mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 15:19:59 +08:00
update dev branch
This commit is contained in:
parent
2d2e3b0a07
commit
8f3d3ef006
3
.gitignore
vendored
3
.gitignore
vendored
@ -9,4 +9,5 @@ logs
|
||||
reference
|
||||
GPT_weights
|
||||
SoVITS_weights
|
||||
TEMP
|
||||
TEMP
|
||||
outputs
|
475
quick_inference.py
Normal file
475
quick_inference.py
Normal file
@ -0,0 +1,475 @@
|
||||
import os, re, logging
|
||||
import LangSegment
|
||||
import pdb
|
||||
import torch
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa
|
||||
from feature_extractor import cnhubert
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from tools.my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
import scipy.io.wavfile as wavfile
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
dict_language = {
|
||||
i18n("中文"): "all_zh", # 全部按中文识别
|
||||
i18n("英文"): "en", # 全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja", # 全部按日文识别
|
||||
i18n("中英混合"): "zh", # 按中英混合识别####不变
|
||||
i18n("日英混合"): "ja", # 按日英混合识别####不变
|
||||
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
|
||||
}
|
||||
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
half_precision = True
|
||||
is_half = half_precision and torch.cuda.is_available()
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
punctuation = set(['!', '?', '…', ',', '.', '-', " "])
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
def replace_consecutive_punctuation(text):
|
||||
punctuations = ''.join(re.escape(p) for p in punctuation)
|
||||
pattern = f'([{punctuations}])([{punctuations}])+'
|
||||
result = re.sub(pattern, r'\1', text)
|
||||
return result
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
# 四句一切
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 句号切
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def process_text(texts):
|
||||
_text = []
|
||||
if all(text in [None, " ", "\n", ""] for text in texts):
|
||||
raise ValueError(i18n("请输入有效文本"))
|
||||
for text in texts:
|
||||
if text in [None, " ", ""]:
|
||||
pass
|
||||
else:
|
||||
_text.append(text)
|
||||
return _text
|
||||
|
||||
|
||||
def merge_short_text_in_array(texts, threshold):
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if (len(text) > 0):
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
phones, word2ph, norm_text = clean_text(text, language)
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
dtype = torch.float16 if is_half else torch.float32
|
||||
|
||||
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
language = language.replace("all_", "")
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
|
||||
def get_phones_and_bert(text, language):
|
||||
if language in {"en", "all_zh", "all_ja"}:
|
||||
language = language.replace("all_", "")
|
||||
if language == "en":
|
||||
LangSegment.setfilters(["en"])
|
||||
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
||||
else:
|
||||
# 因无法区别中日文汉字,以用户输入为准
|
||||
formattext = text
|
||||
while " " in formattext:
|
||||
formattext = formattext.replace(" ", " ")
|
||||
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
elif language in {"zh", "ja", "auto"}:
|
||||
textlist = []
|
||||
langlist = []
|
||||
LangSegment.setfilters(["zh", "ja", "en", "ko"])
|
||||
if language == "auto":
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
if tmp["lang"] == "ko":
|
||||
langlist.append("zh")
|
||||
textlist.append(tmp["text"])
|
||||
else:
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
else:
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
if tmp["lang"] == "en":
|
||||
langlist.append(tmp["lang"])
|
||||
else:
|
||||
# 因无法区别中日文汉字,以用户输入为准
|
||||
langlist.append(language)
|
||||
textlist.append(tmp["text"])
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
phones_list = []
|
||||
bert_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
phones_list.append(phones)
|
||||
norm_text_list.append(norm_text)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
phones = sum(phones_list, [])
|
||||
norm_text = ''.join(norm_text_list)
|
||||
|
||||
return phones, bert.to(dtype), norm_text
|
||||
|
||||
|
||||
def set_gpt_weights(gpt_path):
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
def set_sovits_weights(sovits_path):
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
hps = dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if "pretrained" not in sovits_path:
|
||||
del vq_model.enc_q
|
||||
if is_half:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
def gen_audio(ref_wav_path, prompt_text, text_to_speak, output_file, top_k=20, top_p=0.6, temperature=0.6, ref_free=False):
|
||||
if prompt_text is None or len(prompt_text) == 0:
|
||||
ref_free = True
|
||||
t0 = ttime()
|
||||
prompt_language = "zh"
|
||||
text_language = "zh"
|
||||
if not ref_free:
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if prompt_text[-1] not in splits:
|
||||
prompt_text += "。" if prompt_language != "en" else "."
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
text_to_speak = text_to_speak.strip("\n")
|
||||
text_to_speak = replace_consecutive_punctuation(text_to_speak)
|
||||
if text_to_speak[0] not in splits and len(get_first(text_to_speak)) < 4:
|
||||
text_to_speak = "。" + text_to_speak if text_language != "en" else "." + text_to_speak
|
||||
|
||||
print(i18n("实际输入的目标文本:"), text_to_speak)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
if not ref_free:
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
|
||||
t1 = ttime()
|
||||
# text_to_speak = cut1(text_to_speak)
|
||||
text_to_speak = cut3(text_to_speak)
|
||||
while "\n\n" in text_to_speak:
|
||||
text_to_speak = text_to_speak.replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text_to_speak)
|
||||
texts = text_to_speak.split("\n")
|
||||
texts = process_text(texts)
|
||||
texts = merge_short_text_in_array(texts, 5)
|
||||
audio_opt = []
|
||||
if not ref_free:
|
||||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language)
|
||||
|
||||
for text_to_speak in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if len(text_to_speak.strip()) == 0:
|
||||
continue
|
||||
if text_to_speak[-1] not in splits:
|
||||
text_to_speak += "。" if text_language != "en" else "."
|
||||
print(i18n("实际输入的目标文本(每句):"), text_to_speak)
|
||||
phones2, bert2, norm_text2 = get_phones_and_bert(text_to_speak, text_language)
|
||||
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
||||
if not ref_free:
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
else:
|
||||
bert = bert2
|
||||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
None if ref_free else prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) # 试试重建不带上prompt部分
|
||||
max_audio = np.abs(audio).max() # 简单防止16bit爆音
|
||||
if max_audio > 1:
|
||||
audio /= max_audio
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
|
||||
# 将音频数据合并
|
||||
audio_data = np.concatenate(audio_opt, 0) * 32768
|
||||
audio_data = audio_data.astype(np.int16)
|
||||
wavfile.write(output_file, hps.data.sampling_rate, audio_data)
|
||||
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
|
||||
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def speak(text_to_speak):
|
||||
sovits_path = "SoVITS_weights/阿贝多_e12_s2748.pth"
|
||||
set_sovits_weights(sovits_path)
|
||||
gpt_path = "GPT_weights/阿贝多-e10.ckpt"
|
||||
set_gpt_weights(gpt_path)
|
||||
ref_wav_path = "audio/首先,先看看这不明来源的元素力,究竟是如何对外流动的.wav"
|
||||
prompt_text = "首先,先看看这不明来源的元素力,究竟是如何对外流动的。"
|
||||
# text_to_speak = "我...我...我不知道你在说什么,我们之间没有秘密呀。可能你弄错了,我们平时关系很好的,请不要误会。"
|
||||
# 创建一个时间戳的文件名
|
||||
output_file = "outputs/" + str(int(ttime())) + ".wav"
|
||||
gen_audio(ref_wav_path, prompt_text, text_to_speak, output_file)
|
||||
return output_file
|
||||
|
||||
|
||||
def main():
|
||||
speak("放学了,我该回家了,你叫我留下来干什么?")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user