Yuxuan Zhang 39c6562dc8 format
2025-03-22 15:14:06 +08:00

90 lines
2.8 KiB
Python

import torch
import torch.distributed
from sat import mpu
from ...util import default, instantiate_from_config
class EDMSampling:
def __init__(self, p_mean=-1.2, p_std=1.2):
self.p_mean = p_mean
self.p_std = p_std
def __call__(self, n_samples, rand=None):
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,)))
return log_sigma.exp()
class DiscreteSampling:
def __init__(
self,
discretization_config,
num_idx,
do_append_zero=False,
flip=True,
uniform_sampling=False,
group_num=0,
):
self.num_idx = num_idx
self.sigmas = instantiate_from_config(discretization_config)(
num_idx, do_append_zero=do_append_zero, flip=flip
)
world_size = mpu.get_data_parallel_world_size()
if world_size <= 8:
uniform_sampling = False
self.uniform_sampling = uniform_sampling
self.group_num = group_num
if self.uniform_sampling:
assert self.group_num > 0
assert world_size % group_num == 0
self.group_width = world_size // group_num # the number of rank in one group
self.sigma_interval = self.num_idx // self.group_num
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def __call__(self, n_samples, rand=None, return_idx=False):
if self.uniform_sampling:
rank = mpu.get_data_parallel_rank()
group_index = rank // self.group_width
idx = default(
rand,
torch.randint(
group_index * self.sigma_interval,
(group_index + 1) * self.sigma_interval,
(n_samples,),
),
)
else:
idx = default(
rand,
torch.randint(0, self.num_idx, (n_samples,)),
)
if return_idx:
return self.idx_to_sigma(idx), idx
else:
return self.idx_to_sigma(idx)
class PartialDiscreteSampling:
def __init__(
self, discretization_config, total_num_idx, partial_num_idx, do_append_zero=False, flip=True
):
self.total_num_idx = total_num_idx
self.partial_num_idx = partial_num_idx
self.sigmas = instantiate_from_config(discretization_config)(
total_num_idx, do_append_zero=do_append_zero, flip=flip
)
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def __call__(self, n_samples, rand=None):
idx = default(
rand,
# torch.randint(self.total_num_idx-self.partial_num_idx, self.total_num_idx, (n_samples,)),
torch.randint(0, self.partial_num_idx, (n_samples,)),
)
return self.idx_to_sigma(idx)