Merge pull request #821 from KamioRinn/Optimize-English-G2P

调整英文格式化输出和英文G2P逻辑
This commit is contained in:
RVC-Boss 2024-03-20 23:48:50 +08:00 committed by GitHub
commit 7bc0836d99
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -8,6 +8,13 @@ from string import punctuation
from text import symbols
import unicodedata
from builtins import str as unicode
from g2p_en.expand import normalize_numbers
from nltk.tokenize import TweetTokenizer
word_tokenize = TweetTokenizer().tokenize
from nltk import pos_tag
current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
@ -188,9 +195,6 @@ def get_dict():
return g2p_dict
eng_dict = get_dict()
def text_normalize(text):
# todo: eng text normalize
# 适配中文及 g2p_en 标点
@ -204,6 +208,16 @@ def text_normalize(text):
for p, r in rep_map.items():
text = re.sub(p, r, text)
# 来自 g2p_en 文本格式化处理
# 增加大写兼容
text = unicode(text)
text = normalize_numbers(text)
text = ''.join(char for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn') # Strip accents
text = re.sub("[^ A-Za-z'.,?!\-]", "", text)
text = re.sub(r"(?i)i\.e\.", "that is", text)
text = re.sub(r"(?i)e\.g\.", "for example", text)
return text
@ -220,30 +234,85 @@ class en_G2p(G2p):
for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]:
del self.cmu[word.lower()]
# "A" 落单不读 "AH0" 读 "EY1"
self.cmu['a'] = [['EY1']]
def __call__(self, text):
# tokenization
words = word_tokenize(text)
tokens = pos_tag(words) # tuples of (word, tag)
# steps
prons = []
for o_word, pos in tokens:
# 还原 g2p_en 小写操作逻辑
word = o_word.lower()
if re.search("[a-z]", word) is None:
pron = [word]
# 先把单字母推出去
elif len(word) == 1:
# 单读 A 发音修正, 这里需要原格式 o_word 判断大写
if o_word == "A":
pron = ['EY1']
else:
pron = self.cmu[word][0]
# g2p_en 原版多音字处理
elif word in self.homograph2features: # Check homograph
pron1, pron2, pos1 = self.homograph2features[word]
if pos.startswith(pos1):
pron = pron1
else:
pron = pron2
else:
# 递归查找预测
pron = self.qryword(word)
prons.extend(pron)
prons.extend([" "])
return prons[:-1]
def predict(self, word):
# 小写 oov 长度小于等于 3 直接读字母
def qryword(self, word):
# 查字典, 单字母除外
if len(word) > 1 and word in self.cmu: # lookup CMU dict
return self.cmu[word][0]
# oov 长度小于等于 3 直接读字母
if (len(word) <= 3):
return [phone for w in word for phone in self(w)]
phones = []
for w in word:
# 单读 A 发音修正, 此处不存在大写的情况
if w == "a":
phones.extend(['EY1'])
else:
phones.extend(self.cmu[w][0])
return phones
# 尝试分离所有格
if re.match(r"^([a-z]+)('s)$", word):
phone = self(word[:-2])
phone.extend(['Z'])
return phone
phones = self.qryword(word[:-2])
# P T K F TH HH 无声辅音结尾 's 发 ['S']
if phones[-1] in ['P', 'T', 'K', 'F', 'TH', 'HH']:
phones.extend(['S'])
# S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z']
elif phones[-1] in ['S', 'Z', 'SH', 'ZH', 'CH', 'JH']:
phones.extend(['AH0', 'Z'])
# B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z']
# AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2
# ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z']
else:
phones.extend(['Z'])
return phones
# 尝试进行分词,应对复合词
comps = wordsegment.segment(word.lower())
# 无法分词的送回去预测
if len(comps)==1:
return super().predict(word)
return self.predict(word)
# 可以分词的递归处理
return [phone for comp in comps for phone in self(comp)]
return [phone for comp in comps for phone in self.qryword(comp)]
_g2p = en_G2p()
@ -258,12 +327,6 @@ def g2p(text):
if __name__ == "__main__":
# print(get_dict())
print(g2p("hello"))
print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
# all_phones = set()
# for k, syllables in eng_dict.items():
# for group in syllables:
# for ph in group:
# all_phones.add(ph)
# print(all_phones)
print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture.")))
print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")))