diff --git a/.gitignore b/.gitignore index 3e82a98..ad5ee11 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ env -runtime \ No newline at end of file +runtime +.idea diff --git a/README.md b/README.md index 2adecf0..e6c71bf 100644 --- a/README.md +++ b/README.md @@ -36,9 +36,12 @@ https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350- If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI. -### Python and PyTorch Version +### Tested Environments -Tested with Python 3.9, PyTorch 2.0.1, and CUDA 11. +- Python 3.9, PyTorch 2.0.1, CUDA 11 +- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3 + +_Note: numba==0.56.4 require py<3.11_ ### Quick Install with Conda @@ -90,7 +93,7 @@ Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWeb ### Pretrained Models -Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS\pretrained_models`. +Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`. For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`. diff --git a/api.py b/api.py index 8a476cd..376b0bc 100644 --- a/api.py +++ b/api.py @@ -19,40 +19,37 @@ from text import cleaned_text_to_sequence from text.cleaner import clean_text from module.mel_processing import spectrogram_torch from my_utils import load_audio -from config import python_exec, infer_device, is_half, api_port +import config as global_config -DEFAULT_PORT = api_port -DEFAULT_CNHUBERT = "GPT_SoVITS/pretrained_models/chinese-hubert-base" -DEFAULT_BERT = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" -DEFAULT_HALF = is_half - -DEFAULT_GPT = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" -DEFAULT_SOVITS = "GPT_SoVITS/pretrained_models/s2G488k.pth" +g_config = global_config.Config() # AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu" parser = argparse.ArgumentParser(description="GPT-SoVITS api") -parser.add_argument("-g", "--gpt_path", type=str, default="", help="GPT模型路径") -parser.add_argument("-s", "--sovits_path", type=str, default="", help="SoVITS模型路径") +parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径") +parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径") parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径, 请求缺少参考音频时调用") parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") -parser.add_argument("-d", "--device", type=str, default=infer_device, help="cuda / cpu") -parser.add_argument("-p", "--port", type=int, default=DEFAULT_PORT, help="default: 9880") +parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu") +parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880") parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") -parser.add_argument("-hp", "--half_precision", action='store_true', default=False) +parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") +parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") +# bool值的用法为 `python ./api.py -fp ...` +# 此时 full_precision==True, half_precision==False -parser.add_argument("-hb", "--hubert_path", type=str, default=DEFAULT_CNHUBERT) -parser.add_argument("-b", "--bert_path", type=str, default=DEFAULT_BERT) +parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") +parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") args = parser.parse_args() -gpt_path = args.gpt_path sovits_path = args.sovits_path +gpt_path = args.gpt_path default_refer_path = args.default_refer_path default_refer_text = args.default_refer_text @@ -62,18 +59,15 @@ has_preset = False device = args.device port = args.port host = args.bind_addr -is_half = args.half_precision -cnhubert_base_path = args.hubert_path -bert_path = args.bert_path - -if gpt_path == "": - gpt_path = DEFAULT_GPT - print("[WARN] 未指定GPT模型路径") if sovits_path == "": - sovits_path = DEFAULT_SOVITS - print("[WARN] 未指定SoVITS模型路径") + sovits_path = g_config.pretrained_sovits_path + print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}") +if gpt_path == "": + gpt_path = g_config.pretrained_gpt_path + print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}") +# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 if default_refer_path == "" or default_refer_text == "" or default_refer_language == "": default_refer_path, default_refer_text, default_refer_language = "", "", "" print("[INFO] 未指定默认参考音频") @@ -84,17 +78,28 @@ else: print(f"[INFO] 默认参考音频语种: {default_refer_language}") has_preset = True +is_half = g_config.is_half +if args.full_precision: + is_half = False +if args.half_precision: + is_half = True +if args.full_precision and args.half_precision: + is_half = g_config.is_half # 炒饭fallback + +print(f"[INFO] 半精: {is_half}") + +cnhubert_base_path = args.hubert_path +bert_path = args.bert_path + cnhubert.cnhubert_base_path = cnhubert_base_path tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) -# bert_model = AutoModelForSequenceClassification.from_pretrained(bert_path, config=bert_path+"/config.json") -if (is_half == True): +if is_half: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) -# bert_model=bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") @@ -256,7 +261,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language) def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language): if command == "/restart": - os.execl(python_exec, python_exec, *sys.argv) + os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) elif command == "/exit": os.kill(os.getpid(), signal.SIGTERM) exit(0) diff --git a/config.py b/config.py index aeeffe5..504ca62 100644 --- a/config.py +++ b/config.py @@ -1,6 +1,16 @@ import sys + +# 推理用的指定模型 +sovits_path = "" +gpt_path = "" is_half = True + +cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" +bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" +pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" +pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" + exp_root = "logs" python_exec = sys.executable or "python" infer_device = "cuda" @@ -11,3 +21,26 @@ webui_port_infer_tts = 9872 webui_port_subfix = 9871 api_port = 9880 + + +class Config: + def __init__(self): + self.sovits_path = sovits_path + self.gpt_path = gpt_path + self.is_half = is_half + + self.cnhubert_path = cnhubert_path + self.bert_path = bert_path + self.pretrained_sovits_path = pretrained_sovits_path + self.pretrained_gpt_path = pretrained_gpt_path + + self.exp_root = exp_root + self.python_exec = python_exec + self.infer_device = infer_device + + self.webui_port_main = webui_port_main + self.webui_port_uvr5 = webui_port_uvr5 + self.webui_port_infer_tts = webui_port_infer_tts + self.webui_port_subfix = webui_port_subfix + + self.api_port = api_port