import torch import torch.distributed from sat import mpu from ...util import default, instantiate_from_config class EDMSampling: def __init__(self, p_mean=-1.2, p_std=1.2): self.p_mean = p_mean self.p_std = p_std def __call__(self, n_samples, rand=None): log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,))) return log_sigma.exp() class DiscreteSampling: def __init__( self, discretization_config, num_idx, do_append_zero=False, flip=True, uniform_sampling=False, group_num=0, ): self.num_idx = num_idx self.sigmas = instantiate_from_config(discretization_config)( num_idx, do_append_zero=do_append_zero, flip=flip ) world_size = mpu.get_data_parallel_world_size() if world_size <= 8: uniform_sampling = False self.uniform_sampling = uniform_sampling self.group_num = group_num if self.uniform_sampling: assert self.group_num > 0 assert world_size % group_num == 0 self.group_width = world_size // group_num # the number of rank in one group self.sigma_interval = self.num_idx // self.group_num def idx_to_sigma(self, idx): return self.sigmas[idx] def __call__(self, n_samples, rand=None, return_idx=False): if self.uniform_sampling: rank = mpu.get_data_parallel_rank() group_index = rank // self.group_width idx = default( rand, torch.randint( group_index * self.sigma_interval, (group_index + 1) * self.sigma_interval, (n_samples,), ), ) else: idx = default( rand, torch.randint(0, self.num_idx, (n_samples,)), ) if return_idx: return self.idx_to_sigma(idx), idx else: return self.idx_to_sigma(idx) class PartialDiscreteSampling: def __init__( self, discretization_config, total_num_idx, partial_num_idx, do_append_zero=False, flip=True ): self.total_num_idx = total_num_idx self.partial_num_idx = partial_num_idx self.sigmas = instantiate_from_config(discretization_config)( total_num_idx, do_append_zero=do_append_zero, flip=flip ) def idx_to_sigma(self, idx): return self.sigmas[idx] def __call__(self, n_samples, rand=None): idx = default( rand, # torch.randint(self.total_num_idx-self.partial_num_idx, self.total_num_idx, (n_samples,)), torch.randint(0, self.partial_num_idx, (n_samples,)), ) return self.idx_to_sigma(idx)