From c18c9a9eeda847d3982cf298ad8ccf69c0169097 Mon Sep 17 00:00:00 2001 From: laubonghaudoi Date: Wed, 19 Mar 2025 00:24:44 -0700 Subject: [PATCH] Reformat scripts --- .gitignore | 3 +- GPT_SoVITS/prepare_datasets/1-get-text.py | 49 ++--- .../prepare_datasets/2-get-hubert-wav32k.py | 169 +++++++++++------- GPT_SoVITS/prepare_datasets/3-get-semantic.py | 32 ++-- 4 files changed, 145 insertions(+), 108 deletions(-) diff --git a/.gitignore b/.gitignore index b7fec30..7662674 100644 --- a/.gitignore +++ b/.gitignore @@ -17,4 +17,5 @@ SoVITS_weights_v3 TEMP weight.json ffmpeg* -ffprobe* \ No newline at end of file +ffprobe* +zoengjyutgaai* \ No newline at end of file diff --git a/GPT_SoVITS/prepare_datasets/1-get-text.py b/GPT_SoVITS/prepare_datasets/1-get-text.py index bdeacc7..6ca5ded 100644 --- a/GPT_SoVITS/prepare_datasets/1-get-text.py +++ b/GPT_SoVITS/prepare_datasets/1-get-text.py @@ -1,6 +1,17 @@ # -*- coding: utf-8 -*- import os +import os.path +import shutil +import traceback +from time import time as ttime + +import torch +from text.cleaner import clean_text +from transformers import AutoModelForMaskedLM, AutoTokenizer +from tqdm import tqdm + +from tools.my_utils import clean_path inp_text = os.environ.get("inp_text") inp_wav_dir = os.environ.get("inp_wav_dir") @@ -8,20 +19,11 @@ exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") if "_CUDA_VISIBLE_DEVICES" in os.environ: - os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] opt_dir = os.environ.get("opt_dir") bert_pretrained_dir = os.environ.get("bert_pretrained_dir") -import torch is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() version = os.environ.get('version', None) -import sys, numpy as np, traceback, pdb -import os.path -from glob import glob -from tqdm import tqdm -from text.cleaner import clean_text -from transformers import AutoModelForMaskedLM, AutoTokenizer -import numpy as np -from tools.my_utils import clean_path # inp_text=sys.argv[1] # inp_wav_dir=sys.argv[2] @@ -32,17 +34,14 @@ from tools.my_utils import clean_path # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name # bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" -from time import time as ttime -import shutil - -def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path - dir=os.path.dirname(path) - name=os.path.basename(path) +def my_save(fea, path): # fix issue: torch.save doesn't support chinese path + dir = os.path.dirname(path) + name = os.path.basename(path) # tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) - tmp_path="%s%s.pth"%(ttime(),i_part) - torch.save(fea,tmp_path) - shutil.move(tmp_path,"%s/%s"%(dir,name)) + tmp_path = "%s%s.pth" % (ttime(), i_part) + torch.save(fea, tmp_path) + shutil.move(tmp_path, "%s/%s" % (dir, name)) txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) @@ -56,11 +55,13 @@ if os.path.exists(txt_path) == False: # device = "mps" else: device = "cpu" - if os.path.exists(bert_pretrained_dir):... - else:raise FileNotFoundError(bert_pretrained_dir) + if os.path.exists(bert_pretrained_dir): + ... + else: + raise FileNotFoundError(bert_pretrained_dir) tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir) bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir) - if is_half == True: + if is_half: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) @@ -86,7 +87,7 @@ if os.path.exists(txt_path) == False: def process(data, res): for name, text, lan in data: try: - name=clean_path(name) + name = clean_path(name) name = os.path.basename(name) print(name) phones, word2ph, norm_text = clean_text( @@ -126,7 +127,7 @@ if os.path.exists(txt_path) == False: "YUE": "yue", "Yue": "yue", } - for line in lines[int(i_part) :: int(all_parts)]: + for line in tqdm(lines[int(i_part):: int(all_parts)]): try: wav_name, spk_name, language, text = line.split("|") # todo.append([name,text,"zh"]) diff --git a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py index 27b61f2..d447ecb 100644 --- a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py +++ b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py @@ -1,25 +1,40 @@ -# -*- coding: utf-8 -*- +""" +Step 2 of data preparation: Extract HuBERT features from the audio files, +and resample the audio to 32kHz and saving it. +""" -import sys,os -inp_text= os.environ.get("inp_text") -inp_wav_dir= os.environ.get("inp_wav_dir") -exp_name= os.environ.get("exp_name") -i_part= os.environ.get("i_part") -all_parts= os.environ.get("all_parts") -if "_CUDA_VISIBLE_DEVICES" in os.environ: - os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] -from feature_extractor import cnhubert -opt_dir= os.environ.get("opt_dir") -cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") +import os +import shutil +import sys +import traceback +from time import time as ttime + +import librosa +import numpy as np import torch +from feature_extractor import cnhubert +from scipy.io import wavfile +from tqdm import tqdm + +from tools.my_utils import clean_path, load_audio + +inp_text = os.environ.get("inp_text") +inp_wav_dir = os.environ.get("inp_wav_dir") +exp_name = os.environ.get("exp_name") +i_part = os.environ.get("i_part") +all_parts = os.environ.get("all_parts") +if "_CUDA_VISIBLE_DEVICES" in os.environ: + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] + +opt_dir = os.environ.get("opt_dir") +cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir") + is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() -import pdb,traceback,numpy as np,logging -from scipy.io import wavfile -import librosa + now_dir = os.getcwd() sys.path.append(now_dir) -from tools.my_utils import load_audio,clean_path + # from config import cnhubert_base_path # cnhubert.cnhubert_base_path=cnhubert_base_path @@ -32,92 +47,112 @@ from tools.my_utils import load_audio,clean_path # cnhubert.cnhubert_base_path=sys.argv[7] # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name -from time import time as ttime -import shutil -def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path - dir=os.path.dirname(path) - name=os.path.basename(path) +def my_save(fea, path): # fix issue: torch.save doesn't support chinese path + dir = os.path.dirname(path) + name = os.path.basename(path) # tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) - tmp_path="%s%s.pth"%(ttime(),i_part) - torch.save(fea,tmp_path) - shutil.move(tmp_path,"%s/%s"%(dir,name)) + tmp_path = f"{ttime()}{i_part}.pth" + torch.save(fea, tmp_path) + shutil.move(tmp_path, f"{dir}/{name}") -hubert_dir="%s/4-cnhubert"%(opt_dir) -wav32dir="%s/5-wav32k"%(opt_dir) -os.makedirs(opt_dir,exist_ok=True) -os.makedirs(hubert_dir,exist_ok=True) -os.makedirs(wav32dir,exist_ok=True) -maxx=0.95 -alpha=0.5 +hubert_dir = "%s/4-cnhubert" % (opt_dir) +wav32dir = "%s/5-wav32k" % (opt_dir) +os.makedirs(opt_dir, exist_ok=True) +os.makedirs(hubert_dir, exist_ok=True) +os.makedirs(wav32dir, exist_ok=True) + +maxx = 0.95 +alpha = 0.5 if torch.cuda.is_available(): device = "cuda:0" # elif torch.backends.mps.is_available(): # device = "mps" else: device = "cpu" -model=cnhubert.get_model() + + +model = cnhubert.get_model() # is_half=False -if(is_half==True): - model=model.half().to(device) +if (is_half == True): + model = model.half().to(device) else: model = model.to(device) -nan_fails=[] -def name2go(wav_name,wav_path): - hubert_path="%s/%s.pt"%(hubert_dir,wav_name) - if(os.path.exists(hubert_path)):return - tmp_audio = load_audio(wav_path, 32000) - tmp_max = np.abs(tmp_audio).max() - if tmp_max > 2.2: - print("%s-filtered,%s" % (wav_name, tmp_max)) +nan_fails = [] + + +def name2go(wav_name, wav_path): + """ + Extract HuBERT features from the audio files, and resample the audio to 32kHz and saving it. + """ + # Skip if the file already exists + hubert_path = "%s/%s.pt" % (hubert_dir, wav_name) + if (os.path.exists(hubert_path)): return - tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio - tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio + + # Load the audio file in 32kHz sampling rate + tmp_audio = load_audio(wav_path, 32000) + + # Check the maximum amplitude of the audio file + tmp_max = np.abs(tmp_audio).max() + # Skip if the maximum amplitude is too high (volume is too loud) + if tmp_max > 2.2: + print(f"{wav_name}-filtered,{tmp_max}") + return + # Normalize the audio + tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio + tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio tmp_audio = librosa.resample( tmp_audio32b, orig_sr=32000, target_sr=16000 - )#不是重采样问题 + ) # 不是重采样问题 tensor_wav16 = torch.from_numpy(tmp_audio) - if (is_half == True): - tensor_wav16=tensor_wav16.half().to(device) + + # if half-precision is enabled, convert the tensor to half-precision + if is_half: + tensor_wav16 = tensor_wav16.half().to(device) else: tensor_wav16 = tensor_wav16.to(device) - ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215]) - if np.isnan(ssl.detach().numpy()).sum()!= 0: - nan_fails.append((wav_name,wav_path)) - print("nan filtered:%s"%wav_name) + + # Extract HuBERT features from the audio file + ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() # torch.Size([1, 768, 215]) + + if np.isnan(ssl.detach().numpy()).sum() != 0: + nan_fails.append((wav_name, wav_path)) + print(f"nan filtered:{wav_name}") return wavfile.write( - "%s/%s"%(wav32dir,wav_name), + f"{wav32dir}/{wav_name}", 32000, tmp_audio32.astype("int16"), ) - my_save(ssl,hubert_path) + my_save(ssl, hubert_path) -with open(inp_text,"r",encoding="utf8")as f: - lines=f.read().strip("\n").split("\n") -for line in lines[int(i_part)::int(all_parts)]: +with open(inp_text, "r", encoding="utf8")as f: + lines = f.read().strip("\n").split("\n") + +for line in tqdm(lines[int(i_part)::int(all_parts)]): try: # wav_name,text=line.split("\t") wav_name, spk_name, language, text = line.split("|") - wav_name=clean_path(wav_name) - if (inp_wav_dir != "" and inp_wav_dir != None): + wav_name = clean_path(wav_name) + if (inp_wav_dir != "" and inp_wav_dir is not None): wav_name = os.path.basename(wav_name) - wav_path = "%s/%s"%(inp_wav_dir, wav_name) + wav_path = f"{inp_wav_dir}/{wav_name}" else: - wav_path=wav_name + wav_path = wav_name wav_name = os.path.basename(wav_name) - name2go(wav_name,wav_path) + name2go(wav_name, wav_path) except: - print(line,traceback.format_exc()) + print(line, traceback.format_exc()) -if(len(nan_fails)>0 and is_half==True): - is_half=False - model=model.float() +if (len(nan_fails) > 0 and is_half): + is_half = False + model = model.float() for wav in nan_fails: try: - name2go(wav[0],wav[1]) + name2go(wav[0], wav[1]) except: - print(wav_name,traceback.format_exc()) + print(wav_name, traceback.format_exc()) diff --git a/GPT_SoVITS/prepare_datasets/3-get-semantic.py b/GPT_SoVITS/prepare_datasets/3-get-semantic.py index dbffa0e..6a8e7e3 100644 --- a/GPT_SoVITS/prepare_datasets/3-get-semantic.py +++ b/GPT_SoVITS/prepare_datasets/3-get-semantic.py @@ -1,17 +1,27 @@ +import logging import os +import sys +import traceback + +import torch +import utils + +from tools.my_utils import clean_path inp_text = os.environ.get("inp_text") exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") if "_CUDA_VISIBLE_DEVICES" in os.environ: - os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] + os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] opt_dir = os.environ.get("opt_dir") pretrained_s2G = os.environ.get("pretrained_s2G") s2config_path = os.environ.get("s2config_path") -if os.path.exists(pretrained_s2G):... -else:raise FileNotFoundError(pretrained_s2G) +if os.path.exists(pretrained_s2G): + ... +else: + raise FileNotFoundError(pretrained_s2G) # version=os.environ.get("version","v2") size = os.path.getsize(pretrained_s2G) if size < 82978 * 1024: @@ -24,24 +34,14 @@ elif size < 700 * 1024 * 1024: version = "v2" else: version = "v3" -import torch is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() -import math, traceback -import multiprocessing -import sys, pdb now_dir = os.getcwd() sys.path.append(now_dir) -from random import shuffle -import torch.multiprocessing as mp -from glob import glob -from tqdm import tqdm -import logging, librosa, utils -if version!="v3": +if version != "v3": from module.models import SynthesizerTrn else: from module.models import SynthesizerTrnV3 as SynthesizerTrn -from tools.my_utils import clean_path logging.getLogger("numba").setLevel(logging.WARNING) # from config import pretrained_s2G @@ -102,12 +102,12 @@ if os.path.exists(semantic_path) == False: lines = f.read().strip("\n").split("\n") lines1 = [] - for line in lines[int(i_part) :: int(all_parts)]: + for line in lines[int(i_part):: int(all_parts)]: # print(line) try: # wav_name,text=line.split("\t") wav_name, spk_name, language, text = line.split("|") - wav_name=clean_path(wav_name) + wav_name = clean_path(wav_name) wav_name = os.path.basename(wav_name) # name2go(name,lines1) name2go(wav_name, lines1)