CogVideo/finetune/README_zh.md
2024-09-20 17:18:31 +08:00

120 lines
5.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# CogVideoX diffusers 微调方案
[Read this in English](./README_zh.md)
[日本語で読む](./README_ja.md)
本功能尚未完全完善如果您想查看SAT版本微调请查看[这里](../sat/README_zh.md)。其数据集格式与本版本不同。
## 硬件要求
+ CogVideoX-2B / 5B T2V LORA: 1 * A100 (5B need to use `--use_8bit_adam`)
+ CogVideoX-2B SFT: 8 * A100 (制作中)
+ CogVideoX-5B-I2V 暂未支持
## 安装依赖
由于相关代码还没有被合并到diffusers发行版你需要基于diffusers分支进行微调。请按照以下步骤安装依赖
```shell
git clone https://github.com/huggingface/diffusers.git
cd diffusers # Now in Main branch
pip install -e .
```
## 准备数据集
首先你需要准备数据集数据集格式如下其中videos.txt 存放 videos 中的视频。
```
.
├── prompts.txt
├── videos
└── videos.txt
```
你可以从这里下载 [迪士尼汽船威利号](https://huggingface.co/datasets/Wild-Heart/Disney-VideoGeneration-Dataset)
视频微调数据集作为测试微调。
## 配置文件和运行
`accelerate` 配置文件如下:
+ accelerate_config_machine_multi.yaml 适合多GPU使用
+ accelerate_config_machine_single.yaml 适合单GPU使用
`finetune` 脚本配置文件如下:
```shell
accelerate launch --config_file accelerate_config_machine_single.yaml --multi_gpu \ # 使用 accelerate 启动多GPU训练配置文件为 accelerate_config_machine_single.yaml
train_cogvideox_lora.py \ # 运行的训练脚本为 train_cogvideox_lora.py用于在 CogVideoX 模型上进行 LoRA 微调
--gradient_checkpointing \ # 启用梯度检查点功能,以减少显存使用
--pretrained_model_name_or_path $MODEL_PATH \ # 预训练模型路径,通过 $MODEL_PATH 指定
--cache_dir $CACHE_PATH \ # 模型缓存路径,由 $CACHE_PATH 指定
--enable_tiling \ # 启用tiling技术以分片处理视频节省显存
--enable_slicing \ # 启用slicing技术将输入切片以进一步优化内存
--instance_data_root $DATASET_PATH \ # 数据集路径,由 $DATASET_PATH 指定
--caption_column prompts.txt \ # 指定用于训练的视频描述文件,文件名为 prompts.txt
--video_column videos.txt \ # 指定用于训练的视频路径文件,文件名为 videos.txt
--validation_prompt "" \ # 验证集的提示语 (prompt),用于在训练期间生成验证视频
--validation_prompt_separator ::: \ # 设置验证提示语的分隔符为 :::
--num_validation_videos 1 \ # 每个验证回合生成 1 个视频
--validation_epochs 100 \ # 每 100 个训练epoch进行一次验证
--seed 42 \ # 设置随机种子为 42以保证结果的可复现性
--rank 128 \ # 设置 LoRA 参数的秩 (rank) 为 128
--lora_alpha 64 \ # 设置 LoRA 的 alpha 参数为 64用于调整LoRA的学习率
--mixed_precision bf16 \ # 使用 bf16 混合精度进行训练,减少显存使用
--output_dir $OUTPUT_PATH \ # 指定模型输出目录,由 $OUTPUT_PATH 定义
--height 480 \ # 视频高度为 480 像素
--width 720 \ # 视频宽度为 720 像素
--fps 8 \ # 视频帧率设置为 8 帧每秒
--max_num_frames 49 \ # 每个视频的最大帧数为 49 帧
--skip_frames_start 0 \ # 跳过视频开头的帧数为 0
--skip_frames_end 0 \ # 跳过视频结尾的帧数为 0
--train_batch_size 4 \ # 训练时的 batch size 设置为 4
--num_train_epochs 30 \ # 总训练epoch数为 30
--checkpointing_steps 1000 \ # 每 1000 步保存一次模型检查点
--gradient_accumulation_steps 1 \ # 梯度累计步数为 1即每个 batch 后都会更新梯度
--learning_rate 1e-3 \ # 学习率设置为 0.001
--lr_scheduler cosine_with_restarts \ # 使用带重启的余弦学习率调度器
--lr_warmup_steps 200 \ # 在训练的前 200 步进行学习率预热
--lr_num_cycles 1 \ # 学习率周期设置为 1
--optimizer AdamW \ # 使用 AdamW 优化器
--adam_beta1 0.9 \ # 设置 Adam 优化器的 beta1 参数为 0.9
--adam_beta2 0.95 \ # 设置 Adam 优化器的 beta2 参数为 0.95
--max_grad_norm 1.0 \ # 最大梯度裁剪值设置为 1.0
--allow_tf32 \ # 启用 TF32 以加速训练
--report_to wandb # 使用 Weights and Biases 进行训练记录与监控
```
## 运行脚本,开始微调
单机(单卡,多卡)微调:
```shell
bash finetune_single_rank.sh
```
多机多卡微调:
```shell
bash finetune_multi_rank.sh #需要在每个节点运行
```
## 载入微调的模型
+ 请关注[cli_demo.py](../inference/cli_demo.py) 以了解如何加载微调的模型。
## 最佳实践
+ 包含70个分辨率为 `200 x 480 x 720`(帧数 x 高 x
的训练视频。通过数据预处理中的帧跳过我们创建了两个较小的49帧和16帧数据集以加快实验速度因为CogVideoX团队建议的最大帧数限制是49帧。我们将70个视频分成三组分别为10、25和50个视频。这些视频的概念性质相似。
+ 25个及以上的视频在训练新概念和风格时效果最佳。
+ 现使用可以通过 `--id_token` 指定的标识符token进行训练效果更好。这类似于 Dreambooth 训练但不使用这种token的常规微调也可以工作。
+ 原始仓库使用 `lora_alpha` 设置为 1。我们发现这个值在多次运行中效果不佳可能是因为模型后端和训练设置的不同。我们的建议是将
lora_alpha 设置为与 rank 相同或 rank // 2。
+ 建议使用 rank 为 64 及以上的设置。