mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Reformat scripts
This commit is contained in:
parent
165882d64f
commit
c18c9a9eed
1
.gitignore
vendored
1
.gitignore
vendored
@ -18,3 +18,4 @@ TEMP
|
|||||||
weight.json
|
weight.json
|
||||||
ffmpeg*
|
ffmpeg*
|
||||||
ffprobe*
|
ffprobe*
|
||||||
|
zoengjyutgaai*
|
@ -1,6 +1,17 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
import os.path
|
||||||
|
import shutil
|
||||||
|
import traceback
|
||||||
|
from time import time as ttime
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from text.cleaner import clean_text
|
||||||
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from tools.my_utils import clean_path
|
||||||
|
|
||||||
inp_text = os.environ.get("inp_text")
|
inp_text = os.environ.get("inp_text")
|
||||||
inp_wav_dir = os.environ.get("inp_wav_dir")
|
inp_wav_dir = os.environ.get("inp_wav_dir")
|
||||||
@ -11,17 +22,8 @@ if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
|||||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
opt_dir = os.environ.get("opt_dir")
|
opt_dir = os.environ.get("opt_dir")
|
||||||
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
|
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
|
||||||
import torch
|
|
||||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
version = os.environ.get('version', None)
|
version = os.environ.get('version', None)
|
||||||
import sys, numpy as np, traceback, pdb
|
|
||||||
import os.path
|
|
||||||
from glob import glob
|
|
||||||
from tqdm import tqdm
|
|
||||||
from text.cleaner import clean_text
|
|
||||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
||||||
import numpy as np
|
|
||||||
from tools.my_utils import clean_path
|
|
||||||
|
|
||||||
# inp_text=sys.argv[1]
|
# inp_text=sys.argv[1]
|
||||||
# inp_wav_dir=sys.argv[2]
|
# inp_wav_dir=sys.argv[2]
|
||||||
@ -32,11 +34,8 @@ from tools.my_utils import clean_path
|
|||||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||||
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
|
# bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
|
||||||
|
|
||||||
from time import time as ttime
|
|
||||||
import shutil
|
|
||||||
|
|
||||||
|
def my_save(fea, path): # fix issue: torch.save doesn't support chinese path
|
||||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
|
||||||
dir = os.path.dirname(path)
|
dir = os.path.dirname(path)
|
||||||
name = os.path.basename(path)
|
name = os.path.basename(path)
|
||||||
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||||
@ -56,11 +55,13 @@ if os.path.exists(txt_path) == False:
|
|||||||
# device = "mps"
|
# device = "mps"
|
||||||
else:
|
else:
|
||||||
device = "cpu"
|
device = "cpu"
|
||||||
if os.path.exists(bert_pretrained_dir):...
|
if os.path.exists(bert_pretrained_dir):
|
||||||
else:raise FileNotFoundError(bert_pretrained_dir)
|
...
|
||||||
|
else:
|
||||||
|
raise FileNotFoundError(bert_pretrained_dir)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||||
if is_half == True:
|
if is_half:
|
||||||
bert_model = bert_model.half().to(device)
|
bert_model = bert_model.half().to(device)
|
||||||
else:
|
else:
|
||||||
bert_model = bert_model.to(device)
|
bert_model = bert_model.to(device)
|
||||||
@ -126,7 +127,7 @@ if os.path.exists(txt_path) == False:
|
|||||||
"YUE": "yue",
|
"YUE": "yue",
|
||||||
"Yue": "yue",
|
"Yue": "yue",
|
||||||
}
|
}
|
||||||
for line in lines[int(i_part) :: int(all_parts)]:
|
for line in tqdm(lines[int(i_part):: int(all_parts)]):
|
||||||
try:
|
try:
|
||||||
wav_name, spk_name, language, text = line.split("|")
|
wav_name, spk_name, language, text = line.split("|")
|
||||||
# todo.append([name,text,"zh"])
|
# todo.append([name,text,"zh"])
|
||||||
|
@ -1,6 +1,23 @@
|
|||||||
# -*- coding: utf-8 -*-
|
"""
|
||||||
|
Step 2 of data preparation: Extract HuBERT features from the audio files,
|
||||||
|
and resample the audio to 32kHz and saving it.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from time import time as ttime
|
||||||
|
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from feature_extractor import cnhubert
|
||||||
|
from scipy.io import wavfile
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from tools.my_utils import clean_path, load_audio
|
||||||
|
|
||||||
import sys,os
|
|
||||||
inp_text = os.environ.get("inp_text")
|
inp_text = os.environ.get("inp_text")
|
||||||
inp_wav_dir = os.environ.get("inp_wav_dir")
|
inp_wav_dir = os.environ.get("inp_wav_dir")
|
||||||
exp_name = os.environ.get("exp_name")
|
exp_name = os.environ.get("exp_name")
|
||||||
@ -8,18 +25,16 @@ i_part= os.environ.get("i_part")
|
|||||||
all_parts = os.environ.get("all_parts")
|
all_parts = os.environ.get("all_parts")
|
||||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
from feature_extractor import cnhubert
|
|
||||||
opt_dir = os.environ.get("opt_dir")
|
opt_dir = os.environ.get("opt_dir")
|
||||||
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
|
cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir")
|
||||||
import torch
|
|
||||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
|
|
||||||
import pdb,traceback,numpy as np,logging
|
|
||||||
from scipy.io import wavfile
|
|
||||||
import librosa
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
from tools.my_utils import load_audio,clean_path
|
|
||||||
|
|
||||||
# from config import cnhubert_base_path
|
# from config import cnhubert_base_path
|
||||||
# cnhubert.cnhubert_base_path=cnhubert_base_path
|
# cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||||
@ -32,15 +47,14 @@ from tools.my_utils import load_audio,clean_path
|
|||||||
# cnhubert.cnhubert_base_path=sys.argv[7]
|
# cnhubert.cnhubert_base_path=sys.argv[7]
|
||||||
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||||||
|
|
||||||
from time import time as ttime
|
def my_save(fea, path): # fix issue: torch.save doesn't support chinese path
|
||||||
import shutil
|
|
||||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
|
||||||
dir = os.path.dirname(path)
|
dir = os.path.dirname(path)
|
||||||
name = os.path.basename(path)
|
name = os.path.basename(path)
|
||||||
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
||||||
tmp_path="%s%s.pth"%(ttime(),i_part)
|
tmp_path = f"{ttime()}{i_part}.pth"
|
||||||
torch.save(fea, tmp_path)
|
torch.save(fea, tmp_path)
|
||||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
shutil.move(tmp_path, f"{dir}/{name}")
|
||||||
|
|
||||||
|
|
||||||
hubert_dir = "%s/4-cnhubert" % (opt_dir)
|
hubert_dir = "%s/4-cnhubert" % (opt_dir)
|
||||||
wav32dir = "%s/5-wav32k" % (opt_dir)
|
wav32dir = "%s/5-wav32k" % (opt_dir)
|
||||||
@ -56,6 +70,8 @@ if torch.cuda.is_available():
|
|||||||
# device = "mps"
|
# device = "mps"
|
||||||
else:
|
else:
|
||||||
device = "cpu"
|
device = "cpu"
|
||||||
|
|
||||||
|
|
||||||
model = cnhubert.get_model()
|
model = cnhubert.get_model()
|
||||||
# is_half=False
|
# is_half=False
|
||||||
if (is_half == True):
|
if (is_half == True):
|
||||||
@ -64,47 +80,66 @@ else:
|
|||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
nan_fails = []
|
nan_fails = []
|
||||||
|
|
||||||
|
|
||||||
def name2go(wav_name, wav_path):
|
def name2go(wav_name, wav_path):
|
||||||
|
"""
|
||||||
|
Extract HuBERT features from the audio files, and resample the audio to 32kHz and saving it.
|
||||||
|
"""
|
||||||
|
# Skip if the file already exists
|
||||||
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
hubert_path = "%s/%s.pt" % (hubert_dir, wav_name)
|
||||||
if(os.path.exists(hubert_path)):return
|
if (os.path.exists(hubert_path)):
|
||||||
tmp_audio = load_audio(wav_path, 32000)
|
|
||||||
tmp_max = np.abs(tmp_audio).max()
|
|
||||||
if tmp_max > 2.2:
|
|
||||||
print("%s-filtered,%s" % (wav_name, tmp_max))
|
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# Load the audio file in 32kHz sampling rate
|
||||||
|
tmp_audio = load_audio(wav_path, 32000)
|
||||||
|
|
||||||
|
# Check the maximum amplitude of the audio file
|
||||||
|
tmp_max = np.abs(tmp_audio).max()
|
||||||
|
# Skip if the maximum amplitude is too high (volume is too loud)
|
||||||
|
if tmp_max > 2.2:
|
||||||
|
print(f"{wav_name}-filtered,{tmp_max}")
|
||||||
|
return
|
||||||
|
# Normalize the audio
|
||||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio
|
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio
|
||||||
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio
|
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio
|
||||||
tmp_audio = librosa.resample(
|
tmp_audio = librosa.resample(
|
||||||
tmp_audio32b, orig_sr=32000, target_sr=16000
|
tmp_audio32b, orig_sr=32000, target_sr=16000
|
||||||
) # 不是重采样问题
|
) # 不是重采样问题
|
||||||
tensor_wav16 = torch.from_numpy(tmp_audio)
|
tensor_wav16 = torch.from_numpy(tmp_audio)
|
||||||
if (is_half == True):
|
|
||||||
|
# if half-precision is enabled, convert the tensor to half-precision
|
||||||
|
if is_half:
|
||||||
tensor_wav16 = tensor_wav16.half().to(device)
|
tensor_wav16 = tensor_wav16.half().to(device)
|
||||||
else:
|
else:
|
||||||
tensor_wav16 = tensor_wav16.to(device)
|
tensor_wav16 = tensor_wav16.to(device)
|
||||||
|
|
||||||
|
# Extract HuBERT features from the audio file
|
||||||
ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() # torch.Size([1, 768, 215])
|
ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() # torch.Size([1, 768, 215])
|
||||||
|
|
||||||
if np.isnan(ssl.detach().numpy()).sum() != 0:
|
if np.isnan(ssl.detach().numpy()).sum() != 0:
|
||||||
nan_fails.append((wav_name, wav_path))
|
nan_fails.append((wav_name, wav_path))
|
||||||
print("nan filtered:%s"%wav_name)
|
print(f"nan filtered:{wav_name}")
|
||||||
return
|
return
|
||||||
wavfile.write(
|
wavfile.write(
|
||||||
"%s/%s"%(wav32dir,wav_name),
|
f"{wav32dir}/{wav_name}",
|
||||||
32000,
|
32000,
|
||||||
tmp_audio32.astype("int16"),
|
tmp_audio32.astype("int16"),
|
||||||
)
|
)
|
||||||
my_save(ssl, hubert_path)
|
my_save(ssl, hubert_path)
|
||||||
|
|
||||||
|
|
||||||
with open(inp_text, "r", encoding="utf8")as f:
|
with open(inp_text, "r", encoding="utf8")as f:
|
||||||
lines = f.read().strip("\n").split("\n")
|
lines = f.read().strip("\n").split("\n")
|
||||||
|
|
||||||
for line in lines[int(i_part)::int(all_parts)]:
|
for line in tqdm(lines[int(i_part)::int(all_parts)]):
|
||||||
try:
|
try:
|
||||||
# wav_name,text=line.split("\t")
|
# wav_name,text=line.split("\t")
|
||||||
wav_name, spk_name, language, text = line.split("|")
|
wav_name, spk_name, language, text = line.split("|")
|
||||||
wav_name = clean_path(wav_name)
|
wav_name = clean_path(wav_name)
|
||||||
if (inp_wav_dir != "" and inp_wav_dir != None):
|
if (inp_wav_dir != "" and inp_wav_dir is not None):
|
||||||
wav_name = os.path.basename(wav_name)
|
wav_name = os.path.basename(wav_name)
|
||||||
wav_path = "%s/%s"%(inp_wav_dir, wav_name)
|
wav_path = f"{inp_wav_dir}/{wav_name}"
|
||||||
|
|
||||||
else:
|
else:
|
||||||
wav_path = wav_name
|
wav_path = wav_name
|
||||||
@ -113,7 +148,7 @@ for line in lines[int(i_part)::int(all_parts)]:
|
|||||||
except:
|
except:
|
||||||
print(line, traceback.format_exc())
|
print(line, traceback.format_exc())
|
||||||
|
|
||||||
if(len(nan_fails)>0 and is_half==True):
|
if (len(nan_fails) > 0 and is_half):
|
||||||
is_half = False
|
is_half = False
|
||||||
model = model.float()
|
model = model.float()
|
||||||
for wav in nan_fails:
|
for wav in nan_fails:
|
||||||
|
@ -1,4 +1,12 @@
|
|||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import utils
|
||||||
|
|
||||||
|
from tools.my_utils import clean_path
|
||||||
|
|
||||||
inp_text = os.environ.get("inp_text")
|
inp_text = os.environ.get("inp_text")
|
||||||
exp_name = os.environ.get("exp_name")
|
exp_name = os.environ.get("exp_name")
|
||||||
@ -10,8 +18,10 @@ opt_dir = os.environ.get("opt_dir")
|
|||||||
pretrained_s2G = os.environ.get("pretrained_s2G")
|
pretrained_s2G = os.environ.get("pretrained_s2G")
|
||||||
s2config_path = os.environ.get("s2config_path")
|
s2config_path = os.environ.get("s2config_path")
|
||||||
|
|
||||||
if os.path.exists(pretrained_s2G):...
|
if os.path.exists(pretrained_s2G):
|
||||||
else:raise FileNotFoundError(pretrained_s2G)
|
...
|
||||||
|
else:
|
||||||
|
raise FileNotFoundError(pretrained_s2G)
|
||||||
# version=os.environ.get("version","v2")
|
# version=os.environ.get("version","v2")
|
||||||
size = os.path.getsize(pretrained_s2G)
|
size = os.path.getsize(pretrained_s2G)
|
||||||
if size < 82978 * 1024:
|
if size < 82978 * 1024:
|
||||||
@ -24,24 +34,14 @@ elif size < 700 * 1024 * 1024:
|
|||||||
version = "v2"
|
version = "v2"
|
||||||
else:
|
else:
|
||||||
version = "v3"
|
version = "v3"
|
||||||
import torch
|
|
||||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
import math, traceback
|
|
||||||
import multiprocessing
|
|
||||||
import sys, pdb
|
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
from random import shuffle
|
|
||||||
import torch.multiprocessing as mp
|
|
||||||
from glob import glob
|
|
||||||
from tqdm import tqdm
|
|
||||||
import logging, librosa, utils
|
|
||||||
if version != "v3":
|
if version != "v3":
|
||||||
from module.models import SynthesizerTrn
|
from module.models import SynthesizerTrn
|
||||||
else:
|
else:
|
||||||
from module.models import SynthesizerTrnV3 as SynthesizerTrn
|
from module.models import SynthesizerTrnV3 as SynthesizerTrn
|
||||||
from tools.my_utils import clean_path
|
|
||||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||||
# from config import pretrained_s2G
|
# from config import pretrained_s2G
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user