Add zh/jp/en mix

This commit is contained in:
KamioRinn 2024-03-27 00:19:49 +08:00
parent 7bc0836d99
commit 436032214a

116
api.py
View File

@ -111,6 +111,7 @@ sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
import signal
import LangSegment
from time import time as ttime
import torch
import librosa
@ -249,6 +250,8 @@ def change_sovits_weights(sovits_path):
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
with open("./sweight.txt", "w", encoding="utf-8") as f:
f.write(sovits_path)
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
@ -283,6 +286,83 @@ def get_bert_feature(text, word2ph):
return phone_level_feature.T
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, norm_text, language):
language=language.replace("all_","")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
def get_phones_and_bert(text,language):
if language in {"en","all_zh","all_ja"}:
language = language.replace("all_","")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text_inf(formattext, language)
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja","auto"}:
textlist=[]
langlist=[]
LangSegment.setfilters(["zh","ja","en","ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "ko":
langlist.append("zh")
textlist.append(tmp["text"])
else:
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text
n_semantic = 1024
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
@ -342,15 +422,18 @@ def get_spepc(hps, filename):
dict_language = {
"中文": "zh",
"中文": "all_zh",
"英文": "en",
"日文": "ja",
"ZH": "zh",
"EN": "en",
"JA": "ja",
"zh": "zh",
"日文": "all_ja",
"中英混合": "zh",
"日英混合": "ja",
"多语种混合": "auto", #多语种启动切分识别语种
"all_zh": "all_zh",
"en": "en",
"ja": "ja"
"all_ja": "all_ja",
"zh": "zh",
"ja": "ja",
"auto": "auto",
}
@ -374,25 +457,14 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language)
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1 = cleaned_text_to_sequence(phones1)
prompt_language = dict_language[prompt_language.lower()]
text_language = dict_language[text_language.lower()]
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language)
texts = text.split("\n")
audio_opt = []
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if (prompt_language == "zh"):
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:
bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
device)
if (text_language == "zh"):
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)