config.py引入class, requirement补全, 自述追加已测试环境

This commit is contained in:
Miuzarte 2024-01-20 14:15:02 +08:00
parent d2c2d4eb34
commit 21b9c20fc8
4 changed files with 75 additions and 33 deletions

3
.gitignore vendored
View File

@ -1,2 +1,3 @@
env
runtime
runtime
.idea

View File

@ -36,9 +36,12 @@ https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-
If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI.
### Python and PyTorch Version
### Tested Environments
Tested with Python 3.9, PyTorch 2.0.1, and CUDA 11.
- Python 3.9, PyTorch 2.0.1, CUDA 11
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
_Note: numba==0.56.4 require py<3.11_
### Quick Install with Conda
@ -90,7 +93,7 @@ Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWeb
### Pretrained Models
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS\pretrained_models`.
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`.

63
api.py
View File

@ -19,40 +19,37 @@ from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
from config import python_exec, infer_device, is_half, api_port
import config as global_config
DEFAULT_PORT = api_port
DEFAULT_CNHUBERT = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
DEFAULT_BERT = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
DEFAULT_HALF = is_half
DEFAULT_GPT = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
DEFAULT_SOVITS = "GPT_SoVITS/pretrained_models/s2G488k.pth"
g_config = global_config.Config()
# AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-g", "--gpt_path", type=str, default="", help="GPT模型路径")
parser.add_argument("-s", "--sovits_path", type=str, default="", help="SoVITS模型路径")
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
parser.add_argument("-dr", "--default_refer_path", type=str, default="",
help="默认参考音频路径, 请求缺少参考音频时调用")
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
parser.add_argument("-d", "--device", type=str, default=infer_device, help="cuda / cpu")
parser.add_argument("-p", "--port", type=int, default=DEFAULT_PORT, help="default: 9880")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
parser.add_argument("-hp", "--half_precision", action='store_true', default=False)
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
# bool值的用法为 `python ./api.py -fp ...`
# 此时 full_precision==True, half_precision==False
parser.add_argument("-hb", "--hubert_path", type=str, default=DEFAULT_CNHUBERT)
parser.add_argument("-b", "--bert_path", type=str, default=DEFAULT_BERT)
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
args = parser.parse_args()
gpt_path = args.gpt_path
sovits_path = args.sovits_path
gpt_path = args.gpt_path
default_refer_path = args.default_refer_path
default_refer_text = args.default_refer_text
@ -62,18 +59,15 @@ has_preset = False
device = args.device
port = args.port
host = args.bind_addr
is_half = args.half_precision
cnhubert_base_path = args.hubert_path
bert_path = args.bert_path
if gpt_path == "":
gpt_path = DEFAULT_GPT
print("[WARN] 未指定GPT模型路径")
if sovits_path == "":
sovits_path = DEFAULT_SOVITS
print("[WARN] 未指定SoVITS模型路径")
sovits_path = g_config.pretrained_sovits_path
print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
if gpt_path == "":
gpt_path = g_config.pretrained_gpt_path
print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}")
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
if default_refer_path == "" or default_refer_text == "" or default_refer_language == "":
default_refer_path, default_refer_text, default_refer_language = "", "", ""
print("[INFO] 未指定默认参考音频")
@ -84,17 +78,28 @@ else:
print(f"[INFO] 默认参考音频语种: {default_refer_language}")
has_preset = True
is_half = g_config.is_half
if args.full_precision:
is_half = False
if args.half_precision:
is_half = True
if args.full_precision and args.half_precision:
is_half = g_config.is_half # 炒饭fallback
print(f"[INFO] 半精: {is_half}")
cnhubert_base_path = args.hubert_path
bert_path = args.bert_path
cnhubert.cnhubert_base_path = cnhubert_base_path
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
# bert_model = AutoModelForSequenceClassification.from_pretrained(bert_path, config=bert_path+"/config.json")
if (is_half == True):
if is_half:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
@ -256,7 +261,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language)
def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language):
if command == "/restart":
os.execl(python_exec, python_exec, *sys.argv)
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
elif command == "/exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)

View File

@ -1,6 +1,16 @@
import sys
# 推理用的指定模型
sovits_path = ""
gpt_path = ""
is_half = True
cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
exp_root = "logs"
python_exec = sys.executable or "python"
infer_device = "cuda"
@ -11,3 +21,26 @@ webui_port_infer_tts = 9872
webui_port_subfix = 9871
api_port = 9880
class Config:
def __init__(self):
self.sovits_path = sovits_path
self.gpt_path = gpt_path
self.is_half = is_half
self.cnhubert_path = cnhubert_path
self.bert_path = bert_path
self.pretrained_sovits_path = pretrained_sovits_path
self.pretrained_gpt_path = pretrained_gpt_path
self.exp_root = exp_root
self.python_exec = python_exec
self.infer_device = infer_device
self.webui_port_main = webui_port_main
self.webui_port_uvr5 = webui_port_uvr5
self.webui_port_infer_tts = webui_port_infer_tts
self.webui_port_subfix = webui_port_subfix
self.api_port = api_port