers=self.n_q,
decay=self.decay,
kmeans_init=self.kmeans_init,
kmeans_iters=self.kmeans_iters,
threshold_ema_dead_code=self.threshold_ema_dead_code,
)
def forward(self, x: torch.Tensor, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None) -> QuantizedResult:
"""Residual vector quantization on the given input tensor.
Args:
x (torch.Tensor): Input tensor.
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
layers (list): Layer that need to return quantized. Defalt: None.
Returns:
QuantizedResult:
The quantized (or approximately quantized) representation with
the associated numbert quantizers and layer quantized required to return.
"""
n_q = n_q if n_q else self.n_q
if layers and max(layers) >= n_q:
raise ValueError(f'Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B.')
quantized, codes, commit_loss, quantized_list = self.vq(x, n_q=n_q, layers=layers)
return quantized, codes, torch.mean(commit_loss), quantized_list
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor:
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
The RVQ encode method sets the appropriate number of quantizer to use
and returns indices for each quantizer.
Args:
x (torch.Tensor): Input tensor.
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
st (int): Start to encode input from which layers. Default: 0.
"""
n_q = n_q if n_q else self.n_q
st = st or 0
codes = self.vq.encode(x, n_q=n_q, st=st)
return codes
def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor:
"""Decode the given codes to the quantized representation.
Args:
codes (torch.Tensor): Input indices for each quantizer.
st (int): Start to decode input codes from which layers. Default: 0.
"""
quantized = self.vq.decode(codes, st=st)
return quantized

View File

@ -0,0 +1,193 @@
import torch
from torch.nn import functional as F
import numpy as np
DEFAULT_MIN_BIN_WIDTH = 1e-3
DEFAULT_MIN_BIN_HEIGHT = 1e-3
DEFAULT_MIN_DERIVATIVE = 1e-3
def piecewise_rational_quadratic_transform(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails=None,
tail_bound=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails is None:
spline_fn = rational_quadratic_spline
spline_kwargs = {}
else:
spline_fn = unconstrained_rational_quadratic_spline
spline_kwargs = {
'tails': tails,
'tail_bound': tail_bound
}
outputs, logabsdet = spline_fn(
inputs=inputs,
unnormalized_widths=unnormalized_widths,
unnormalized_heights=unnormalized_heights,
unnormalized_derivatives=unnormalized_derivatives,
inverse=inverse,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
**spline_kwargs
)
return outputs, logabsdet
def searchsorted(bin_locations, inputs, eps=1e-6):
bin_locations[..., -1] += eps
return torch.sum(
inputs[..., None] >= bin_locations,
dim=-1
) - 1
def unconstrained_rational_quadratic_spline(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails='linear',
tail_bound=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
logabsdet = torch.zeros_like(inputs)
if tails == 'linear':
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
logabsdet[outside_interval_mask] = 0
else:
raise RuntimeError('{} tails are not implemented.'.format(tails))
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
inverse=inverse,
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative
)
return outputs, logabsdet
def rational_quadratic_spline(inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
left=0., right=1., bottom=0., top=1.,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE):
if torch.min(inputs) < left or torch.max(inputs) > right:
raise ValueError('Input to a transform is not within its domain')
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0:
raise ValueError('Minimal bin width too large for the number of bins')
if min_bin_height * num_bins > 1.0:
raise ValueError('Minimal bin height too large for the number of bins')
widths = F.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
cumwidths = (right - left) * cumwidths + left
cumwidths[..., 0] = left
cumwidths[..., -1] = right
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
heights = F.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
cumheights = (top - bottom) * cumheights + bottom
cumheights[..., 0] = bottom
cumheights[..., -1] = top
heights = cumheights[..., 1:] - cumheights[..., :-1]
if inverse:
bin_idx = searchsorted(cumheights, inputs)[..., None]
else:
bin_idx = searchsorted(cumwidths, inputs)[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
if inverse:
a = (((inputs - input_cumheights) * (input_derivatives
+ input_derivatives_plus_one
- 2 * input_delta)
+ input_heights * (input_delta - input_derivatives)))
b = (input_heights * input_derivatives
- (inputs - input_cumheights) * (input_derivatives
+ input_derivatives_plus_one
- 2 * input_delta))
c = - input_delta * (inputs - input_cumheights)
discriminant = b.pow(2) - 4 * a * c
assert (discriminant >= 0).all()
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta)
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -logabsdet
else:
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2)
+ input_derivatives * theta_one_minus_theta)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta)
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2))
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, logabsdet

21
GPT_SoVITS/my_utils.py Normal file
View File

@ -0,0 +1,21 @@
import ffmpeg
import numpy as np
def load_audio(file, sr):
try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
file = (
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.float32).flatten()

View File

@ -0,0 +1,50 @@
import os,torch,sys
from subprocess import Popen
now_dir = os.getcwd()
sys.path.append(now_dir)
from config import text_path,wav_dir,n_card,n_process_per_card,exp_name,n_parts,exp_dir
os.makedirs("%s/logs_s1"%exp_dir,exist_ok=True)
os.makedirs("%s/logs_s2"%exp_dir,exist_ok=True)
##############step1
ps=[]
for i_part in range(n_parts):
cmd="python prepare/1-get-text.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
print(cmd)
p = Popen(cmd, shell=True)
ps.append(p)
for p in ps:
p.wait()
opt=[]
for i_part in range(n_parts):
txt_path = "%s/2-name2text-%s.txt" % (exp_dir, i_part)
with open(txt_path,"r")as f:
opt+=f.read().strip("\n").split("\n")
os.remove(txt_path)
with open("%s/2-name2text.txt"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")
############step2
ps=[]
for i_part in range(n_parts):
cmd="python prepare/2-get-hubert-wav32k.py %s %s %s %s %s %s"%(text_path,wav_dir,exp_name,i_part,n_parts,i_part%n_card)
print(cmd)
p = Popen(cmd, shell=True)
ps.append(p)
for p in ps:
p.wait()
#############step3
ps=[]
for i_part in range(n_parts):
cmd="python prepare/3-get-semantic.py %s %s %s %s %s"%(text_path,exp_name,i_part,n_parts,i_part%n_card)
print(cmd)
p = Popen(cmd, shell=True)
ps.append(p)
for p in ps:
p.wait()
opt=["item_name semantic_audio"]
for i_part in range(n_parts):
semantic_path = "%s/6-name2semantic-%s.tsv" % (exp_dir, i_part)
with open(semantic_path,"r")as f:
opt+=f.read().strip("\n").split("\n")
os.remove(semantic_path)
with open("%s/6-name2semantic.tsv"%exp_dir,"w")as f:f.write("\n".join(opt)+"\n")

View File

@ -0,0 +1,109 @@
# -*- coding: utf-8 -*-
import os
inp_text= os.environ.get("inp_text")
inp_wav_dir= os.environ.get("inp_wav_dir")
exp_name= os.environ.get("exp_name")
i_part= os.environ.get("i_part")
all_parts= os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
opt_dir= os.environ.get("opt_dir")
bert_pretrained_dir= os.environ.get("bert_pretrained_dir")
is_half=eval(os.environ.get("is_half","True"))
import sys,numpy as np,traceback,pdb
import os.path
from glob import glob
from tqdm import tqdm
from text.cleaner import clean_text
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
# inp_text=sys.argv[1]
# inp_wav_dir=sys.argv[2]
# exp_name=sys.argv[3]
# i_part=sys.argv[4]
# all_parts=sys.argv[5]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
if(os.path.exists(txt_path)==False):
bert_dir="%s/3-bert"%(opt_dir)
os.makedirs(opt_dir,exist_ok=True)
os.makedirs(bert_dir,exist_ok=True)
device="cuda:0"
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
if (is_half == True):
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def process(data,res):
for name,text,lan in data:
try:
name=os.path.basename(name)
phones, word2ph, norm_text=clean_text(text.replace("%", '-').replace('', ','),lan)
path_bert="%s/%s.pt"%(bert_dir,name)
if (os.path.exists(path_bert) == False and lan == "zh"):
bert_feature = get_bert_feature(norm_text, word2ph)
assert bert_feature.shape[-1] == len(phones)
# torch.save(bert_feature, path_bert)
my_save(bert_feature, path_bert)
phones = " ".join(phones)
# res.append([name,phones])
res.append([name,phones, word2ph, norm_text])
except:
print(name, text, traceback.format_exc())
todo=[]
res=[]
with open(inp_text,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
language_v1_to_language_v2={
"ZH":"zh"
}
for line in lines[int(i_part)::int(all_parts)]:
try:
wav_name,spk_name,language,text=line.split("|")
# todo.append([name,text,"zh"])
todo.append([wav_name,text,language_v1_to_language_v2.get(language,language)])
except:
print(line,traceback.format_exc())
process(todo,res)
opt=[]
for name,phones, word2ph, norm_text in res:
opt.append("%s\t%s\t%s\t%s"%(name,phones, word2ph, norm_text))
with open(txt_path,"w",encoding="utf8")as f:
f.write("\n".join(opt)+"\n")

View File

@ -0,0 +1,94 @@
# -*- coding: utf-8 -*-
import sys,os
inp_text= os.environ.get("inp_text")
inp_wav_dir= os.environ.get("inp_wav_dir")
exp_name= os.environ.get("exp_name")
i_part= os.environ.get("i_part")
all_parts= os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
from feature_extractor import cnhubert
opt_dir= os.environ.get("opt_dir")
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
is_half=eval(os.environ.get("is_half","True"))
import pdb,traceback,numpy as np,logging
from scipy.io import wavfile
import librosa,torch
now_dir = os.getcwd()
sys.path.append(now_dir)
from my_utils import load_audio
# from config import cnhubert_base_path
# cnhubert.cnhubert_base_path=cnhubert_base_path
# inp_text=sys.argv[1]
# inp_wav_dir=sys.argv[2]
# exp_name=sys.argv[3]
# i_part=sys.argv[4]
# all_parts=sys.argv[5]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]
# cnhubert.cnhubert_base_path=sys.argv[7]
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
hubert_dir="%s/4-cnhubert"%(opt_dir)
wav32dir="%s/5-wav32k"%(opt_dir)
os.makedirs(opt_dir,exist_ok=True)
os.makedirs(hubert_dir,exist_ok=True)
os.makedirs(wav32dir,exist_ok=True)
maxx=0.95
alpha=0.5
device="cuda:0"
model=cnhubert.get_model()
if(is_half==True):
model=model.half().to(device)
else:
model = model.to(device)
def name2go(wav_name):
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
if(os.path.exists(hubert_path)):return
wav_path="%s/%s"%(inp_wav_dir,wav_name)
tmp_audio = load_audio(wav_path, 32000)
tmp_max = np.abs(tmp_audio).max()
if tmp_max > 2.2:
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
return
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
tmp_audio = librosa.resample(
tmp_audio32, orig_sr=32000, target_sr=16000
)
tensor_wav16 = torch.from_numpy(tmp_audio)
if (is_half == True):
tensor_wav16=tensor_wav16.half().to(device)
else:
tensor_wav16 = tensor_wav16.to(device)
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
wavfile.write(
"%s/%s"%(wav32dir,wav_name),
32000,
tmp_audio32.astype("int16"),
)
# torch.save(ssl,hubert_path )
my_save(ssl,hubert_path )
with open(inp_text,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
for line in lines[int(i_part)::int(all_parts)]:
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name=os.path.basename(wav_name)
name2go(wav_name)
except:
print(line,traceback.format_exc())

View File

@ -0,0 +1,81 @@
import os
inp_text= os.environ.get("inp_text")
exp_name= os.environ.get("exp_name")
i_part= os.environ.get("i_part")
all_parts= os.environ.get("all_parts")
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
opt_dir= os.environ.get("opt_dir")
pretrained_s2G= os.environ.get("pretrained_s2G")
s2config_path= os.environ.get("s2config_path")
is_half=eval(os.environ.get("is_half","True"))
import math,traceback
import multiprocessing
import sys,pdb
now_dir = os.getcwd()
sys.path.append(now_dir)
from random import shuffle
import torch.multiprocessing as mp
from glob import glob
from tqdm import tqdm
import logging,librosa,utils,torch
from module.models import SynthesizerTrn
logging.getLogger("numba").setLevel(logging.WARNING)
# from config import pretrained_s2G
# inp_text=sys.argv[1]
# exp_name=sys.argv[2]
# i_part=sys.argv[3]
# all_parts=sys.argv[4]
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5]
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
hubert_dir="%s/4-cnhubert"%(opt_dir)
semantic_path="%s/6-name2semantic-%s.tsv"%(opt_dir,i_part)
if(os.path.exists(semantic_path)==False):
os.makedirs(opt_dir,exist_ok=True)
device="cuda:0"
hps = utils.get_hparams_from_file(s2config_path)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if(is_half==True):
vq_model=vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
# utils.load_checkpoint(utils.latest_checkpoint_path(hps.s2_ckpt_dir, "G_*.pth"), vq_model, None, True)
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
print(vq_model.load_state_dict(torch.load(pretrained_s2G,map_location="cpu")["weight"], strict=False))
def name2go(wav_name,lines):
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
if(os.path.exists(hubert_path)==False):return
ssl_content = torch.load(hubert_path, map_location="cpu")
if(is_half==True):
ssl_content=ssl_content.half().to(device)
else:
ssl_content = ssl_content.to(device)
codes = vq_model.extract_latent(ssl_content)
semantic = " ".join([str(i) for i in codes[0, 0, :].tolist()])
lines.append("%s\t%s"%(wav_name,semantic))
with open(inp_text,"r",encoding="utf8")as f:
lines=f.read().strip("\n").split("\n")
lines1=[]
for line in lines[int(i_part)::int(all_parts)]:
# print(line)
try:
# wav_name,text=line.split("\t")
wav_name, spk_name, language, text = line.split("|")
wav_name=os.path.basename(wav_name)
# name2go(name,lines1)
name2go(wav_name,lines1)
except:
print(line,traceback.format_exc())
with open(semantic_path,"w",encoding="utf8")as f:f.write("\n".join(lines1))

View File

@ -0,0 +1,22 @@
import os
import sys
import traceback
from collections import OrderedDict
import torch
from i18n.i18n import I18nAuto
i18n = I18nAuto()
def savee(ckpt, name, epoch, steps, hps):
try:
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt.keys():
if "enc_q" in key:
continue
opt["weight"][key] = ckpt[key].half()
opt["config"] = hps
opt["info"] = "%sepoch_%siteration" % (epoch,steps)
torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir,name))
return "Success."
except:
return traceback.format_exc()

138
GPT_SoVITS/s1_train.py Normal file
View File

@ -0,0 +1,138 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
import os
import pdb
if("_CUDA_VISIBLE_DEVICES"in os.environ):
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"]
import argparse
import logging
from pathlib import Path
import torch,platform
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger#WandbLogger
from pytorch_lightning.strategies import DDPStrategy
from AR.data.data_module import Text2SemanticDataModule
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
torch.set_float32_matmul_precision('high')
from AR.utils import get_newest_ckpt
from collections import OrderedDict
class my_model_ckpt(ModelCheckpoint):
def __init__(self,config,if_save_latest,if_save_every_weights,half_weights_save_dir,exp_name,**kwargs):
super().__init__(**kwargs)
self.if_save_latest=if_save_latest
self.if_save_every_weights=if_save_every_weights
self.half_weights_save_dir=half_weights_save_dir
self.exp_name=exp_name
self.config=config
def on_train_epoch_end(self, trainer, pl_module):
if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
monitor_candidates = self._monitor_candidates(trainer)
if self._every_n_epochs >= 1 and (trainer.current_epoch + 1) % self._every_n_epochs == 0:
if(self.if_save_latest==True):####如果设置只保存最后一个ckpt在保存下一个ckpt后要清理掉之前的所有ckpt
to_clean=list(os.listdir(self.dirpath))
self._save_topk_checkpoint(trainer, monitor_candidates)
if (self.if_save_latest == True):
for name in to_clean:
try:
os.remove("%s/%s"%(self.dirpath,name))
except:pass
if(self.if_save_every_weights==True):
to_save_od=OrderedDict()
to_save_od["weight"]=OrderedDict()
dictt=trainer.strategy._lightning_module.state_dict()
for key in dictt:to_save_od["weight"][key]=dictt[key].half()
to_save_od["config"]=self.config
to_save_od["info"]="GPT-e%s"%(trainer.current_epoch+1)
torch.save(to_save_od,"%s/%s-e%s.ckpt"%(self.half_weights_save_dir,self.exp_name,trainer.current_epoch+1))
self._save_last_checkpoint(trainer, monitor_candidates)
def main(args):
config = load_yaml_config(args.config_file)
output_dir = Path(config["output_dir"])
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir = output_dir / 'ckpt'
ckpt_dir.mkdir(parents=True, exist_ok=True)
seed_everything(config["train"]["seed"], workers=True)
ckpt_callback: ModelCheckpoint = my_model_ckpt(
config=config,
if_save_latest=config["train"]["if_save_latest"], if_save_every_weights=config["train"]["if_save_every_weights"], half_weights_save_dir=config["train"]["half_weights_save_dir"], exp_name=config["train"]["exp_name"],
save_top_k=-1,
monitor='top_3_acc',
mode='max',
save_on_train_epoch_end=True,
every_n_epochs=config["train"]["save_every_n_epoch"],
dirpath=ckpt_dir,
)
logger = TensorBoardLogger(
name=output_dir.stem,
save_dir=output_dir
)
trainer: Trainer = Trainer(
max_epochs=config["train"]["epochs"],
accelerator='gpu',
# val_check_interval=9999999999999999999999,###不要验证
# check_val_every_n_epoch=None,
limit_val_batches=0,
devices=-1,
benchmark=False,
fast_dev_run=False,
strategy=DDPStrategy(process_group_backend="nccl"if platform.system()!="Windows"else "gloo"),
precision=config["train"]["precision"],
logger=logger,num_sanity_val_steps=0,
callbacks=[ckpt_callback])
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
config, output_dir)
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
config,
train_semantic_path=config["train_semantic_path"],
train_phoneme_path=config["train_phoneme_path"],
# dev_semantic_path=args.dev_semantic_path,
# dev_phoneme_path=args.dev_phoneme_path
)
try:
# 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
ckpt_path = ckpt_dir / newest_ckpt_name
except Exception:
ckpt_path = None
print("ckpt_path:", ckpt_path)
trainer.fit(model, data_module, ckpt_path=ckpt_path)
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-c',
'--config_file',
type=str,
default='configs/s1longer.yaml',
help='path of config file')
# args for dataset
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
# parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
# parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
# parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
# parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
args = parser.parse_args()
logging.info(str(args))
main(args)

402
GPT_SoVITS/s2_train.py Normal file
View File

@ -0,0 +1,402 @@
import utils,os
hps = utils.get_hparams(stage=2)
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist,traceback
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging,traceback
logging.getLogger("matplotlib").setLevel(logging.INFO)
logging.getLogger("h5py").setLevel(logging.INFO)
logging.getLogger("numba").setLevel(logging.INFO)
from random import randint
from module import commons
from module.data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler
)
from module.models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from module.losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from process_ckpt import savee
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
###反正A100fp32更快那试试tf32吧
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('medium')#最低精度但最快(也就快一丁点),对于结果造成不了影响
# from config import pretrained_s2G,pretrained_s2D
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(randint(20000, 55555))
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.data.exp_dir)
logger.info(hps)
# utils.check_git_hash(hps.s2_ckpt_dir)
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
dist.init_process_group(backend='gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus,rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioSpeakerLoader(hps.data)########
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset, num_workers=6, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler,persistent_workers=True,prefetch_factor=16)
# if rank == 0:
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
# batch_size=1, pin_memory=True,
# drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
for name, param in net_g.named_parameters():
if not param.requires_grad:
print(name,"not requires_grad")
te_p = list(map(id, net_g.enc_p.text_embedding.parameters()))
et_p = list(map(id, net_g.enc_p.encoder_text.parameters()))
mrte_p = list(map(id, net_g.enc_p.mrte.parameters()))
base_params = filter(lambda p: id(p) not in te_p+et_p+mrte_p and p.requires_grad, net_g.parameters())
# te_p=net_g.enc_p.text_embedding.parameters()
# et_p=net_g.enc_p.encoder_text.parameters()
# mrte_p=net_g.enc_p.mrte.parameters()
optim_g = torch.optim.AdamW(
# filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
[
{"params":base_params,"lr":hps.train.learning_rate},
{"params":net_g.enc_p.text_embedding.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
{"params":net_g.enc_p.encoder_text.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
{"params":net_g.enc_p.mrte.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate},
],
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True)
try: # 如果能加载自动resume
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "D_*.pth"), net_d, optim_d
) # D多半加载没事
if rank == 0:
logger.info("loaded D")
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "G_*.pth"), net_g, optim_g
)
global_step = (epoch_str - 1) * len(train_loader)
# epoch_str = 1
# global_step = 0
except: # 如果首次不能加载加载pretrain
# traceback.print_exc()
epoch_str = 1
global_step = 0
if hps.train.pretrained_s2G != "":
if rank == 0:
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
print(
net_g.module.load_state_dict(
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],strict=False
)
) ##测试不加载优化器
if hps.train.pretrained_s2D != "":
if rank == 0:
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
print(
net_d.module.load_state_dict(
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
)
)
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=-1)
for _ in range(epoch_str):
scheduler_g.step()
scheduler_d.step()
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
# [train_loader, eval_loader], logger, [writer, writer_eval])
[train_loader, None], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
# scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
ssl = ssl.cuda(rank, non_blocking=True)
ssl.requires_grad=False
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, kl_ssl, ids_slice, x_mask, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q), stats_ssl = net_g(ssl, spec, spec_lengths, text, text_lengths)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update(
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl_ssl": kl_ssl, "loss/g/kl": loss_kl})
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
global_step += 1
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
if hps.train.if_save_latest == 0:
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(global_step)),
)
else:
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(233333333333)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(233333333333)),
)
if rank == 0 and hps.train.if_save_every_weights == True:
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
logger.info(
"saving ckpt %s_e%s:%s"
% (
hps.name,
epoch,
savee(
ckpt,
hps.name + "_e%s_s%s" % (epoch, global_step),
epoch,
global_step,
hps,
),
)
)
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
print("Evaluating ...")
with torch.no_grad():
for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in enumerate(eval_loader):
print(111)
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
y, y_lengths = y.cuda(), y_lengths.cuda()
ssl = ssl.cuda()
text, text_lengths = text.cuda(), text_lengths.cuda()
for test in [0, 1]:
y_hat, mask, *_ = generator.module.infer(ssl,spec, spec_lengths,text, text_lengths, test=test)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
image_dict.update({
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
})
audio_dict.update({
f"gen/audio_{batch_idx}_{test}": y_hat[0, :, :y_hat_lengths[0]]
})
image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})
# y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None)
# audio_dict.update({
# f"gen/audio_{batch_idx}_style_pred": y_hat[0, :, :]
# })
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,15 @@
from text.symbols import *
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
def cleaned_text_to_sequence(cleaned_text):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
Returns:
List of integers corresponding to the symbols in the text
'''
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
return phones

167
GPT_SoVITS/text/chinese.py Normal file
View File

@ -0,0 +1,167 @@
import os
import pdb
import re
import cn2an
from pypinyin import lazy_pinyin, Style
import sys
sys.path.append("/data/docker/liujing04/gpt-vits/gpt-vits-master")
from text.symbols import punctuation
from text.tone_sandhi import ToneSandhi
current_file_path = os.path.dirname(__file__)
pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in
open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()}
import jieba.posseg as psg
rep_map = {
'': ',',
'': ',',
'': ',',
'': '.',
'': '!',
'': '?',
'\n': '.',
"·": ",",
'': ",",
'...': '',
'$': '.',
'/': ',',
'': "-"
}
tone_modifier = ToneSandhi()
def replace_punctuation(text):
text = text.replace("", "").replace("","")
pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys()))
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text)
return replaced_text
def g2p(text):
pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation))
sentences = [i for i in re.split(pattern, text) if i.strip()!='']
phones, word2ph = _g2p(sentences)
return phones, word2ph
def _get_initials_finals(word):
initials = []
finals = []
orig_initials = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.INITIALS)
orig_finals = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for c, v in zip(orig_initials, orig_finals):
initials.append(c)
finals.append(v)
return initials, finals
def _g2p(segments):
phones_list = []
word2ph = []
for seg in segments:
pinyins = []
# Replace all English words in the sentence
seg = re.sub('[a-zA-Z]+', '', seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
for word, pos in seg_cut:
if pos == 'eng':
continue
sub_initials, sub_finals = _get_initials_finals(word)
sub_finals = tone_modifier.modified_tone(word, pos,
sub_finals)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
initials = sum(initials, [])
finals = sum(finals, [])
#
for c, v in zip(initials, finals):
raw_pinyin = c+v
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c == v:
assert c in punctuation
phone = [c]
word2ph.append(1)
else:
v_without_tone = v[:-1]
tone = v[-1]
pinyin = c+v_without_tone
assert tone in '12345'
if c:
# 多音节
v_rep_map = {
"uei": 'ui',
'iou': 'iu',
'uen': 'un',
}
if v_without_tone in v_rep_map.keys():
pinyin = c+v_rep_map[v_without_tone]
else:
# 单音节
pinyin_rep_map = {
'ing': 'ying',
'i': 'yi',
'in': 'yin',
'u': 'wu',
}
if pinyin in pinyin_rep_map.keys():
pinyin = pinyin_rep_map[pinyin]
else:
single_rep_map = {
'v': 'yu',
'e': 'e',
'i': 'y',
'u': 'w',
}
if pinyin[0] in single_rep_map.keys():
pinyin = single_rep_map[pinyin[0]]+pinyin[1:]
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
new_c, new_v = pinyin_to_symbol_map[pinyin].split(' ')
new_v = new_v + tone
phone = [new_c, new_v]
word2ph.append(len(phone))
phones_list += phone
return phones_list, word2ph
def text_normalize(text):
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
for number in numbers:
text = text.replace(number, cn2an.an2cn(number), 1)
text = replace_punctuation(text)
return text
if __name__ == '__main__':
text = "啊——但是《原神》是由,米哈\游自主,研发的一款全.新开放世界.冒险游戏"
text = "呣呣呣~就是…大人的鼹鼠党吧?"
text = "你好"
text = text_normalize(text)
print(g2p(text))
# # 示例用法
# text = "这是一个示例文本:,你好!这是一个测试..."
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试

View File

@ -0,0 +1,57 @@
from text import chinese, japanese, cleaned_text_to_sequence, symbols, english
language_module_map = {
'zh': chinese,
"ja": japanese,
'en': english
}
special = [
('%', 'zh', "SP"),
('', 'zh', "SP2"),
('^', 'zh', "SP3"),
# ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧
]
def clean_text(text, language):
for special_s, special_l, target_symbol in special:
if special_s in text and language == special_l:
return clean_special(text, language, special_s, target_symbol)
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
if(language=="zh"):
phones, word2ph = language_module.g2p(norm_text)
assert len(phones) == sum(word2ph)
assert len(norm_text) == len(word2ph)
else:
phones = language_module.g2p(norm_text)
word2ph=None
for ph in phones:
assert ph in symbols
return phones, word2ph, norm_text
def clean_special(text, language, special_s, target_symbol):
"""
特殊静音段sp符号处理
"""
text = text.replace(special_s, ",")
language_module = language_module_map[language]
norm_text = language_module.text_normalize(text)
phones = language_module.g2p(norm_text)
new_ph = []
for ph in phones:
assert ph in symbols
if ph == ',':
new_ph.append(target_symbol)
else:
new_ph.append(ph)
return new_ph
def text_to_sequence(text, language):
phones = clean_text(text)
return cleaned_text_to_sequence(phones)
if __name__ == '__main__':
print(clean_text("你好%啊啊啊额、还是到付红四方。", 'zh'))

129530
GPT_SoVITS/text/cmudict.rep Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

109
GPT_SoVITS/text/english.py Normal file
View File

@ -0,0 +1,109 @@
import pickle
import os
import re
from g2p_en import G2p
from string import punctuation
from text import symbols
current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep')
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle')
_g2p = G2p()
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
def replace_phs(phs):
rep_map = {
';': ',',
':': ',',
'\'': '-',
'"': '-'
}
phs_new = []
for ph in phs:
if ph in symbols:
phs_new.append(ph)
elif ph in rep_map.keys():
phs_new.append(rep_map[ph])
else:
print('ph not in symbols: ', ph)
return phs_new
def read_dict():
g2p_dict = {}
start_line = 49
with open(CMU_DICT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= start_line:
line = line.strip()
word_split = line.split(' ')
word = word_split[0]
syllable_split = word_split[1].split(' - ')
g2p_dict[word] = []
for syllable in syllable_split:
phone_split = syllable.split(' ')
g2p_dict[word].append(phone_split)
line_index = line_index + 1
line = f.readline()
return g2p_dict
def cache_dict(g2p_dict, file_path):
with open(file_path, 'wb') as pickle_file:
pickle.dump(g2p_dict, pickle_file)
def get_dict():
if os.path.exists(CACHE_PATH):
with open(CACHE_PATH, 'rb') as pickle_file:
g2p_dict = pickle.load(pickle_file)
else:
g2p_dict = read_dict()
cache_dict(g2p_dict, CACHE_PATH)
return g2p_dict
eng_dict = get_dict()
def text_normalize(text):
# todo: eng text normalize
return text.replace(";", ",")
def g2p(text):
phones = []
words = re.split(r"([,;.\-\?\!\s+])", text)
for w in words:
if w.upper() in eng_dict:
phns = eng_dict[w.upper()]
for ph in phns:
phones += ph
else:
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
for ph in phone_list:
if ph in arpa:
phones.append(ph)
else:
phones.append(ph)
return replace_phs(phones)
if __name__ == "__main__":
# print(get_dict())
print(g2p("hello"))
print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
# all_phones = set()
# for k, syllables in eng_dict.items():
# for group in syllables:
# for ph in group:
# all_phones.add(ph)
# print(all_phones)

View File

@ -0,0 +1,98 @@
# modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
import re
import sys
import pyopenjtalk
from text import symbols
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# List of (symbol, Japanese) pairs for marks:
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
('', 'パーセント')
]]
# List of (consonant, sokuon) pairs:
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'Q([↑↓]*[kg])', r'k#\1'),
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
(r'Q([↑↓]*[sʃ])', r's\1'),
(r'Q([↑↓]*[pb])', r'p#\1')
]]
# List of (consonant, hatsuon) pairs:
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
(r'N([↑↓]*[pbm])', r'm\1'),
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
(r'N([↑↓]*[tdn])', r'n\1'),
(r'N([↑↓]*[kg])', r'ŋ\1')
]]
def post_replace_ph(ph):
rep_map = {
'': ',',
'': ',',
'': ',',
'': '.',
'': '!',
'': '?',
'\n': '.',
"·": ",",
'': ",",
'...': ''
}
if ph in rep_map.keys():
ph = rep_map[ph]
if ph in symbols:
return ph
if ph not in symbols:
ph = 'UNK'
return ph
def symbols_to_japanese(text):
for regex, replacement in _symbols_to_japanese:
text = re.sub(regex, replacement, text)
return text
def preprocess_jap(text):
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
text = symbols_to_japanese(text)
sentences = re.split(_japanese_marks, text)
marks = re.findall(_japanese_marks, text)
text = []
for i, sentence in enumerate(sentences):
if re.match(_japanese_characters, sentence):
p = pyopenjtalk.g2p(sentence)
text += p.split(" ")
if i < len(marks):
text += [marks[i].replace(' ', '')]
return text
def text_normalize(text):
# todo: jap text normalize
return text
def g2p(norm_text):
phones = preprocess_jap(norm_text)
phones = [post_replace_ph(i) for i in phones]
# todo: implement tones and word2ph
return phones
if __name__ == '__main__':
for line in open("../../../Downloads/transcript_utf8.txt").readlines():
text = line.split(":")[1]
phones = g2p(text)
print(phones)

View File

@ -0,0 +1,429 @@
a AA a
ai AA ai
an AA an
ang AA ang
ao AA ao
ba b a
bai b ai
ban b an
bang b ang
bao b ao
bei b ei
ben b en
beng b eng
bi b i
bian b ian
biao b iao
bie b ie
bin b in
bing b ing
bo b o
bu b u
ca c a
cai c ai
can c an
cang c ang
cao c ao
ce c e
cei c ei
cen c en
ceng c eng
cha ch a
chai ch ai
chan ch an
chang ch ang
chao ch ao
che ch e
chen ch en
cheng ch eng
chi ch ir
chong ch ong
chou ch ou
chu ch u
chua ch ua
chuai ch uai
chuan ch uan
chuang ch uang
chui ch ui
chun ch un
chuo ch uo
ci c i0
cong c ong
cou c ou
cu c u
cuan c uan
cui c ui
cun c un
cuo c uo
da d a
dai d ai
dan d an
dang d ang
dao d ao
de d e
dei d ei
den d en
deng d eng
di d i
dia d ia
dian d ian
diao d iao
die d ie
ding d ing
diu d iu
dong d ong
dou d ou
du d u
duan d uan
dui d ui
dun d un
duo d uo
e EE e
ei EE ei
en EE en
eng EE eng
er EE er
fa f a
fan f an
fang f ang
fei f ei
fen f en
feng f eng
fo f o
fou f ou
fu f u
ga g a
gai g ai
gan g an
gang g ang
gao g ao
ge g e
gei g ei
gen g en
geng g eng
gong g ong
gou g ou
gu g u
gua g ua
guai g uai
guan g uan
guang g uang
gui g ui
gun g un
guo g uo
ha h a
hai h ai
han h an
hang h ang
hao h ao
he h e
hei h ei
hen h en
heng h eng
hong h ong
hou h ou
hu h u
hua h ua
huai h uai
huan h uan
huang h uang
hui h ui
hun h un
huo h uo
ji j i
jia j ia
jian j ian
jiang j iang
jiao j iao
jie j ie
jin j in
jing j ing
jiong j iong
jiu j iu
ju j v
jv j v
juan j van
jvan j van
jue j ve
jve j ve
jun j vn
jvn j vn
ka k a
kai k ai
kan k an
kang k ang
kao k ao
ke k e
kei k ei
ken k en
keng k eng
kong k ong
kou k ou
ku k u
kua k ua
kuai k uai
kuan k uan
kuang k uang
kui k ui
kun k un
kuo k uo
la l a
lai l ai
lan l an
lang l ang
lao l ao
le l e
lei l ei
leng l eng
li l i
lia l ia
lian l ian
liang l iang
liao l iao
lie l ie
lin l in
ling l ing
liu l iu
lo l o
long l ong
lou l ou
lu l u
luan l uan
lun l un
luo l uo
lv l v
lve l ve
ma m a
mai m ai
man m an
mang m ang
mao m ao
me m e
mei m ei
men m en
meng m eng
mi m i
mian m ian
miao m iao
mie m ie
min m in
ming m ing
miu m iu
mo m o
mou m ou
mu m u
na n a
nai n ai
nan n an
nang n ang
nao n ao
ne n e
nei n ei
nen n en
neng n eng
ni n i
nian n ian
niang n iang
niao n iao
nie n ie
nin n in
ning n ing
niu n iu
nong n ong
nou n ou
nu n u
nuan n uan
nun n un
nuo n uo
nv n v
nve n ve
o OO o
ou OO ou
pa p a
pai p ai
pan p an
pang p ang
pao p ao
pei p ei
pen p en
peng p eng
pi p i
pian p ian
piao p iao
pie p ie
pin p in
ping p ing
po p o
pou p ou
pu p u
qi q i
qia q ia
qian q ian
qiang q iang
qiao q iao
qie q ie
qin q in
qing q ing
qiong q iong
qiu q iu
qu q v
qv q v
quan q van
qvan q van
que q ve
qve q ve
qun q vn
qvn q vn
ran r an
rang r ang
rao r ao
re r e
ren r en
reng r eng
ri r ir
rong r ong
rou r ou
ru r u
rua r ua
ruan r uan
rui r ui
run r un
ruo r uo
sa s a
sai s ai
san s an
sang s ang
sao s ao
se s e
sen s en
seng s eng
sha sh a
shai sh ai
shan sh an
shang sh ang
shao sh ao
she sh e
shei sh ei
shen sh en
sheng sh eng
shi sh ir
shou sh ou
shu sh u
shua sh ua
shuai sh uai
shuan sh uan
shuang sh uang
shui sh ui
shun sh un
shuo sh uo
si s i0
song s ong
sou s ou
su s u
suan s uan
sui s ui
sun s un
suo s uo
ta t a
tai t ai
tan t an
tang t ang
tao t ao
te t e
tei t ei
teng t eng
ti t i
tian t ian
tiao t iao
tie t ie
ting t ing
tong t ong
tou t ou
tu t u
tuan t uan
tui t ui
tun t un
tuo t uo
wa w a
wai w ai
wan w an
wang w ang
wei w ei
wen w en
weng w eng
wo w o
wu w u
xi x i
xia x ia
xian x ian
xiang x iang
xiao x iao
xie x ie
xin x in
xing x ing
xiong x iong
xiu x iu
xu x v
xv x v
xuan x van
xvan x van
xue x ve
xve x ve
xun x vn
xvn x vn
ya y a
yan y En
yang y ang
yao y ao
ye y E
yi y i
yin y in
ying y ing
yo y o
yong y ong
you y ou
yu y v
yv y v
yuan y van
yvan y van
yue y ve
yve y ve
yun y vn
yvn y vn
za z a
zai z ai
zan z an
zang z ang
zao z ao
ze z e
zei z ei
zen z en
zeng z eng
zha zh a
zhai zh ai
zhan zh an
zhang zh ang
zhao zh ao
zhe zh e
zhei zh ei
zhen zh en
zheng zh eng
zhi zh ir
zhong zh ong
zhou zh ou
zhu zh u
zhua zh ua
zhuai zh uai
zhuan zh uan
zhuang zh uang
zhui zh ui
zhun zh un
zhuo zh uo
zi z i0
zong z ong
zou z ou
zu z u
zuan z uan
zui z ui
zun z un
zuo z uo

View File

@ -0,0 +1,24 @@
import os
# punctuation = ['!', '?', '…', ",", ".","@"]#@是SP停顿
punctuation = ['!', '?', '', ",", "."]#@是SP停顿
punctuation.append("-")
pu_symbols = punctuation + ["SP", 'SP2', 'SP3', "UNK"]
# pu_symbols = punctuation + ["SP", 'SP2', 'SP3','SP4', "UNK"]
pad = '_'
c = ['AA', 'EE', 'OO', 'b', 'c', 'ch', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 'sh', 't', 'w', 'x', 'y', 'z', 'zh']
v = ['E1', 'En1', 'a1', 'ai1', 'an1', 'ang1', 'ao1', 'e1', 'ei1', 'en1', 'eng1', 'er1', 'i1', 'i01', 'ia1', 'ian1', 'iang1', 'iao1', 'ie1', 'in1', 'ing1', 'iong1', 'ir1', 'iu1', 'o1', 'ong1', 'ou1', 'u1', 'ua1', 'uai1', 'uan1', 'uang1', 'ui1', 'un1', 'uo1', 'v1', 'van1', 've1', 'vn1', 'E2', 'En2', 'a2', 'ai2', 'an2', 'ang2', 'ao2', 'e2', 'ei2', 'en2', 'eng2', 'er2', 'i2', 'i02', 'ia2', 'ian2', 'iang2', 'iao2', 'ie2', 'in2', 'ing2', 'iong2', 'ir2', 'iu2', 'o2', 'ong2', 'ou2', 'u2', 'ua2', 'uai2', 'uan2', 'uang2', 'ui2', 'un2', 'uo2', 'v2', 'van2', 've2', 'vn2', 'E3', 'En3', 'a3', 'ai3', 'an3', 'ang3', 'ao3', 'e3', 'ei3', 'en3', 'eng3', 'er3', 'i3', 'i03', 'ia3', 'ian3', 'iang3', 'iao3', 'ie3', 'in3', 'ing3', 'iong3', 'ir3', 'iu3', 'o3', 'ong3', 'ou3', 'u3', 'ua3', 'uai3', 'uan3', 'uang3', 'ui3', 'un3', 'uo3', 'v3', 'van3', 've3', 'vn3', 'E4', 'En4', 'a4', 'ai4', 'an4', 'ang4', 'ao4', 'e4', 'ei4', 'en4', 'eng4', 'er4', 'i4', 'i04', 'ia4', 'ian4', 'iang4', 'iao4', 'ie4', 'in4', 'ing4', 'iong4', 'ir4', 'iu4', 'o4', 'ong4', 'ou4', 'u4', 'ua4', 'uai4', 'uan4', 'uang4', 'ui4', 'un4', 'uo4', 'v4', 'van4', 've4', 'vn4', 'E5', 'En5', 'a5', 'ai5', 'an5', 'ang5', 'ao5', 'e5', 'ei5', 'en5', 'eng5', 'er5', 'i5', 'i05', 'ia5', 'ian5', 'iang5', 'iao5', 'ie5', 'in5', 'ing5', 'iong5', 'ir5', 'iu5', 'o5', 'ong5', 'ou5', 'u5', 'ua5', 'uai5', 'uan5', 'uang5', 'ui5', 'un5', 'uo5', 'v5', 'van5', 've5', 'vn5']
v_without_tone = ['E', 'En', 'a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'i0', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'ir', 'iu', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn']
# japanese
ja_symbols = ['I', 'N', 'U', 'a', 'b', 'by', 'ch', 'cl', 'd', 'dy', 'e', 'f', 'g', 'gy', 'h', 'hy', 'i', 'j', 'k', 'ky',
'm', 'my', 'n', 'ny', 'o', 'p', 'py', 'r', 'ry', 's', 'sh', 't', 'ts', 'u', 'v', 'w', 'y', 'z']
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
symbols = [pad] + c + v + ja_symbols + pu_symbols + list(arpa)
symbols = sorted(set(symbols))
if __name__ == '__main__':
print(len(symbols))

View File

@ -0,0 +1,358 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
from typing import Tuple
import jieba
from pypinyin import lazy_pinyin
from pypinyin import Style
class ToneSandhi():
def __init__(self):
self.must_neural_tone_words = {
'麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝',
'难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊',
'里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去',
'软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号',
'认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当',
'蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻',
'舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂',
'胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆',
'老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂',
'精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿',
'窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台',
'码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算',
'白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨',
'琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快',
'爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜',
'溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔',
'棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事',
'木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾',
'收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼',
'抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实',
'扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头',
'念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼',
'干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数',
'屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气',
'实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈',
'姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方',
'大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴',
'嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦',
'咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝',
'叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹',
'功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息',
'凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
'佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
'交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
'父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
'幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
'凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
'扫把', '惦记'
}
self.must_not_neural_tone_words = {
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
}
self.punc = ":,;。?!“”‘’':,;.?!"
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
# e.g.
# word: "家里"
# pos: "s"
# finals: ['ia1', 'i3']
def _neural_sandhi(self, word: str, pos: str,
finals: List[str]) -> List[str]:
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
for j, item in enumerate(word):
if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
"n", "v", "a"
} and word not in self.must_not_neural_tone_words:
finals[j] = finals[j][:-1] + "5"
ge_idx = word.find("")
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
finals[-1] = finals[-1][:-1] + "5"
elif len(word) >= 1 and word[-1] in "的地得":
finals[-1] = finals[-1][:-1] + "5"
# e.g. 走了, 看着, 去过
elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
finals[-1] = finals[-1][:-1] + "5"
elif len(word) > 1 and word[-1] in "们子" and pos in {
"r", "n"
} and word not in self.must_not_neural_tone_words:
finals[-1] = finals[-1][:-1] + "5"
# e.g. 桌上, 地下, 家里
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
finals[-1] = finals[-1][:-1] + "5"
# e.g. 上来, 下去
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
finals[-1] = finals[-1][:-1] + "5"
# 个做量词
elif (ge_idx >= 1 and
(word[ge_idx - 1].isnumeric() or
word[ge_idx - 1] in "几有两半多各整每做是")) or word == '':
finals[ge_idx] = finals[ge_idx][:-1] + "5"
else:
if word in self.must_neural_tone_words or word[
-2:] in self.must_neural_tone_words:
finals[-1] = finals[-1][:-1] + "5"
word_list = self._split_word(word)
finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
for i, word in enumerate(word_list):
# conventional neural in Chinese
if word in self.must_neural_tone_words or word[
-2:] in self.must_neural_tone_words:
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
finals = sum(finals_list, [])
return finals
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
# e.g. 看不懂
if len(word) == 3 and word[1] == "":
finals[1] = finals[1][:-1] + "5"
else:
for i, char in enumerate(word):
# "不" before tone4 should be bu2, e.g. 不怕
if char == "" and i + 1 < len(word) and finals[i +
1][-1] == "4":
finals[i] = finals[i][:-1] + "2"
return finals
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
# "一" in number sequences, e.g. 一零零, 二一零
if word.find("") != -1 and all(
[item.isnumeric() for item in word if item != ""]):
return finals
# "一" between reduplication words shold be yi5, e.g. 看一看
elif len(word) == 3 and word[1] == "" and word[0] == word[-1]:
finals[1] = finals[1][:-1] + "5"
# when "一" is ordinal word, it should be yi1
elif word.startswith("第一"):
finals[1] = finals[1][:-1] + "1"
else:
for i, char in enumerate(word):
if char == "" and i + 1 < len(word):
# "一" before tone4 should be yi2, e.g. 一段
if finals[i + 1][-1] == "4":
finals[i] = finals[i][:-1] + "2"
# "一" before non-tone4 should be yi4, e.g. 一天
else:
# "一" 后面如果是标点,还读一声
if word[i + 1] not in self.punc:
finals[i] = finals[i][:-1] + "4"
return finals
def _split_word(self, word: str) -> List[str]:
word_list = jieba.cut_for_search(word)
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
first_subword = word_list[0]
first_begin_idx = word.find(first_subword)
if first_begin_idx == 0:
second_subword = word[len(first_subword):]
new_word_list = [first_subword, second_subword]
else:
second_subword = word[:-len(first_subword)]
new_word_list = [second_subword, first_subword]
return new_word_list
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
if len(word) == 2 and self._all_tone_three(finals):
finals[0] = finals[0][:-1] + "2"
elif len(word) == 3:
word_list = self._split_word(word)
if self._all_tone_three(finals):
# disyllabic + monosyllabic, e.g. 蒙古/包
if len(word_list[0]) == 2:
finals[0] = finals[0][:-1] + "2"
finals[1] = finals[1][:-1] + "2"
# monosyllabic + disyllabic, e.g. 纸/老虎
elif len(word_list[0]) == 1:
finals[1] = finals[1][:-1] + "2"
else:
finals_list = [
finals[:len(word_list[0])], finals[len(word_list[0]):]
]
if len(finals_list) == 2:
for i, sub in enumerate(finals_list):
# e.g. 所有/人
if self._all_tone_three(sub) and len(sub) == 2:
finals_list[i][0] = finals_list[i][0][:-1] + "2"
# e.g. 好/喜欢
elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \
finals_list[0][-1][-1] == "3":
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
finals = sum(finals_list, [])
# split idiom into two words who's length is 2
elif len(word) == 4:
finals_list = [finals[:2], finals[2:]]
finals = []
for sub in finals_list:
if self._all_tone_three(sub):
sub[0] = sub[0][:-1] + "2"
finals += sub
return finals
def _all_tone_three(self, finals: List[str]) -> bool:
return all(x[-1] == "3" for x in finals)
# merge "不" and the word behind it
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
last_word = ""
for word, pos in seg:
if last_word == "":
word = last_word + word
if word != "":
new_seg.append((word, pos))
last_word = word[:]
if last_word == "":
new_seg.append((last_word, 'd'))
last_word = ""
return new_seg
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
# function 2: merge single "一" and the word behind it
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
# e.g.
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
# output seg: [['听一听', 'v']]
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
# function 1
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and word == "" and i + 1 < len(seg) and seg[i - 1][
0] == seg[i + 1][0] and seg[i - 1][1] == "v":
new_seg[i - 1][0] = new_seg[i - 1][0] + "" + new_seg[i - 1][0]
else:
if i - 2 >= 0 and seg[i - 1][0] == "" and seg[i - 2][
0] == word and pos == "v":
continue
else:
new_seg.append([word, pos])
seg = new_seg
new_seg = []
# function 2
for i, (word, pos) in enumerate(seg):
if new_seg and new_seg[-1][0] == "":
new_seg[-1][0] = new_seg[-1][0] + word
else:
new_seg.append([word, pos])
return new_seg
# the first and the second words are all_tone_three
def _merge_continuous_three_tones(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
sub_finals_list = [
lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for (word, pos) in seg
]
assert len(sub_finals_list) == len(seg)
merge_last = [False] * len(seg)
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and self._all_tone_three(
sub_finals_list[i - 1]) and self._all_tone_three(
sub_finals_list[i]) and not merge_last[i - 1]:
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if not self._is_reduplication(seg[i - 1][0]) and len(
seg[i - 1][0]) + len(seg[i][0]) <= 3:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
return new_seg
def _is_reduplication(self, word: str) -> bool:
return len(word) == 2 and word[0] == word[1]
# the last char of first word and the first char of second word is tone_three
def _merge_continuous_three_tones_2(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
sub_finals_list = [
lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for (word, pos) in seg
]
assert len(sub_finals_list) == len(seg)
merge_last = [False] * len(seg)
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
merge_last[i - 1]:
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if not self._is_reduplication(seg[i - 1][0]) and len(
seg[i - 1][0]) + len(seg[i][0]) <= 3:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
return new_seg
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and word == "" and seg[i-1][0] != "#":
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def _merge_reduplication(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if new_seg and word == new_seg[-1][0]:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def pre_merge_for_modify(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
seg = self._merge_bu(seg)
try:
seg = self._merge_yi(seg)
except:
print("_merge_yi failed")
seg = self._merge_reduplication(seg)
try:
seg = self._merge_continuous_three_tones(seg)
except:
print("_merge_continuous_three_tones failed")
try:
seg = self._merge_continuous_three_tones_2(seg)
except:
print("_merge_continuous_three_tones_2 failed")
seg = self._merge_er(seg)
return seg
def modified_tone(self, word: str, pos: str,
finals: List[str]) -> List[str]:
finals = self._bu_sandhi(word, finals)
finals = self._yi_sandhi(word, finals)
finals = self._neural_sandhi(word, pos, finals)
finals = self._three_sandhi(word, finals)
return finals

298
GPT_SoVITS/utils.py Normal file
View File

@ -0,0 +1,298 @@
import os
import glob
import sys
import argparse
import logging
import json
import subprocess
import traceback
import librosa
import numpy as np
from scipy.io.wavfile import read
import torch
import logging
logging.getLogger('numba').setLevel(logging.ERROR)
logging.getLogger('matplotlib').setLevel(logging.ERROR)
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
# assert "quantizer" not in k
# print("load", k)
new_state_dict[k] = saved_state_dict[k]
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
except:
traceback.print_exc()
print("error, %s is not in the checkpoint" % k)#shape不对也会比如text_embedding当cleaner修改时
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
print("load ")
logger.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
data, sampling_rate = librosa.load(full_path, sr=None)
return torch.FloatTensor(data), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True, stage=1):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/s2.json",help='JSON file for configuration')
parser.add_argument('-p', '--pretrain', type=str, required=False,default=None,help='pretrain dir')
parser.add_argument('-rs', '--resume_step', type=int, required=False,default=None,help='resume step')
# parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
# parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
# parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
args = parser.parse_args()
config_path = args.config
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.pretrain = args.pretrain
hparams.resume_step = args.resume_step
# hparams.data.exp_dir = args.exp_dir
if stage ==1:
model_dir = hparams.s1_ckpt_dir
else:
model_dir = hparams.s2_ckpt_dir
config_save_path = os.path.join(model_dir, "config.json")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
with open(config_save_path, "w") as f:
f.write(data)
return hparams
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
import re
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
sort_key = time_key if sort_by_time else name_key
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
key=sort_key)
to_del = [os.path.join(path_to_models, fn) for fn in
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
del_routine = lambda x: [os.remove(x), del_info(x)]
rs = [del_routine(fn) for fn in to_del]
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
if __name__ == '__main__':
print(load_wav_to_torch('/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac'))