#!/usr/bin/env python # coding=utf-8 import gradio as gr import numpy as np from transformers import AutoModelForMaskedLM, AutoTokenizer import librosa from feature_extractor import cnhubert from GPT_SoVITS.module.models import SynthesizerTrn from AR.models.t2s_lightning_module import Text2SemanticLightningModule from text import chinese, cleaned_text_to_sequence from text.cleaner import clean_text from text.LangSegmenter import LangSegmenter from time import time as ttime from module.mel_processing import spectrogram_torch, spec_to_mel_torch from tools.my_utils import load_audio import torch, torchaudio import traceback import os, re # 模型路径 gpt_path = 'GPT_weights_v2/amiya-e50.ckpt' sovits_path = 'SoVITS_weights_v2/amiya_e25_s950.pth' cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" cnhubert.cnhubert_base_path = cnhubert_base_path # 参考音频相关配置 REFERENCE_AUDIO = "/Users/baysonfox/Desktop/amiya-chatbot/reference.mp3" REFERENCE_TEXT = "博士,休息好了吗?还觉得累的话,不用勉强的。有我在呢。" INF_REFS = [os.path.join("/Users/baysonfox/Desktop/amiya-chatbot/references", f) for f in os.listdir("/Users/baysonfox/Desktop/amiya-chatbot/references")] # 模型相关设置 DEVICE = 'cpu' dict_language = { "中文": "all_zh",#全部按中文识别 "英文": "en",#全部按英文识别#######不变 "日文": "all_ja",#全部按日文识别 "中英混合": "zh",#按中英混合识别####不变 "日英混合": "ja",#按日英混合识别####不变 "多语种混合": "auto",#多语种启动切分识别语种 } os.environ["TOKENIZERS_PARALLELISM"] = "False" DTYPE = torch.float32 tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) ssl_model = cnhubert.get_model() # Accelerated Inference tokenizer = torch.compile(tokenizer) bert_model = torch.compile(bert_model) ssl_model = torch.compile(ssl_model) # 标点符号 PUNCTUATION = {'!', '?', '…', ',', '.', '-', " "} # 中文标点符号 SPLITS = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(DEVICE) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T resample_transform_dict={} def resample(audio_tensor, sr0): global resample_transform_dict if sr0 not in resample_transform_dict: resample_transform_dict[sr0] = torchaudio.transforms.Resample( sr0, 24000 ).to(DEVICE) return resample_transform_dict[sr0](audio_tensor) def change_sovits_weights(prompt_language=None,text_language=None): global vq_model, hps, version, model_version, dict_language model_version = version = "v2" if prompt_language is not None and text_language is not None: prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value': "all_zh"} if text_language in list(dict_language.keys()): text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language} else: text_update = {'__type__':'update', 'value':''} text_language_update = {'__type__':'update', 'value':"中文"} yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": False},{"__type__": "update", "visible": False},{"__type__": "update", "value": False,"interactive": False} dict_s2 = torch.load(sovits_path, map_location="cpu") hps = DictToAttrRecursive(dict_s2["config"]) hps.model.semantic_frame_rate = "25hz" hps.model.version = "v2" version = hps.model.version vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model ) model_version = version vq_model = vq_model.to(DEVICE) print("loading sovits_%s" % model_version,vq_model.load_state_dict( dict_s2["weight"], strict=False)) vq_model.eval() vq_model = torch.compile(vq_model) def change_gpt_weights(gpt_path): global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) t2s_model = t2s_model.to(DEVICE) t2s_model.eval() t2s_model = torch.compile(t2s_model) def get_spepc(hps, filename): print("hps samplingrate", hps.data.sampling_rate) audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) maxx = audio.abs().max() if(maxx > 1): audio /= min(2, maxx.item()) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch( audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) return spec def clean_text_inf(text, language, version): phones, word2ph, norm_text = clean_text(text, language, version) print("phones: ", phones) print("word2ph: ", word2ph) print("norm_text: ", norm_text) phones = cleaned_text_to_sequence(phones, version) return phones, word2ph, norm_text def get_bert_inf(phones, word2ph, norm_text, language): language=language.replace("all_","") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(DEVICE) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float32 ).to(DEVICE) return bert def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in SPLITS) + "]" text = re.split(pattern, text)[0].strip() return text def get_phones_and_bert(text,language,version,final=False): if language in {"en", "all_zh", "all_ja"}: language = language.replace("all_","") formattext = text while " " in formattext: formattext = formattext.replace(" ", " ") if language == "zh": if re.search(r'[A-Za-z]', formattext): formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext,"zh",version) else: phones, word2ph, norm_text = clean_text_inf(formattext, language, version) bert = get_bert_feature(norm_text, word2ph).to(DEVICE) elif language == "yue" and re.search(r'[A-Za-z]', formattext): formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext,"yue",version) else: phones, word2ph, norm_text = clean_text_inf(formattext, language, version) bert = torch.zeros( (1024, len(phones)), dtype=torch.float32 ).to(DEVICE) elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: textlist=[] langlist=[] if language == "auto": for tmp in LangSegmenter.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) else: for tmp in LangSegmenter.getTexts(text): if tmp["lang"] == "en": langlist.append(tmp["lang"]) else: # 因无法区别中日韩文汉字,以用户输入为准 langlist.append(language) textlist.append(tmp["text"]) print(textlist) print(langlist) phones_list = [] bert_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) bert = get_bert_inf(phones, word2ph, norm_text, lang) phones_list.append(phones) norm_text_list.append(norm_text) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) phones = sum(phones_list, []) norm_text = ''.join(norm_text_list) if not final and len(phones) < 6: return get_phones_and_bert("." + text,language,version,final=True) return phones,bert.to(DTYPE),norm_text def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center) mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax) return mel mel_fn_args = { "n_fft": 1024, "win_size": 1024, "hop_size": 256, "num_mels": 100, "sampling_rate": 24000, "fmin": 0, "fmax": None, "center": False } spec_min = -12 spec_max = 2 def norm_spec(x): return (x - spec_min) / (spec_max - spec_min) * 2 - 1 def denorm_spec(x): return (x + 1) / 2 * (spec_max - spec_min) + spec_min mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args) def merge_short_text_in_array(texts, threshold): if (len(texts)) < 2: return texts result = [] text = "" for ele in texts: text += ele if len(text) >= threshold: result.append(text) text = "" if (len(text) > 0): if len(result) == 0: result.append(text) else: result[len(result) - 1] += text return result def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in SPLITS: todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while 1: if i_split_head >= len_text: break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if todo_text[i_split_head] in SPLITS: i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp = inp.strip("\n") inps = split(inp) split_idx = list(range(0, len(inps), 4)) split_idx[-1] = None if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) else: opts = [inp] opts = [item for item in opts if not set(item).issubset(PUNCTUATION)] return "\n".join(opts) def cut2(inp): inp = inp.strip("\n") inps = split(inp) if len(inps) < 2: return inp opts = [] summ = 0 tmp_str = "" for i in range(len(inps)): summ += len(inps[i]) tmp_str += inps[i] if summ > 50: summ = 0 opts.append(tmp_str) tmp_str = "" if tmp_str != "": opts.append(tmp_str) # print(opts) if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] opts = [item for item in opts if not set(item).issubset(PUNCTUATION)] return "\n".join(opts) def cut3(inp): inp = inp.strip("\n") opts = ["%s" % item for item in inp.strip("。").split("。")] opts = [item for item in opts if not set(item).issubset(PUNCTUATION)] return "\n".join(opts) def cut4(inp): inp = inp.strip("\n") opts = re.split(r'(? 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): items.append(char) else: items.append(char) mergeitems.append("".join(items)) items = [] else: items.append(char) if items: mergeitems.append("".join(items)) opt = [item for item in mergeitems if not set(item).issubset(punds)] return "\n".join(opt) def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split('(\d+)', s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def process_text(texts): _text=[] if all(text in [None, " ", "\n",""] for text in texts): raise ValueError("请输入有效文本") for text in texts: if text in [None, " ", ""]: pass else: _text.append(text) return _text cache = {} def get_tts_wav(text, text_language, how_to_cut="不切", top_k=20, top_p=0.6, temperature=0.6, speed=1, if_freeze=False, sample_steps=8): global cache prompt_text = REFERENCE_TEXT prompt_language = "中文" ref_wav_path = REFERENCE_AUDIO inp_refs = INF_REFS t = [] t0 = ttime() prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] # 去除prompt_text的换行 prompt_text = prompt_text.strip("\n") # 手动添加标点符号 if (prompt_text[-1] not in SPLITS): prompt_text += "。" if prompt_language != "en" else "." print("实际输入的参考文本:", prompt_text) text = text.strip("\n") print("实际输入的目标文本:", text) zero_wav = np.zeros( int(hps.data.sampling_rate * 0.3), dtype=np.float32 ) with torch.no_grad(): # 参考音频和sampling rate,numpy格式 wav16k, sr = librosa.load(ref_wav_path, sr=16000) # numpy -> torch wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) wav16k = wav16k.to(DEVICE) zero_wav_torch = zero_wav_torch.to(DEVICE) wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state" ].transpose( 1, 2 ) codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] prompt = prompt_semantic.unsqueeze(0).to(DEVICE) t1 = ttime() t.append(t1-t0) if how_to_cut != "不切": cut_map = { "凑四句一切": cut1, "凑50字一切": cut2, "按中文句号。切": cut3, "按英文句号.切": cut4, "按标点符号切": cut5 } cut_map[how_to_cut](text) while "\n\n" in text: text = text.replace("\n\n", "\n") print("实际输入的目标文本(切句后):", text) texts = text.split("\n") texts = process_text(texts) texts = merge_short_text_in_array(texts, 5) audio_opt = [] phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version) for i_text,text in enumerate(texts): # 解决输入目标文本的空行导致报错的问题 if (len(text.strip()) == 0): continue if (text[-1] not in SPLITS): text += "。" if text_language != "en" else "." print("实际输入的目标文本(每句):", text) phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version) print("前端处理后的文本(每句):", norm_text2) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(DEVICE).unsqueeze(0) bert = bert.to(DEVICE).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(DEVICE) t2 = ttime() if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text] else: with torch.no_grad(): pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=hz * max_sec, ) pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) cache[i_text]=pred_semantic t3 = ttime() refers=[] if(inp_refs): for path in inp_refs: try: refer = get_spepc(hps, path).to(DTYPE).to(DEVICE) refers.append(refer) except: traceback.print_exc() if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(DTYPE).to(DEVICE)] audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(DEVICE).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0]) audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() t.extend([t2 - t1,t3 - t2, t4 - t3]) t1 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])) ) sr=hps.data.sampling_rate if model_version!="v3"else 24000 yield sr, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) with gr.Blocks(title="GPT-SoVITS WebUI") as app: try:next(change_sovits_weights(sovits_path)) except:pass change_gpt_weights(gpt_path) # 初始化GPT模型 gr.Markdown(value="

大概可能也许是阿米娅的声音(

") with gr.Row() as main_row: with gr.Column(scale=7) as text_column: text = gr.Textbox( label="需要合成的文本", value="", lines=13, max_lines=13 ) with gr.Row(): inference_button = gr.Button("合成语音", variant="primary", size='lg') output = gr.Audio(label="输出的语音") with gr.Column(scale=5) as control_column: text_language = gr.Dropdown( label="需要合成的语种。限制范围越小判别效果越好。", choices=list(dict_language.keys()), value="中文" ) how_to_cut = gr.Dropdown( label="怎么切", choices=["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"], value="凑四句一切" ) gr.Markdown(value="语速调整,高为更快") if_freeze = gr.Checkbox( label="是否直接对上次合成结果调整语速和音色。防止随机性。", value=False ) speed = gr.Slider( minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1 ) gr.Markdown("GPT采样参数(无参考文本时不要太低。不懂就用默认):") top_k = gr.Slider( minimum=1, maximum=100, step=1, label="top_k", value=15 ) top_p = gr.Slider( minimum=0, maximum=1, step=0.05, label="top_p", value=1 ) temperature = gr.Slider( minimum=0, maximum=1, step=0.05, label="temperature", value=1 ) inference_button.click( get_tts_wav, [text, text_language, how_to_cut, top_k, top_p, temperature, speed, if_freeze], [output], ) if __name__ == '__main__': app.queue().launch(#concurrency_count=511, max_size=1022 server_name="0.0.0.0", inbrowser=False, share=False, server_port=9872, quiet=True, )