mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
631 lines
22 KiB
Python
631 lines
22 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
import gradio as gr
|
||
import numpy as np
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import librosa
|
||
from feature_extractor import cnhubert
|
||
from GPT_SoVITS.module.models import SynthesizerTrn
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import chinese, cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from text.LangSegmenter import LangSegmenter
|
||
from time import time as ttime
|
||
from module.mel_processing import spectrogram_torch, spec_to_mel_torch
|
||
from tools.my_utils import load_audio
|
||
import torch, torchaudio
|
||
import traceback
|
||
import os, re
|
||
|
||
# 模型路径
|
||
gpt_path = 'GPT_weights_v2/amiya-e50.ckpt'
|
||
sovits_path = 'SoVITS_weights_v2/amiya_e25_s950.pth'
|
||
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||
bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
|
||
# 参考音频相关配置
|
||
REFERENCE_AUDIO = "/Users/baysonfox/Desktop/amiya-chatbot/reference.mp3"
|
||
REFERENCE_TEXT = "博士,休息好了吗?还觉得累的话,不用勉强的。有我在呢。"
|
||
INF_REFS = [os.path.join("/Users/baysonfox/Desktop/amiya-chatbot/references", f) for f in os.listdir("/Users/baysonfox/Desktop/amiya-chatbot/references")]
|
||
|
||
# 模型相关设置
|
||
DEVICE = 'cpu'
|
||
dict_language = {
|
||
"中文": "all_zh",#全部按中文识别
|
||
"英文": "en",#全部按英文识别#######不变
|
||
"日文": "all_ja",#全部按日文识别
|
||
"中英混合": "zh",#按中英混合识别####不变
|
||
"日英混合": "ja",#按日英混合识别####不变
|
||
"多语种混合": "auto",#多语种启动切分识别语种
|
||
}
|
||
os.environ["TOKENIZERS_PARALLELISM"] = "False"
|
||
|
||
DTYPE = torch.float32
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
ssl_model = cnhubert.get_model()
|
||
|
||
# Accelerated Inference
|
||
tokenizer = torch.compile(tokenizer)
|
||
bert_model = torch.compile(bert_model)
|
||
ssl_model = torch.compile(ssl_model)
|
||
|
||
# 标点符号
|
||
PUNCTUATION = {'!', '?', '…', ',', '.', '-', " "}
|
||
# 中文标点符号
|
||
SPLITS = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def __delattr__(self, item):
|
||
try:
|
||
del self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(DEVICE)
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
return phone_level_feature.T
|
||
|
||
resample_transform_dict={}
|
||
def resample(audio_tensor, sr0):
|
||
global resample_transform_dict
|
||
if sr0 not in resample_transform_dict:
|
||
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
|
||
sr0, 24000
|
||
).to(DEVICE)
|
||
return resample_transform_dict[sr0](audio_tensor)
|
||
|
||
def change_sovits_weights(prompt_language=None,text_language=None):
|
||
global vq_model, hps, version, model_version, dict_language
|
||
model_version = version = "v2"
|
||
|
||
if prompt_language is not None and text_language is not None:
|
||
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value': "all_zh"}
|
||
|
||
if text_language in list(dict_language.keys()):
|
||
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
|
||
else:
|
||
text_update = {'__type__':'update', 'value':''}
|
||
text_language_update = {'__type__':'update', 'value':"中文"}
|
||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": False},{"__type__": "update", "visible": False},{"__type__": "update", "value": False,"interactive": False}
|
||
|
||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||
|
||
hps = DictToAttrRecursive(dict_s2["config"])
|
||
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
hps.model.version = "v2"
|
||
version = hps.model.version
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model
|
||
)
|
||
model_version = version
|
||
|
||
vq_model = vq_model.to(DEVICE)
|
||
print("loading sovits_%s" % model_version,vq_model.load_state_dict(
|
||
dict_s2["weight"],
|
||
strict=False))
|
||
vq_model.eval()
|
||
vq_model = torch.compile(vq_model)
|
||
|
||
def change_gpt_weights(gpt_path):
|
||
global hz, max_sec, t2s_model, config
|
||
hz = 50
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
t2s_model = t2s_model.to(DEVICE)
|
||
t2s_model.eval()
|
||
t2s_model = torch.compile(t2s_model)
|
||
|
||
def get_spepc(hps, filename):
|
||
print("hps samplingrate", hps.data.sampling_rate)
|
||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
maxx = audio.abs().max()
|
||
if(maxx > 1):
|
||
audio /= min(2, maxx.item())
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(
|
||
audio_norm,
|
||
hps.data.filter_length,
|
||
hps.data.sampling_rate,
|
||
hps.data.hop_length,
|
||
hps.data.win_length,
|
||
center=False,
|
||
)
|
||
return spec
|
||
|
||
def clean_text_inf(text, language, version):
|
||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||
print("phones: ", phones)
|
||
print("word2ph: ", word2ph)
|
||
print("norm_text: ", norm_text)
|
||
phones = cleaned_text_to_sequence(phones, version)
|
||
return phones, word2ph, norm_text
|
||
|
||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||
language=language.replace("all_","")
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(DEVICE)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float32
|
||
).to(DEVICE)
|
||
|
||
return bert
|
||
|
||
def get_first(text):
|
||
pattern = "[" + "".join(re.escape(sep) for sep in SPLITS) + "]"
|
||
text = re.split(pattern, text)[0].strip()
|
||
return text
|
||
|
||
def get_phones_and_bert(text,language,version,final=False):
|
||
if language in {"en", "all_zh", "all_ja"}:
|
||
language = language.replace("all_","")
|
||
formattext = text
|
||
while " " in formattext:
|
||
formattext = formattext.replace(" ", " ")
|
||
if language == "zh":
|
||
if re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"zh",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = get_bert_feature(norm_text, word2ph).to(DEVICE)
|
||
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"yue",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float32
|
||
).to(DEVICE)
|
||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||
textlist=[]
|
||
langlist=[]
|
||
if language == "auto":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "en":
|
||
langlist.append(tmp["lang"])
|
||
else:
|
||
# 因无法区别中日韩文汉字,以用户输入为准
|
||
langlist.append(language)
|
||
textlist.append(tmp["text"])
|
||
print(textlist)
|
||
print(langlist)
|
||
phones_list = []
|
||
bert_list = []
|
||
norm_text_list = []
|
||
for i in range(len(textlist)):
|
||
lang = langlist[i]
|
||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||
phones_list.append(phones)
|
||
norm_text_list.append(norm_text)
|
||
bert_list.append(bert)
|
||
bert = torch.cat(bert_list, dim=1)
|
||
phones = sum(phones_list, [])
|
||
norm_text = ''.join(norm_text_list)
|
||
|
||
if not final and len(phones) < 6:
|
||
return get_phones_and_bert("." + text,language,version,final=True)
|
||
|
||
return phones,bert.to(DTYPE),norm_text
|
||
|
||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||
spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center)
|
||
mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax)
|
||
return mel
|
||
mel_fn_args = {
|
||
"n_fft": 1024,
|
||
"win_size": 1024,
|
||
"hop_size": 256,
|
||
"num_mels": 100,
|
||
"sampling_rate": 24000,
|
||
"fmin": 0,
|
||
"fmax": None,
|
||
"center": False
|
||
}
|
||
|
||
spec_min = -12
|
||
spec_max = 2
|
||
def norm_spec(x):
|
||
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||
def denorm_spec(x):
|
||
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args)
|
||
|
||
def merge_short_text_in_array(texts, threshold):
|
||
if (len(texts)) < 2:
|
||
return texts
|
||
result = []
|
||
text = ""
|
||
for ele in texts:
|
||
text += ele
|
||
if len(text) >= threshold:
|
||
result.append(text)
|
||
text = ""
|
||
if (len(text) > 0):
|
||
if len(result) == 0:
|
||
result.append(text)
|
||
else:
|
||
result[len(result) - 1] += text
|
||
return result
|
||
|
||
def split(todo_text):
|
||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||
if todo_text[-1] not in SPLITS:
|
||
todo_text += "。"
|
||
i_split_head = i_split_tail = 0
|
||
len_text = len(todo_text)
|
||
todo_texts = []
|
||
while 1:
|
||
if i_split_head >= len_text:
|
||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||
if todo_text[i_split_head] in SPLITS:
|
||
i_split_head += 1
|
||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||
i_split_tail = i_split_head
|
||
else:
|
||
i_split_head += 1
|
||
return todo_texts
|
||
|
||
def cut1(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
split_idx = list(range(0, len(inps), 4))
|
||
split_idx[-1] = None
|
||
if len(split_idx) > 1:
|
||
opts = []
|
||
for idx in range(len(split_idx) - 1):
|
||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||
else:
|
||
opts = [inp]
|
||
opts = [item for item in opts if not set(item).issubset(PUNCTUATION)]
|
||
return "\n".join(opts)
|
||
|
||
def cut2(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
if len(inps) < 2:
|
||
return inp
|
||
opts = []
|
||
summ = 0
|
||
tmp_str = ""
|
||
for i in range(len(inps)):
|
||
summ += len(inps[i])
|
||
tmp_str += inps[i]
|
||
if summ > 50:
|
||
summ = 0
|
||
opts.append(tmp_str)
|
||
tmp_str = ""
|
||
if tmp_str != "":
|
||
opts.append(tmp_str)
|
||
# print(opts)
|
||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||
opts[-2] = opts[-2] + opts[-1]
|
||
opts = opts[:-1]
|
||
opts = [item for item in opts if not set(item).issubset(PUNCTUATION)]
|
||
return "\n".join(opts)
|
||
|
||
def cut3(inp):
|
||
inp = inp.strip("\n")
|
||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||
opts = [item for item in opts if not set(item).issubset(PUNCTUATION)]
|
||
return "\n".join(opts)
|
||
|
||
def cut4(inp):
|
||
inp = inp.strip("\n")
|
||
opts = re.split(r'(?<!\d)\.(?!\d)', inp.strip("."))
|
||
opts = [item for item in opts if not set(item).issubset(PUNCTUATION)]
|
||
return "\n".join(opts)
|
||
|
||
def cut5(inp):
|
||
inp = inp.strip("\n")
|
||
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
||
mergeitems = []
|
||
items = []
|
||
|
||
for i, char in enumerate(inp):
|
||
if char in punds:
|
||
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
||
items.append(char)
|
||
else:
|
||
items.append(char)
|
||
mergeitems.append("".join(items))
|
||
items = []
|
||
else:
|
||
items.append(char)
|
||
|
||
if items:
|
||
mergeitems.append("".join(items))
|
||
|
||
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
||
return "\n".join(opt)
|
||
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split('(\d+)', s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
def process_text(texts):
|
||
_text=[]
|
||
if all(text in [None, " ", "\n",""] for text in texts):
|
||
raise ValueError("请输入有效文本")
|
||
for text in texts:
|
||
if text in [None, " ", ""]:
|
||
pass
|
||
else:
|
||
_text.append(text)
|
||
return _text
|
||
|
||
cache = {}
|
||
def get_tts_wav(text,
|
||
text_language,
|
||
how_to_cut="不切",
|
||
top_k=20,
|
||
top_p=0.6,
|
||
temperature=0.6,
|
||
speed=1,
|
||
if_freeze=False,
|
||
sample_steps=8):
|
||
|
||
global cache
|
||
prompt_text = REFERENCE_TEXT
|
||
prompt_language = "中文"
|
||
ref_wav_path = REFERENCE_AUDIO
|
||
inp_refs = INF_REFS
|
||
t = []
|
||
t0 = ttime()
|
||
prompt_language = dict_language[prompt_language]
|
||
text_language = dict_language[text_language]
|
||
|
||
# 去除prompt_text的换行
|
||
prompt_text = prompt_text.strip("\n")
|
||
# 手动添加标点符号
|
||
if (prompt_text[-1] not in SPLITS): prompt_text += "。" if prompt_language != "en" else "."
|
||
print("实际输入的参考文本:", prompt_text)
|
||
text = text.strip("\n")
|
||
|
||
print("实际输入的目标文本:", text)
|
||
zero_wav = np.zeros(
|
||
int(hps.data.sampling_rate * 0.3),
|
||
dtype=np.float32
|
||
)
|
||
|
||
with torch.no_grad():
|
||
# 参考音频和sampling rate,numpy格式
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
# numpy -> torch
|
||
wav16k = torch.from_numpy(wav16k)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
wav16k = wav16k.to(DEVICE)
|
||
zero_wav_torch = zero_wav_torch.to(DEVICE)
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||
"last_hidden_state"
|
||
].transpose(
|
||
1, 2
|
||
)
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
prompt_semantic = codes[0, 0]
|
||
prompt = prompt_semantic.unsqueeze(0).to(DEVICE)
|
||
|
||
t1 = ttime()
|
||
t.append(t1-t0)
|
||
|
||
if how_to_cut != "不切":
|
||
cut_map = {
|
||
"凑四句一切": cut1,
|
||
"凑50字一切": cut2,
|
||
"按中文句号。切": cut3,
|
||
"按英文句号.切": cut4,
|
||
"按标点符号切": cut5
|
||
}
|
||
cut_map[how_to_cut](text)
|
||
|
||
while "\n\n" in text:
|
||
text = text.replace("\n\n", "\n")
|
||
|
||
print("实际输入的目标文本(切句后):", text)
|
||
|
||
texts = text.split("\n")
|
||
texts = process_text(texts)
|
||
texts = merge_short_text_in_array(texts, 5)
|
||
audio_opt = []
|
||
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
|
||
|
||
for i_text,text in enumerate(texts):
|
||
# 解决输入目标文本的空行导致报错的问题
|
||
if (len(text.strip()) == 0):
|
||
continue
|
||
if (text[-1] not in SPLITS): text += "。" if text_language != "en" else "."
|
||
print("实际输入的目标文本(每句):", text)
|
||
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
|
||
print("前端处理后的文本(每句):", norm_text2)
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(DEVICE).unsqueeze(0)
|
||
|
||
bert = bert.to(DEVICE).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(DEVICE)
|
||
|
||
t2 = ttime()
|
||
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
|
||
else:
|
||
with torch.no_grad():
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
prompt,
|
||
bert,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k=top_k,
|
||
top_p=top_p,
|
||
temperature=temperature,
|
||
early_stop_num=hz * max_sec,
|
||
)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||
cache[i_text]=pred_semantic
|
||
t3 = ttime()
|
||
refers=[]
|
||
if(inp_refs):
|
||
for path in inp_refs:
|
||
try:
|
||
refer = get_spepc(hps, path).to(DTYPE).to(DEVICE)
|
||
refers.append(refer)
|
||
except:
|
||
traceback.print_exc()
|
||
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(DTYPE).to(DEVICE)]
|
||
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(DEVICE).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
|
||
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav)
|
||
t4 = ttime()
|
||
t.extend([t2 - t1,t3 - t2, t4 - t3])
|
||
t1 = ttime()
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" %
|
||
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
|
||
)
|
||
sr=hps.data.sampling_rate if model_version!="v3"else 24000
|
||
yield sr, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
|
||
try:next(change_sovits_weights(sovits_path))
|
||
except:pass
|
||
change_gpt_weights(gpt_path) # 初始化GPT模型
|
||
|
||
gr.Markdown(value="<h1 style='color: #2b5278; font-size: 24px; text-align: center;'>大概可能也许是阿米娅的声音(</h1>")
|
||
with gr.Row() as main_row:
|
||
with gr.Column(scale=7) as text_column:
|
||
text = gr.Textbox(
|
||
label="需要合成的文本",
|
||
value="",
|
||
lines=13,
|
||
max_lines=13
|
||
)
|
||
|
||
with gr.Row():
|
||
inference_button = gr.Button("合成语音", variant="primary", size='lg')
|
||
output = gr.Audio(label="输出的语音")
|
||
|
||
with gr.Column(scale=5) as control_column:
|
||
text_language = gr.Dropdown(
|
||
label="需要合成的语种。限制范围越小判别效果越好。",
|
||
choices=list(dict_language.keys()),
|
||
value="中文"
|
||
)
|
||
|
||
how_to_cut = gr.Dropdown(
|
||
label="怎么切",
|
||
choices=["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"],
|
||
value="凑四句一切"
|
||
)
|
||
|
||
gr.Markdown(value="语速调整,高为更快")
|
||
|
||
if_freeze = gr.Checkbox(
|
||
label="是否直接对上次合成结果调整语速和音色。防止随机性。",
|
||
value=False
|
||
)
|
||
|
||
speed = gr.Slider(
|
||
minimum=0.6,
|
||
maximum=1.65,
|
||
step=0.05,
|
||
label="语速",
|
||
value=1
|
||
)
|
||
|
||
gr.Markdown("GPT采样参数(无参考文本时不要太低。不懂就用默认):")
|
||
|
||
top_k = gr.Slider(
|
||
minimum=1,
|
||
maximum=100,
|
||
step=1,
|
||
label="top_k",
|
||
value=15
|
||
)
|
||
|
||
top_p = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label="top_p",
|
||
value=1
|
||
)
|
||
|
||
temperature = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label="temperature",
|
||
value=1
|
||
)
|
||
|
||
inference_button.click(
|
||
get_tts_wav,
|
||
[text, text_language, how_to_cut, top_k, top_p, temperature, speed, if_freeze],
|
||
[output],
|
||
)
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
app.queue().launch(#concurrency_count=511, max_size=1022
|
||
server_name="0.0.0.0",
|
||
inbrowser=False,
|
||
share=False,
|
||
server_port=9872,
|
||
quiet=True,
|
||
)
|