GPT-SoVITS/quick_inference.py
2024-07-20 05:29:03 +08:00

476 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os, re, logging
import LangSegment
import pdb
import torch
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa
from feature_extractor import cnhubert
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
from tools.i18n.i18n import I18nAuto
import scipy.io.wavfile as wavfile
device = "cuda" if torch.cuda.is_available() else "cpu"
i18n = I18nAuto()
dict_language = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
}
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
half_precision = True
is_half = half_precision and torch.cuda.is_available()
splits = {"", "", "", "", ",", ".", "?", "!", "~", ":", "", "", "", }
punctuation = set(['!', '?', '', ',', '.', '-', " "])
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def replace_consecutive_punctuation(text):
punctuations = ''.join(re.escape(p) for p in punctuation)
pattern = f'([{punctuations}])([{punctuations}])+'
result = re.sub(pattern, r'\1', text)
return result
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def split(todo_text):
todo_text = todo_text.replace("……", "").replace("——", "")
if todo_text[-1] not in splits:
todo_text += ""
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
# 四句一切
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
else:
opts = [inp]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
# 句号切
def cut3(inp):
inp = inp.strip("\n")
opts = ["%s" % item for item in inp.strip("").split("")]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def process_text(texts):
_text = []
if all(text in [None, " ", "\n", ""] for text in texts):
raise ValueError(i18n("请输入有效文本"))
for text in texts:
if text in [None, " ", ""]:
pass
else:
_text.append(text)
return _text
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if (len(text) > 0):
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
dtype = torch.float16 if is_half else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
language = language.replace("all_", "")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half else torch.float32,
).to(device)
return bert
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
def get_phones_and_bert(text, language):
if language in {"en", "all_zh", "all_ja"}:
language = language.replace("all_", "")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text_inf(formattext, language)
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja", "auto"}:
textlist = []
langlist = []
LangSegment.setfilters(["zh", "ja", "en", "ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "ko":
langlist.append("zh")
textlist.append(tmp["text"])
else:
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones, bert.to(dtype), norm_text
def set_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
def set_sovits_weights(sovits_path):
global vq_model, hps
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if "pretrained" not in sovits_path:
del vq_model.enc_q
if is_half:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
with open("./sweight.txt", "w", encoding="utf-8") as f:
f.write(sovits_path)
def gen_audio(ref_wav_path, prompt_text, text_to_speak, output_file, top_k=20, top_p=0.6, temperature=0.6, ref_free=False):
if prompt_text is None or len(prompt_text) == 0:
ref_free = True
t0 = ttime()
prompt_language = "zh"
text_language = "zh"
if not ref_free:
prompt_text = prompt_text.strip("\n")
if prompt_text[-1] not in splits:
prompt_text += "" if prompt_language != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
text_to_speak = text_to_speak.strip("\n")
text_to_speak = replace_consecutive_punctuation(text_to_speak)
if text_to_speak[0] not in splits and len(get_first(text_to_speak)) < 4:
text_to_speak = "" + text_to_speak if text_language != "en" else "." + text_to_speak
print(i18n("实际输入的目标文本:"), text_to_speak)
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half == True else np.float32,
)
if not ref_free:
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
raise OSError(i18n("参考音频在3~10秒范围外请更换"))
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
t1 = ttime()
# text_to_speak = cut1(text_to_speak)
text_to_speak = cut3(text_to_speak)
while "\n\n" in text_to_speak:
text_to_speak = text_to_speak.replace("\n\n", "\n")
print(i18n("实际输入的目标文本(切句后):"), text_to_speak)
texts = text_to_speak.split("\n")
texts = process_text(texts)
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
if not ref_free:
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language)
for text_to_speak in texts:
# 解决输入目标文本的空行导致报错的问题
if len(text_to_speak.strip()) == 0:
continue
if text_to_speak[-1] not in splits:
text_to_speak += "" if text_language != "en" else "."
print(i18n("实际输入的目标文本(每句):"), text_to_speak)
phones2, bert2, norm_text2 = get_phones_and_bert(text_to_speak, text_language)
print(i18n("前端处理后的文本(每句):"), norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) # 试试重建不带上prompt部分
max_audio = np.abs(audio).max() # 简单防止16bit爆音
if max_audio > 1:
audio /= max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
# 将音频数据合并
audio_data = np.concatenate(audio_opt, 0) * 32768
audio_data = audio_data.astype(np.int16)
wavfile.write(output_file, hps.data.sampling_rate, audio_data)
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
cnhubert.cnhubert_base_path = cnhubert_base_path
ssl_model = cnhubert.get_model()
if is_half:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def speak(text_to_speak):
sovits_path = "SoVITS_weights/阿贝多_e12_s2748.pth"
set_sovits_weights(sovits_path)
gpt_path = "GPT_weights/阿贝多-e10.ckpt"
set_gpt_weights(gpt_path)
ref_wav_path = "audio/首先,先看看这不明来源的元素力,究竟是如何对外流动的.wav"
prompt_text = "首先,先看看这不明来源的元素力,究竟是如何对外流动的。"
# text_to_speak = "我...我...我不知道你在说什么,我们之间没有秘密呀。可能你弄错了,我们平时关系很好的,请不要误会。"
# 创建一个时间戳的文件名
output_file = "outputs/" + str(int(ttime())) + ".wav"
gen_audio(ref_wav_path, prompt_text, text_to_speak, output_file)
return output_file
def main():
speak("放学了,我该回家了,你叫我留下来干什么?")
if __name__ == '__main__':
main()