GPT-SoVITS/docs/cn/README.md
XXXXRT666 6c468583c5
Fix dependency-related issues via requirements update (#2236)
* Update requirements.txt

* Create constraints.txt

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* pyopenjtalk and onnx fix

* Update requirements.txt

* Update requirements.txt

* Update install.sh

* update shell install.sh

* update docs

* Update Install.sh

* fix bugs

* Update .gitignore

* Update .gitignore

* Update install.sh

* Update install.sh

* Update extra-req.txt

* Update requirements.txt
2025-03-31 11:27:12 +08:00

394 lines
15 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div align="center">
<h1>GPT-SoVITS-WebUI</h1>
强大的少样本语音转换与语音合成Web用户界面。<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/RVC-Boss/GPT-SoVITS)
<a href="https://trendshift.io/repositories/7033" target="_blank"><img src="https://trendshift.io/api/badge/repositories/7033" alt="RVC-Boss%2FGPT-SoVITS | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<!-- img src="https://counter.seku.su/cmoe?name=gptsovits&theme=r34" /><br> -->
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
[![License](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-online%20demo-yellow.svg?style=for-the-badge)](https://huggingface.co/spaces/lj1995/GPT-SoVITS-v2)
[![Discord](https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge)](https://discord.gg/dnrgs5GHfG)
[**English**](../../README.md) | **中文简体** | [**日本語**](../ja/README.md) | [**한국어**](../ko/README.md) | [**Türkçe**](../tr/README.md)
</div>
---
## 功能:
1. **零样本文本到语音TTS** 输入 5 秒的声音样本,即刻体验文本到语音转换。
2. **少样本 TTS** 仅需 1 分钟的训练数据即可微调模型,提升声音相似度和真实感。
3. **跨语言支持:** 支持与训练数据集不同语言的推理,目前支持英语、日语、韩语、粤语和中文。
4. **WebUI 工具:** 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和 GPT/SoVITS 模型。
**查看我们的介绍视频 [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw)**
未见过的说话者 few-shot 微调演示:
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
**用户手册: [简体中文](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e) | [English](https://rentry.co/GPT-SoVITS-guide#/)**
## 安装
中国地区的用户可[点击此处](https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official)使用 AutoDL 云端镜像进行体验。
### 测试通过的环境
- Python 3.9PyTorch 2.0.1CUDA 11
- Python 3.10.13PyTorch 2.1.2CUDA 12.3
- Python 3.9Pytorch 2.2.2macOS 14.4.1Apple 芯片)
- Python 3.9PyTorch 2.2.2CPU 设备
_注: numba==0.56.4 需要 python<3.11_
### Windows
如果你是 Windows 用户(已在 win>=10 上测试),可以下载[整合包](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-v3lora-20250228.7z?download=true),解压后双击 go-webui.bat 即可启动 GPT-SoVITS-WebUI。
**中国地区的用户可以[在此处下载整合包](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/dkxgpiy9zb96hob4#KTvnO)。**
### Linux
```bash
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh
```
### macOS
**注:在 Mac 上使用 GPU 训练的模型效果显著低于其他设备训练的模型,所以我们暂时使用 CPU 进行训练。**
1. 运行 `xcode-select --install` 安装 Xcode command-line tools。
2. 运行 `brew install ffmpeg` 安装 FFmpeg。
3. 完成上述步骤后,运行以下的命令来安装本项目:
```bash
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
pip install -r extra-req.txt --no-deps
pip install -r requirements.txt
```
### 手动安装
#### 安装 FFmpeg
##### Conda 用户
```bash
conda install ffmpeg
```
##### Ubuntu/Debian 用户
```bash
sudo apt install ffmpeg
sudo apt install libsox-dev
conda install -c conda-forge 'ffmpeg<7'
```
##### Windows 用户
下载并将 [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) 和 [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) 放置在 GPT-SoVITS 根目录下。
安装 [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) 环境(仅限韩语 TTS)
##### MacOS 用户
```bash
brew install ffmpeg
```
#### 安装依赖
```bash
pip install -r extra-req.txt --no-deps
pip install -r requirements.txt
```
### 在 Docker 中使用
#### docker-compose.yaml 设置
0. image 的标签:由于代码库更新很快,镜像的打包和测试又很慢,所以请自行在 [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) 查看当前打包好的最新的镜像并根据自己的情况选用,或者在本地根据您自己的需求通过 Dockerfile 进行构建。
1. 环境变量:
- is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为 True 或者 False。
2. Volume 设置,容器内的应用根目录设置为 /workspace。 默认的 docker-compose.yaml 中列出了一些实际的例子,便于上传/下载内容。
3. shm_sizeWindows 下的 Docker Desktop 默认可用内存过小,会导致运行异常,根据自己情况酌情设置。
4. deploy 小节下的 gpu 相关内容,请根据您的系统和实际情况酌情设置。
#### 通过 docker compose 运行
```
docker compose -f "docker-compose.yaml" up -d
```
#### 通过 docker 命令运行
同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:
```
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
```
## 预训练模型
**中国地区的用户可以[在此处下载这些模型](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/dkxgpiy9zb96hob4#nVNhX)。**
1. 从 [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) 下载预训练模型,并将其放置在 `GPT_SoVITS/pretrained_models` 目录中。
2. 从 [G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip) 下载模型,解压并重命名为 `G2PWModel`,然后将其放置在 `GPT_SoVITS/text` 目录中。(仅限中文 TTS
3. 对于 UVR5人声/伴奏分离和混响移除,额外功能),从 [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) 下载模型,并将其放置在 `tools/uvr5/uvr5_weights` 目录中。
- 如果你在 UVR5 中使用 `bs_roformer``mel_band_roformer`模型,你可以手动下载模型和相应的配置文件,并将它们放在 `tools/UVR5/UVR5_weights` 中。**重命名模型文件和配置文件,确保除后缀外**,模型和配置文件具有相同且对应的名称。此外,模型和配置文件名**必须包含“roformer”**,才能被识别为 roformer 类的模型。
- 建议在模型名称和配置文件名中**直接指定模型类型**,例如`mel_mand_roformer``bs_roformer`。如果未指定,将从配置文中比对特征,以确定它是哪种类型的模型。例如,模型`bs_roformer_ep_368_sdr_12.9628.ckpt` 和对应的配置文件`bs_roformer_ep_368_sdr_12.9628.yaml` 是一对。`kim_mel_band_roformer.ckpt``kim_mel_band_roformer.yaml` 也是一对。
4. 对于中文 ASR额外功能从 [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files)、[Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files) 和 [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) 下载模型,并将它们放置在 `tools/asr/models` 目录中。
5. 对于英语或日语 ASR额外功能从 [Faster Whisper Large V3](https://huggingface.co/Systran/faster-whisper-large-v3) 下载模型,并将其放置在 `tools/asr/models` 目录中。此外,[其他模型](https://huggingface.co/Systran) 可能具有类似效果且占用更少的磁盘空间。
## 数据集格式
文本到语音TTS注释 .list 文件格式:
```
vocal_path|speaker_name|language|text
```
语言字典:
- 'zh': 中文
- 'ja': 日语
- 'en': 英语
- 'ko': 韩语
- 'yue': 粤语
示例:
```
D:\GPT-SoVITS\xxx/xxx.wav|xxx|zh|我爱玩原神。
```
## 微调与推理
### 打开 WebUI
#### 整合包用户
双击`go-webui.bat`或者使用`go-webui.ps1`
若想使用 V1,则双击`go-webui-v1.bat`或者使用`go-webui-v1.ps1`
#### 其他
```bash
python webui.py <language(optional)>
```
若想使用 V1,则
```bash
python webui.py v1 <language(optional)>
```
或者在 webUI 内动态切换
### 微调
#### 现已支持自动填充路径
1. 填入训练音频路径
2. 切割音频
3. 进行降噪(可选)
4. 进行ASR
5. 校对标注
6. 前往下一个窗口,点击训练
### 打开推理 WebUI
#### 整合包用户
双击 `go-webui.bat` 或者使用 `go-webui.ps1` ,然后在 `1-GPT-SoVITS-TTS/1C-推理` 中打开推理 webUI
#### 其他
```bash
python GPT_SoVITS/inference_webui.py <language(optional)>
```
或者
```bash
python webui.py
```
然后在 `1-GPT-SoVITS-TTS/1C-推理` 中打开推理 webUI
## V2 发布说明
新特性:
1. 支持韩语及粤语
2. 更好的文本前端
3. 底模由 2k 小时扩展至 5k 小时
4. 对低音质参考音频(尤其是来源于网络的高频严重缺失、听着很闷的音频)合成出来音质更好
详见[wiki](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
从 v1 环境迁移至 v2
1. 需要 pip 安装 requirements.txt 更新环境
2. 需要克隆 github 上的最新代码
3. 需要从[huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) 下载预训练模型文件放到 GPT_SoVITS\pretrained_models\gsv-v2final-pretrained 下
中文额外需要下载[G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip)(下载 G2PW 模型,解压并重命名为`G2PWModel`,将其放到`GPT_SoVITS/text`目录下)
## V3 更新说明
新模型特点:
1. 音色相似度更像,需要更少训练集来逼近本人(不训练直接使用底模模式下音色相似性提升更大)
2. GPT 合成更稳定,重复漏字更少,也更容易跑出丰富情感
详见[wiki](<https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7)>)
从 v2 环境迁移至 v3
1. 需要 pip 安装 requirements.txt 更新环境
2. 需要克隆 github 上的最新代码
3. 从[huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)下载这些 v3 新增预训练模型 (s1v3.ckpt, s2Gv3.pth and models--nvidia--bigvgan_v2_24khz_100band_256x folder)将他们放到`GPT_SoVITS\pretrained_models`目录下
如果想用音频超分功能缓解 v3 模型生成 24k 音频觉得闷的问题,需要下载额外的模型参数,参考[how to download](../../tools/AP_BWE_main/24kto48k/readme.txt)
## 待办事项清单
- [x] **高优先级:**
- [x] 日语和英语的本地化。
- [x] 用户指南。
- [x] 日语和英语数据集微调训练。
- [ ] **功能:**
- [x] 零样本声音转换5 秒)/ 少样本声音转换1 分钟)。
- [x] TTS 语速控制。
- [ ] ~~增强的 TTS 情感控制。~~
- [ ] 尝试将 SoVITS 令牌输入更改为词汇的概率分布。
- [x] 改进英语和日语文本前端。
- [ ] 开发体积小和更大的 TTS 模型。
- [x] Colab 脚本。
- [x] 扩展训练数据集(从 2k 小时到 10k 小时)。
- [x] 更好的 sovits 基础模型(增强的音频质量)。
- [ ] 模型混合。
## (附加)命令行运行方式
使用命令行打开 UVR5 的 WebUI
```
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
```
<!-- 如果打不开浏览器请按照下面的格式进行UVR处理这是使用mdxnet进行音频处理的方式
````
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
```` -->
这是使用命令行完成数据集的音频切分的方式
```
python audio_slicer.py \
--input_path "<path_to_original_audio_file_or_directory>" \
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
--threshold <volume_threshold> \
--min_length <minimum_duration_of_each_subclip> \
--min_interval <shortest_time_gap_between_adjacent_subclips>
--hop_size <step_size_for_computing_volume_curve>
```
这是使用命令行完成数据集 ASR 处理的方式(仅限中文)
```
python tools/asr/funasr_asr.py -i <input> -o <output>
```
通过 Faster_Whisper 进行 ASR 处理(除中文之外的 ASR 标记)
没有进度条GPU 性能可能会导致时间延迟)
```
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
```
启用自定义列表保存路径
## 致谢
特别感谢以下项目和贡献者:
### 理论研究
- [ar-vits](https://github.com/innnky/ar-vits)
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
- [vits](https://github.com/jaywalnut310/vits)
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
- [contentvec](https://github.com/auspicious3000/contentvec/)
- [hifi-gan](https://github.com/jik876/hifi-gan)
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
- [f5-TTS](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py)
- [shortcut flow matching](https://github.com/kvfrans/shortcut-models/blob/main/targets_shortcut.py)
### 预训练模型
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
### 推理用文本前端
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
- [split-lang](https://github.com/DoodleBears/split-lang)
- [g2pW](https://github.com/GitYCC/g2pW)
- [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
- [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
### WebUI 工具
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [SubFix](https://github.com/cronrpc/SubFix)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [gradio](https://github.com/gradio-app/gradio)
- [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
- [FunASR](https://github.com/alibaba-damo-academy/FunASR)
- [AP-BWE](https://github.com/yxlu-0102/AP-BWE)
感谢 @Naozumi520 提供粤语训练集,并在粤语相关知识方面给予指导。
## 感谢所有贡献者的努力
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
</a>