mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
793 lines
42 KiB
Python
793 lines
42 KiB
Python
# -*- encoding: utf-8 -*-
|
||
'''
|
||
@File : cogvideo_pipeline.py
|
||
@Time : 2022/07/15 11:24:56
|
||
@Author : Wenyi Hong
|
||
@Version : 1.0
|
||
@Contact : hwy22@mails.tsinghua.edu.cn
|
||
'''
|
||
|
||
# here put the import lib
|
||
|
||
import os
|
||
import sys
|
||
import torch
|
||
import argparse
|
||
import time
|
||
from torchvision.utils import save_image
|
||
import stat
|
||
from icetk import icetk as tokenizer
|
||
import logging, sys
|
||
|
||
import torch.distributed as dist
|
||
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
|
||
|
||
|
||
from SwissArmyTransformer import get_args
|
||
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
|
||
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
|
||
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
|
||
from SwissArmyTransformer.resources import auto_create
|
||
|
||
from models.cogvideo_cache_model import CogVideoCacheModel
|
||
from coglm_strategy import CoglmStrategy
|
||
|
||
|
||
def get_masks_and_position_ids_stage1(data, textlen, framelen):
|
||
# Extract batch size and sequence length.
|
||
tokens = data
|
||
seq_length = len(data[0])
|
||
# Attention mask (lower triangular).
|
||
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
||
attention_mask[:, :textlen, textlen:] = 0
|
||
attention_mask[:, textlen:, textlen:].tril_()
|
||
attention_mask.unsqueeze_(1)
|
||
# Unaligned version
|
||
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
||
device=data.device)
|
||
torch.arange(textlen, out=position_ids[:textlen],
|
||
dtype=torch.long, device=data.device)
|
||
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
|
||
dtype=torch.long, device=data.device)
|
||
position_ids = position_ids.unsqueeze(0)
|
||
|
||
return tokens, attention_mask, position_ids
|
||
|
||
def get_masks_and_position_ids_stage2(data, textlen, framelen):
|
||
# Extract batch size and sequence length.
|
||
tokens = data
|
||
seq_length = len(data[0])
|
||
|
||
# Attention mask (lower triangular).
|
||
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
||
attention_mask[:, :textlen, textlen:] = 0
|
||
attention_mask[:, textlen:, textlen:].tril_()
|
||
attention_mask.unsqueeze_(1)
|
||
|
||
# Unaligned version
|
||
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
||
device=data.device)
|
||
torch.arange(textlen, out=position_ids[:textlen],
|
||
dtype=torch.long, device=data.device)
|
||
frame_num = (seq_length-textlen)//framelen
|
||
assert frame_num == 5
|
||
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
|
||
dtype=torch.long, device=data.device)
|
||
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
|
||
dtype=torch.long, device=data.device)
|
||
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
|
||
dtype=torch.long, device=data.device)
|
||
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
|
||
dtype=torch.long, device=data.device)
|
||
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
|
||
dtype=torch.long, device=data.device)
|
||
|
||
position_ids = position_ids.unsqueeze(0)
|
||
|
||
return tokens, attention_mask, position_ids
|
||
|
||
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
|
||
if hiddens is None:
|
||
return None, mems_indexs
|
||
mem_num = len(hiddens)
|
||
ret_mem = []
|
||
with torch.no_grad():
|
||
for id in range(mem_num):
|
||
if hiddens[id][0] is None:
|
||
ret_mem.append(None)
|
||
else:
|
||
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
|
||
if mems_indexs[id] == 0:
|
||
for layer, hidden in enumerate(hiddens[id]):
|
||
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
|
||
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
|
||
if new_mem_len_part2 > 0:
|
||
for layer, hidden in enumerate(hiddens[id]):
|
||
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
|
||
mems_indexs[id] = text_len+new_mem_len_part2
|
||
else:
|
||
for layer, hidden in enumerate(hiddens[id]):
|
||
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
|
||
mems_indexs[id] += hidden.shape[1]
|
||
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
|
||
return ret_mem, mems_indexs
|
||
|
||
|
||
def my_save_multiple_images(imgs, path, subdir, debug=True):
|
||
# imgs: list of tensor images
|
||
if debug:
|
||
imgs = torch.cat(imgs, dim=0)
|
||
print("\nSave to: ", path, flush=True)
|
||
save_image(imgs, path, normalize=True)
|
||
else:
|
||
print("\nSave to: ", path, flush=True)
|
||
single_frame_path = os.path.join(path, subdir)
|
||
os.makedirs(single_frame_path, exist_ok=True)
|
||
for i in range(len(imgs)):
|
||
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
|
||
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
||
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
|
||
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
||
|
||
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
|
||
# The fisrt token's position id of the frame that the next token belongs to;
|
||
if total_len < text_len:
|
||
return None
|
||
return (total_len-text_len)//frame_len * frame_len + text_len
|
||
|
||
def my_filling_sequence(
|
||
model,
|
||
args,
|
||
seq,
|
||
batch_size,
|
||
get_masks_and_position_ids,
|
||
text_len,
|
||
frame_len,
|
||
strategy=BaseStrategy(),
|
||
strategy2=BaseStrategy(),
|
||
mems=None,
|
||
log_text_attention_weights=0, # default to 0: no artificial change
|
||
mode_stage1=True,
|
||
enforce_no_swin=False,
|
||
guider_seq=None,
|
||
guider_text_len=0,
|
||
guidance_alpha=1,
|
||
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
|
||
**kw_args
|
||
):
|
||
'''
|
||
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
|
||
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
|
||
cache, should be first mems.shape[1] parts of context_tokens.
|
||
mems are the first-level citizens here, but we don't assume what is memorized.
|
||
input mems are used when multi-phase generation.
|
||
'''
|
||
if guider_seq is not None:
|
||
logging.debug("Using Guidance In Inference")
|
||
if limited_spatial_channel_mem:
|
||
logging.debug("Limit spatial-channel's mem to current frame")
|
||
assert len(seq.shape) == 2
|
||
|
||
# building the initial tokens, attention_mask, and position_ids
|
||
actual_context_length = 0
|
||
|
||
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
|
||
actual_context_length += 1 # [0, context_length-1] are given
|
||
assert actual_context_length > 0
|
||
current_frame_num = (actual_context_length-text_len) // frame_len
|
||
assert current_frame_num >= 0
|
||
context_length = text_len + current_frame_num * frame_len
|
||
|
||
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
|
||
tokens = tokens[..., :context_length]
|
||
input_tokens = tokens.clone()
|
||
|
||
if guider_seq is not None:
|
||
guider_index_delta = text_len - guider_text_len
|
||
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
|
||
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
|
||
guider_input_tokens = guider_tokens.clone()
|
||
|
||
for fid in range(current_frame_num):
|
||
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
|
||
if guider_seq is not None:
|
||
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
|
||
|
||
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
|
||
# initialize generation
|
||
counter = context_length - 1 # Last fixed index is ``counter''
|
||
index = 0 # Next forward starting index, also the length of cache.
|
||
mems_buffers_on_GPU = False
|
||
mems_indexs = [0, 0]
|
||
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
|
||
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
||
for mem_len in mems_len]
|
||
|
||
|
||
if guider_seq is not None:
|
||
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
|
||
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
||
for mem_len in mems_len]
|
||
guider_mems_indexs = [0, 0]
|
||
guider_mems = None
|
||
|
||
torch.cuda.empty_cache()
|
||
# step-by-step generation
|
||
while counter < len(seq[0]) - 1:
|
||
# we have generated counter+1 tokens
|
||
# Now, we want to generate seq[counter + 1],
|
||
# token[:, index: counter+1] needs forwarding.
|
||
if index == 0:
|
||
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
|
||
|
||
logits_all = None
|
||
for batch_idx in range(0, input_tokens.shape[0], group_size):
|
||
logits, *output_per_layers = model(
|
||
input_tokens[batch_idx:batch_idx+group_size, index:],
|
||
position_ids[..., index: counter+1],
|
||
attention_mask, # TODO memlen
|
||
mems=mems,
|
||
text_len=text_len,
|
||
frame_len=frame_len,
|
||
counter=counter,
|
||
log_text_attention_weights=log_text_attention_weights,
|
||
enforce_no_swin=enforce_no_swin,
|
||
**kw_args
|
||
)
|
||
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
|
||
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
|
||
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
|
||
for id, mem_kv in enumerate(mem_kv01):
|
||
for layer, mem_kv_perlayer in enumerate(mem_kv):
|
||
if limited_spatial_channel_mem and id == 0:
|
||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
|
||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
|
||
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
|
||
else:
|
||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
||
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
|
||
if limited_spatial_channel_mem:
|
||
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
|
||
|
||
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
||
logits = logits_all
|
||
|
||
# Guider
|
||
if guider_seq is not None:
|
||
guider_logits_all = None
|
||
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
|
||
guider_logits, *guider_output_per_layers = model(
|
||
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
|
||
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
||
guider_attention_mask,
|
||
mems=guider_mems,
|
||
text_len=guider_text_len,
|
||
frame_len=frame_len,
|
||
counter=counter-guider_index_delta,
|
||
log_text_attention_weights=log_text_attention_weights,
|
||
enforce_no_swin=enforce_no_swin,
|
||
**kw_args
|
||
)
|
||
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
|
||
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
|
||
for id, guider_mem_kv in enumerate(guider_mem_kv01):
|
||
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
|
||
if limited_spatial_channel_mem and id == 0:
|
||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
|
||
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
|
||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
|
||
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
|
||
else:
|
||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
||
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
|
||
if limited_spatial_channel_mem:
|
||
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
|
||
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
||
guider_logits = guider_logits_all
|
||
else:
|
||
if not mems_buffers_on_GPU:
|
||
if not mode_stage1:
|
||
torch.cuda.empty_cache()
|
||
for idx, mem in enumerate(mems):
|
||
mems[idx] = mem.to(next(model.parameters()).device)
|
||
if guider_seq is not None:
|
||
for idx, mem in enumerate(guider_mems):
|
||
guider_mems[idx] = mem.to(next(model.parameters()).device)
|
||
else:
|
||
torch.cuda.empty_cache()
|
||
for idx, mem_buffer in enumerate(mems_buffers):
|
||
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
||
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
||
if guider_seq is not None:
|
||
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
||
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
||
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
||
mems_buffers_on_GPU = True
|
||
|
||
logits, *output_per_layers = model(
|
||
input_tokens[:, index:],
|
||
position_ids[..., index: counter+1],
|
||
attention_mask, # TODO memlen
|
||
mems=mems,
|
||
text_len=text_len,
|
||
frame_len=frame_len,
|
||
counter=counter,
|
||
log_text_attention_weights=log_text_attention_weights,
|
||
enforce_no_swin=enforce_no_swin,
|
||
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
||
**kw_args
|
||
)
|
||
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
|
||
|
||
if guider_seq is not None:
|
||
guider_logits, *guider_output_per_layers = model(
|
||
guider_input_tokens[:, max(index-guider_index_delta, 0):],
|
||
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
||
guider_attention_mask,
|
||
mems=guider_mems,
|
||
text_len=guider_text_len,
|
||
frame_len=frame_len,
|
||
counter=counter-guider_index_delta,
|
||
log_text_attention_weights=0,
|
||
enforce_no_swin=enforce_no_swin,
|
||
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
||
**kw_args
|
||
)
|
||
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
|
||
|
||
if not mems_buffers_on_GPU:
|
||
torch.cuda.empty_cache()
|
||
for idx, mem_buffer in enumerate(mems_buffers):
|
||
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
||
if guider_seq is not None:
|
||
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
||
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
||
mems_buffers_on_GPU = True
|
||
|
||
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
|
||
if guider_seq is not None:
|
||
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
|
||
|
||
|
||
counter += 1
|
||
index = counter
|
||
|
||
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
|
||
tokens = tokens.expand(batch_size, -1)
|
||
if guider_seq is not None:
|
||
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
|
||
guider_tokens = guider_tokens.expand(batch_size, -1)
|
||
|
||
if seq[-1][counter].item() < 0:
|
||
# sampling
|
||
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
|
||
if mode_stage1 and counter < text_len + 400:
|
||
tokens, mems = strategy.forward(guided_logits, tokens, mems)
|
||
else:
|
||
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
|
||
if guider_seq is not None:
|
||
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
|
||
|
||
if seq[0][counter].item() >= 0:
|
||
for si in range(seq.shape[0]):
|
||
if seq[si][counter].item() >= 0:
|
||
tokens[si, -1] = seq[si, counter]
|
||
if guider_seq is not None:
|
||
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
|
||
|
||
else:
|
||
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
|
||
if guider_seq is not None:
|
||
guider_tokens = torch.cat((guider_tokens,
|
||
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
|
||
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
|
||
|
||
input_tokens = tokens.clone()
|
||
if guider_seq is not None:
|
||
guider_input_tokens = guider_tokens.clone()
|
||
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
|
||
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
|
||
while boi_idx < input_tokens.shape[-1]:
|
||
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
|
||
if guider_seq is not None:
|
||
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
|
||
boi_idx += 400
|
||
|
||
if strategy.is_done:
|
||
break
|
||
return strategy.finalize(tokens, mems)
|
||
|
||
class InferenceModel_Sequential(CogVideoCacheModel):
|
||
def __init__(self, args, transformer=None, parallel_output=True):
|
||
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
|
||
# TODO: check it
|
||
|
||
def final_forward(self, logits, **kwargs):
|
||
logits_parallel = logits
|
||
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
||
return logits_parallel
|
||
|
||
class InferenceModel_Interpolate(CogVideoCacheModel):
|
||
def __init__(self, args, transformer=None, parallel_output=True):
|
||
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
|
||
# TODO: check it
|
||
|
||
def final_forward(self, logits, **kwargs):
|
||
logits_parallel = logits
|
||
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
||
return logits_parallel
|
||
|
||
def main(args):
|
||
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
|
||
rank_id = args.device % args.parallel_size
|
||
generate_frame_num = args.generate_frame_num
|
||
|
||
if args.stage_1 or args.both_stages:
|
||
model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
|
||
model_stage1.eval()
|
||
if args.both_stages:
|
||
model_stage1 = model_stage1.cpu()
|
||
|
||
if args.stage_2 or args.both_stages:
|
||
model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
|
||
model_stage2.eval()
|
||
if args.both_stages:
|
||
model_stage2 = model_stage2.cpu()
|
||
|
||
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
||
strategy_cogview2 = CoglmStrategy(invalid_slices,
|
||
temperature=1.0, top_k=16)
|
||
strategy_cogvideo = CoglmStrategy(invalid_slices,
|
||
temperature=args.temperature, top_k=args.top_k,
|
||
temperature2=args.coglm_temperature2)
|
||
if not args.stage_1:
|
||
from sr_pipeline import DirectSuperResolution
|
||
dsr_path = auto_create('cogview2-dsr', path=None) # path=os.getenv('SAT_HOME', '~/.sat_models')
|
||
dsr = DirectSuperResolution(args, dsr_path,
|
||
max_bz=12, onCUDA=False)
|
||
|
||
def process_stage2(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1):
|
||
stage2_starttime = time.time()
|
||
use_guidance = args.use_guidance_stage2
|
||
if args.both_stages:
|
||
move_start_time = time.time()
|
||
logging.debug("moving stage-2 model to cuda")
|
||
model = model.cuda()
|
||
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
|
||
|
||
try:
|
||
if parent_given_tokens is None:
|
||
assert conddir is not None
|
||
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
|
||
sample_num_allgpu = parent_given_tokens.shape[0]
|
||
sample_num = sample_num_allgpu // gpu_parallel_size
|
||
assert sample_num * gpu_parallel_size == sample_num_allgpu
|
||
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
|
||
except:
|
||
logging.critical("No frame_tokens found in interpolation, skip")
|
||
return False
|
||
|
||
# CogVideo Stage2 Generation
|
||
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
|
||
parent_given_tokens_num = parent_given_tokens.shape[1]
|
||
generate_batchsize_persample = (parent_given_tokens_num-1)//2
|
||
generate_batchsize_total = generate_batchsize_persample * sample_num
|
||
total_frames = generate_frame_num
|
||
frame_len = 400
|
||
enc_text = tokenizer.encode(seq_text)
|
||
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
||
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||
text_len = len(seq) - frame_len*generate_frame_num - 1
|
||
|
||
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
|
||
|
||
# generation
|
||
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
||
for sample_i in range(sample_num):
|
||
for i in range(generate_batchsize_persample):
|
||
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
||
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
||
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
||
|
||
if use_guidance:
|
||
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
|
||
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
||
for sample_i in range(sample_num):
|
||
for i in range(generate_batchsize_persample):
|
||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
||
video_log_text_attention_weights = 0
|
||
else:
|
||
guider_seq=None
|
||
guider_text_len=0
|
||
video_log_text_attention_weights = 1.4
|
||
|
||
mbz = args.max_inference_batch_size
|
||
|
||
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
|
||
output_list = []
|
||
start_time = time.time()
|
||
for tim in range(max(generate_batchsize_total // mbz, 1)):
|
||
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
||
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
||
output_list.append(
|
||
my_filling_sequence(model, args, input_seq,
|
||
batch_size=min(generate_batchsize_total, mbz),
|
||
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
|
||
text_len=text_len, frame_len=frame_len,
|
||
strategy=strategy_cogview2,
|
||
strategy2=strategy_cogvideo,
|
||
log_text_attention_weights=video_log_text_attention_weights,
|
||
mode_stage1=False,
|
||
guider_seq=guider_seq2,
|
||
guider_text_len=guider_text_len,
|
||
guidance_alpha=args.guidance_alpha,
|
||
limited_spatial_channel_mem=True,
|
||
)[0]
|
||
)
|
||
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
|
||
|
||
output_tokens = torch.cat(output_list, dim=0)
|
||
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
|
||
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
|
||
output_tokens[:, :, 400*3:4*400],
|
||
output_tokens[:, :, 400*1:2*400],
|
||
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
|
||
|
||
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
|
||
duration /= 2
|
||
parent_given_tokens = output_tokens_merge
|
||
|
||
if args.both_stages:
|
||
move_start_time = time.time()
|
||
logging.debug("moving stage 2 model to cpu")
|
||
model = model.cpu()
|
||
torch.cuda.empty_cache()
|
||
logging.debug("moving out model2 takes time: {:.2f}".format(time.time()-move_start_time))
|
||
|
||
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
|
||
|
||
# decoding
|
||
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
|
||
# os.makedirs(output_dir_full_path, exist_ok=True)
|
||
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
|
||
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
|
||
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
|
||
|
||
# direct super-resolution by CogView2
|
||
logging.info("[Direct super-resolution]")
|
||
dsr_starttime = time.time()
|
||
enc_text = tokenizer.encode(seq_text)
|
||
frame_num_per_sample = parent_given_tokens.shape[1]
|
||
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
|
||
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
|
||
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
|
||
decoded_sr_videos = []
|
||
|
||
for sample_i in range(sample_num):
|
||
decoded_sr_imgs = []
|
||
for frame_i in range(frame_num_per_sample):
|
||
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
|
||
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
|
||
decoded_sr_videos.append(decoded_sr_imgs)
|
||
|
||
for sample_i in range(sample_num):
|
||
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
|
||
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125")
|
||
|
||
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
|
||
|
||
return True
|
||
|
||
|
||
def process_stage1(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
|
||
process_start_time = time.time()
|
||
use_guide = args.use_guidance_stage1
|
||
if args.both_stages:
|
||
move_start_time = time.time()
|
||
logging.debug("moving stage 1 model to cuda")
|
||
model = model.cuda()
|
||
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
|
||
|
||
if video_raw_text is None:
|
||
video_raw_text = seq_text
|
||
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
|
||
assert batch_size < mbz or batch_size % mbz == 0
|
||
frame_len = 400
|
||
|
||
# generate the first frame:
|
||
enc_text = tokenizer.encode(seq_text+image_text_suffix)
|
||
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
|
||
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
|
||
text_len_1st = len(seq_1st) - frame_len*1 - 1
|
||
|
||
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
|
||
output_list_1st = []
|
||
for tim in range(max(batch_size // mbz, 1)):
|
||
start_time = time.time()
|
||
output_list_1st.append(
|
||
my_filling_sequence(model, args,seq_1st.clone(),
|
||
batch_size=min(batch_size, mbz),
|
||
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
||
text_len=text_len_1st,
|
||
frame_len=frame_len,
|
||
strategy=strategy_cogview2,
|
||
strategy2=strategy_cogvideo,
|
||
log_text_attention_weights=1.4,
|
||
enforce_no_swin=True,
|
||
mode_stage1=True,
|
||
)[0]
|
||
)
|
||
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
|
||
output_tokens_1st = torch.cat(output_list_1st, dim=0)
|
||
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
|
||
|
||
# generate subsequent frames:
|
||
total_frames = generate_frame_num
|
||
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
||
if use_guide:
|
||
video_raw_text = video_raw_text + " 视频"
|
||
enc_text_video = tokenizer.encode(video_raw_text)
|
||
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
|
||
|
||
text_len = len(seq) - frame_len*generate_frame_num - 1
|
||
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
|
||
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
||
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
||
|
||
for given_frame_id in range(given_tokens.shape[1]):
|
||
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
||
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
||
output_list = []
|
||
|
||
if use_guide:
|
||
video_log_text_attention_weights = 0
|
||
else:
|
||
guider_seq = None
|
||
video_log_text_attention_weights = 1.4
|
||
|
||
for tim in range(max(batch_size // mbz, 1)):
|
||
start_time = time.time()
|
||
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
||
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
||
output_list.append(
|
||
my_filling_sequence(model, args,input_seq,
|
||
batch_size=min(batch_size, mbz),
|
||
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
||
text_len=text_len, frame_len=frame_len,
|
||
strategy=strategy_cogview2,
|
||
strategy2=strategy_cogvideo,
|
||
log_text_attention_weights=video_log_text_attention_weights,
|
||
guider_seq=guider_seq2,
|
||
guider_text_len=guider_text_len,
|
||
guidance_alpha=args.guidance_alpha,
|
||
limited_spatial_channel_mem=True,
|
||
mode_stage1=True,
|
||
)[0]
|
||
)
|
||
|
||
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
|
||
|
||
if args.both_stages:
|
||
move_start_time = time.time()
|
||
logging.debug("moving stage 1 model to cpu")
|
||
model = model.cpu()
|
||
torch.cuda.empty_cache()
|
||
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
|
||
|
||
# decoding
|
||
imgs, sred_imgs, txts = [], [], []
|
||
for seq in output_tokens:
|
||
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
|
||
imgs.append(decoded_imgs) # only the last image (target)
|
||
|
||
assert len(imgs) == batch_size
|
||
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
|
||
if outputdir is not None:
|
||
for clip_i in range(len(imgs)):
|
||
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
|
||
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
|
||
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
|
||
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
|
||
|
||
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
|
||
|
||
return save_tokens
|
||
|
||
# ======================================================================================================
|
||
|
||
if args.stage_1 or args.both_stages:
|
||
if args.input_source != "interactive":
|
||
with open(args.input_source, 'r') as fin:
|
||
promptlist = fin.readlines()
|
||
promptlist = [p.strip() for p in promptlist]
|
||
else:
|
||
promptlist = None
|
||
|
||
now_qi = -1
|
||
while True:
|
||
now_qi += 1
|
||
|
||
if promptlist is not None: # with input-source
|
||
if args.multi_gpu:
|
||
if now_qi % dist.get_world_size() != dist.get_rank():
|
||
continue
|
||
rk = dist.get_rank()
|
||
else:
|
||
rk = 0
|
||
raw_text = promptlist[now_qi]
|
||
raw_text = raw_text.strip()
|
||
print(f'Working on Line No. {now_qi} on {rk}... [{raw_text}]')
|
||
else: # interactive
|
||
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
|
||
raw_text = raw_text.strip()
|
||
if not raw_text:
|
||
print('Query should not be empty!')
|
||
continue
|
||
if raw_text == "stop":
|
||
return
|
||
|
||
try:
|
||
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
|
||
parent_given_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频",
|
||
image_text_suffix=" 高清摄影",
|
||
outputdir=path if args.stage_1 else None, batch_size=args.batch_size)
|
||
if args.both_stages:
|
||
process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
|
||
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
|
||
outputdir=path,
|
||
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
|
||
except (ValueError, FileNotFoundError) as e:
|
||
print(e)
|
||
continue
|
||
|
||
elif args.stage_2:
|
||
sample_dirs = os.listdir(args.output_path)
|
||
for sample in sample_dirs:
|
||
raw_text = sample.split('_')[-1]
|
||
path = os.path.join(args.output_path, sample, 'Interp')
|
||
parent_given_tokens = torch.load(os.path.join(args.output_path, sample, "frame_tokens.pt"))
|
||
|
||
process_stage2(raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
|
||
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
|
||
outputdir=path,
|
||
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
|
||
|
||
else:
|
||
assert False
|
||
|
||
|
||
if __name__ == "__main__":
|
||
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
|
||
|
||
py_parser = argparse.ArgumentParser(add_help=False)
|
||
py_parser.add_argument('--generate-frame-num', type=int, default=5)
|
||
py_parser.add_argument('--coglm-temperature2', type=float, default=0.89)
|
||
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧
|
||
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
|
||
py_parser.add_argument('--use-guidance-stage1', action='store_true')
|
||
py_parser.add_argument('--use-guidance-stage2', action='store_true')
|
||
py_parser.add_argument('--guidance-alpha', type=float, default=3.0)
|
||
py_parser.add_argument('--stage-1', action='store_true') # stage 1: sequential generation
|
||
py_parser.add_argument('--stage-2', action='store_true') # stage 2: interp + dsr
|
||
py_parser.add_argument('--both-stages', action='store_true') # stage 1&2: sequential generation; interp + dsr
|
||
py_parser.add_argument('--parallel-size', type=int, default=1)
|
||
py_parser.add_argument('--stage1-max-inference-batch-size', type=int, default=-1) # -1: use max-inference-batch-size
|
||
py_parser.add_argument('--multi-gpu', action='store_true')
|
||
|
||
CogVideoCacheModel.add_model_specific_args(py_parser)
|
||
|
||
known, args_list = py_parser.parse_known_args()
|
||
args = get_args(args_list)
|
||
args = argparse.Namespace(**vars(args), **vars(known))
|
||
args.layout = [int(x) for x in args.layout.split(',')]
|
||
args.do_train = False
|
||
|
||
torch.cuda.set_device(args.device)
|
||
|
||
with torch.no_grad():
|
||
main(args) |