GPT-SoVITS/docs/cn/README.md
ChasonJiang 29f22115fb
[fast_inference] 回退策略,减少padding影响,开放选项,同步代码 (#986)
* Update README

* Optimize-English-G2P

* docs: change akward expression

* docs: update Changelog_KO.md

* Fix CN punc in EN,add 's match

* Adjust normalize and g2p logic

* Update zh_CN.json

* Update README (#827)

Update README.md
Update some outdated file paths and commands

* 修复英文多音字,调整字典热加载,新增姓名匹配 (#869)

* Fix homograph dict

* Add JSON in dict

* Adjust hot dict to hot reload

* Add English name dict

* Adjust get name dict logic

* Make API Great Again (#894)

* Add zh/jp/en mix

* Optimize code readability and formatted output.

* Try OGG streaming

* Add stream mode arg

* Add media type arg

* Add cut punc arg

* Eliminate punc risk

* Update README (#895)

* Update README

* Update README

* update README

* update README

* fix typo s/Licence /License (#904)

* fix reformat cmd (#917)

Co-authored-by: starylan <starylan@outlook.com>

* Update README.md

* Normalize chinese arithmetic operations (#947)

* 改变训练和推理时的mask策略,以修复当batch_size>1时,产生的复读现象

* 同步main分支代码,增加“保持随机”选项

* 在colab中运行colab_webui.ipynb发生的uvr5模型缺失问题 (#968)

在colab中使用git下载uvr5模型时报错:
fatal: destination path 'uvr5_weights' already exists and is not an empty directory.
通过在下载前将原本从本仓库下载的uvr5_weights文件夹删除可以解决问题。

* [ASR] 修复FasterWhisper遍历输入路径失败 (#956)

* remove glob

* rename

* reset mirror pos

* 回退mask策略;
回退pad策略;
在T2SBlock中添加padding_mask,以减少pad的影响;
开放repetition_penalty参数,让用户自行调整重复惩罚的强度;
增加parallel_infer参数,用于开启或关闭并行推理,关闭时与0307版本保持一致;
在webui中增加“保持随机”选项;
同步main分支代码。

* 删除无用注释

---------

Co-authored-by: Lion <drain.daters.0p@icloud.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: KamioRinn <snowsdream@live.com>
Co-authored-by: Pengoose <pengoose_dev@naver.com>
Co-authored-by: Yuan-Man <68322456+Yuan-ManX@users.noreply.github.com>
Co-authored-by: XXXXRT666 <157766680+XXXXRT666@users.noreply.github.com>
Co-authored-by: KamioRinn <63162909+KamioRinn@users.noreply.github.com>
Co-authored-by: Lion-Wu <130235128+Lion-Wu@users.noreply.github.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: SapphireLab <36986837+SapphireLab@users.noreply.github.com>
Co-authored-by: starylan <starylan@outlook.com>
Co-authored-by: shadow01a <141255649+shadow01a@users.noreply.github.com>
2024-04-19 14:35:28 +08:00

11 KiB
Raw Blame History

GPT-SoVITS-WebUI

强大的少样本语音转换与语音合成Web用户界面。

madewithlove


Open In Colab License Huggingface

English | 中文简体 | 日本語 | 한국어


功能:

  1. 零样本文本到语音TTS 输入 5 秒的声音样本,即刻体验文本到语音转换。

  2. 少样本 TTS 仅需 1 分钟的训练数据即可微调模型,提升声音相似度和真实感。

  3. 跨语言支持: 支持与训练数据集不同语言的推理,目前支持英语、日语和中文。

  4. WebUI 工具: 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和 GPT/SoVITS 模型。

查看我们的介绍视频 demo video

未见过的说话者 few-shot 微调演示:

https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb

用户手册: 简体中文 | English

安装

中国地区用户可点击此处使用 AutoDL 云端镜像进行体验。

测试通过的环境

  • Python 3.9PyTorch 2.0.1CUDA 11
  • Python 3.10.13PyTorch 2.1.2CUDA 12.3
  • Python 3.9Pytorch 2.2.2macOS 14.4.1Apple 芯片)
  • Python 3.9PyTorch 2.2.2CPU 设备

注: numba==0.56.4 需要 python<3.11

Windows

如果你是 Windows 用户(已在 win>=10 上测试),可以直接下载预打包文件,解压后双击 go-webui.bat 即可启动 GPT-SoVITS-WebUI。

中国地区用户可以通过点击链接并选择“下载副本”来下载0217版本包0306fix2版本包

0306fix2版本推理速度翻倍节约生命。修复了无参考文本模式的所有问题。

Linux

conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh

macOS

注:在 Mac 上使用 GPU 训练的模型效果显著低于其他设备训练的模型所以我们暂时使用CPU进行训练。

  1. 运行 xcode-select --install 安装 Xcode command-line tools。
  2. 运行 brew install ffmpegconda install ffmpeg 安装 FFmpeg。
  3. 完成上述步骤后,运行以下的命令来安装本项目:
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits

pip install -r requirements.txt

手动安装

安装依赖

pip install -r requirements.txt

安装 FFmpeg

Conda 使用者
conda install ffmpeg
Ubuntu/Debian 使用者
sudo apt install ffmpeg
sudo apt install libsox-dev
conda install -c conda-forge 'ffmpeg<7'
Windows 使用者

下载并将 ffmpeg.exeffprobe.exe 放置在 GPT-SoVITS 根目录下。

在 Docker 中使用

docker-compose.yaml 设置

  1. image 的标签:由于代码库更新很快,镜像的打包和测试又很慢,所以请自行在 Docker Hub 查看当前打包好的最新的镜像并根据自己的情况选用,或者在本地根据您自己的需求通过 Dockerfile 进行构建。
  2. 环境变量:
  • is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为 True 或者 False。
  1. Volume 设置,容器内的应用根目录设置为 /workspace。 默认的 docker-compose.yaml 中列出了一些实际的例子,便于上传/下载内容。
  2. shm_sizeWindows 下的 Docker Desktop 默认可用内存过小,会导致运行异常,根据自己情况酌情设置。
  3. deploy 小节下的 gpu 相关内容,请根据您的系统和实际情况酌情设置。

通过 docker compose 运行

docker compose -f "docker-compose.yaml" up -d

通过 docker 命令运行

同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:

docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx

预训练模型

GPT-SoVITS Models 下载预训练模型,并将它们放置在 GPT_SoVITS\pretrained_models 中。

对于 UVR5人声/伴奏分离和混响移除,附加),从 UVR5 Weights 下载模型,并将它们放置在 tools/uvr5/uvr5_weights 中。

中国地区用户可以进入以下链接并点击“下载副本”下载以上两个模型:

对于中文自动语音识别(附加),从 Damo ASR Model, Damo VAD Model, 和 Damo Punc Model 下载模型,并将它们放置在 tools/asr/models 中。

对于英语与日语自动语音识别(附加),从 Faster Whisper Large V3 下载模型,并将它们放置在 tools/asr/models 中。 此外,其他模型可能具有类似效果,但占用更小的磁盘空间。

中国地区用户可以通过以下链接下载:

数据集格式

文本到语音TTS注释 .list 文件格式:

vocal_path|speaker_name|language|text

语言字典:

  • 'zh': Chinese
  • 'ja': Japanese
  • 'en': English

示例:

D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.

待办事项清单

  • 高优先级:

    • 日语和英语的本地化。
    • 用户指南。
    • 日语和英语数据集微调训练。
  • Features:

    • 零样本声音转换5 秒)/ 少样本声音转换1 分钟)。
    • TTS 语速控制。
    • 增强的 TTS 情感控制。
    • 尝试将 SoVITS 令牌输入更改为词汇的概率分布。
    • 改进英语和日语文本前端。
    • 开发体积小和更大的 TTS 模型。
    • Colab 脚本。
    • 扩展训练数据集(从 2k 小时到 10k 小时)。
    • 更好的 sovits 基础模型(增强的音频质量)。
    • 模型混合。

(可选)命令行的操作方式

使用命令行打开UVR5的WebUI

python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>

如果打不开浏览器请按照下面的格式进行UVR处理这是使用mdxnet进行音频处理的方式

python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision 

这是使用命令行完成数据集的音频切分的方式

python audio_slicer.py \
    --input_path "<path_to_original_audio_file_or_directory>" \
    --output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
    --threshold <volume_threshold> \
    --min_length <minimum_duration_of_each_subclip> \
    --min_interval <shortest_time_gap_between_adjacent_subclips> 
    --hop_size <step_size_for_computing_volume_curve>

这是使用命令行完成数据集ASR处理的方式仅限中文

python tools/asr/funasr_asr.py -i <input> -o <output>

通过Faster_Whisper进行ASR处理除中文之外的ASR标记

没有进度条GPU性能可能会导致时间延迟

python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language>

启用自定义列表保存路径

致谢

特别感谢以下项目和贡献者:

感谢所有贡献者的努力