CogVideo/cogvideo_pipeline.py
2022-07-16 21:52:20 +08:00

793 lines
42 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- encoding: utf-8 -*-
'''
@File : cogvideo_pipeline.py
@Time : 2022/07/15 11:24:56
@Author : Wenyi Hong
@Version : 1.0
@Contact : hwy22@mails.tsinghua.edu.cn
'''
# here put the import lib
import os
import sys
import torch
import argparse
import time
from torchvision.utils import save_image
import stat
from icetk import icetk as tokenizer
import logging, sys
import torch.distributed as dist
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
from SwissArmyTransformer import get_args
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
from SwissArmyTransformer.resources import auto_create
from models.cogvideo_cache_model import CogVideoCacheModel
from coglm_strategy import CoglmStrategy
def get_masks_and_position_ids_stage1(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def get_masks_and_position_ids_stage2(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
frame_num = (seq_length-textlen)//framelen
assert frame_num == 5
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
if hiddens is None:
return None, mems_indexs
mem_num = len(hiddens)
ret_mem = []
with torch.no_grad():
for id in range(mem_num):
if hiddens[id][0] is None:
ret_mem.append(None)
else:
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
if mems_indexs[id] == 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
if new_mem_len_part2 > 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
mems_indexs[id] = text_len+new_mem_len_part2
else:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
mems_indexs[id] += hidden.shape[1]
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
return ret_mem, mems_indexs
def my_save_multiple_images(imgs, path, subdir, debug=True):
# imgs: list of tensor images
if debug:
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", path, flush=True)
save_image(imgs, path, normalize=True)
else:
print("\nSave to: ", path, flush=True)
single_frame_path = os.path.join(path, subdir)
os.makedirs(single_frame_path, exist_ok=True)
for i in range(len(imgs)):
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
# The fisrt token's position id of the frame that the next token belongs to;
if total_len < text_len:
return None
return (total_len-text_len)//frame_len * frame_len + text_len
def my_filling_sequence(
model,
args,
seq,
batch_size,
get_masks_and_position_ids,
text_len,
frame_len,
strategy=BaseStrategy(),
strategy2=BaseStrategy(),
mems=None,
log_text_attention_weights=0, # default to 0: no artificial change
mode_stage1=True,
enforce_no_swin=False,
guider_seq=None,
guider_text_len=0,
guidance_alpha=1,
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
if guider_seq is not None:
logging.debug("Using Guidance In Inference")
if limited_spatial_channel_mem:
logging.debug("Limit spatial-channel's mem to current frame")
assert len(seq.shape) == 2
# building the initial tokens, attention_mask, and position_ids
actual_context_length = 0
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
actual_context_length += 1 # [0, context_length-1] are given
assert actual_context_length > 0
current_frame_num = (actual_context_length-text_len) // frame_len
assert current_frame_num >= 0
context_length = text_len + current_frame_num * frame_len
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
tokens = tokens[..., :context_length]
input_tokens = tokens.clone()
if guider_seq is not None:
guider_index_delta = text_len - guider_text_len
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
guider_input_tokens = guider_tokens.clone()
for fid in range(current_frame_num):
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
# initialize generation
counter = context_length - 1 # Last fixed index is ``counter''
index = 0 # Next forward starting index, also the length of cache.
mems_buffers_on_GPU = False
mems_indexs = [0, 0]
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
if guider_seq is not None:
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
guider_mems_indexs = [0, 0]
guider_mems = None
torch.cuda.empty_cache()
# step-by-step generation
while counter < len(seq[0]) - 1:
# we have generated counter+1 tokens
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
if index == 0:
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
logits_all = None
for batch_idx in range(0, input_tokens.shape[0], group_size):
logits, *output_per_layers = model(
input_tokens[batch_idx:batch_idx+group_size, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
for id, mem_kv in enumerate(mem_kv01):
for layer, mem_kv_perlayer in enumerate(mem_kv):
if limited_spatial_channel_mem and id == 0:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
else:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
logits = logits_all
# Guider
if guider_seq is not None:
guider_logits_all = None
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
for id, guider_mem_kv in enumerate(guider_mem_kv01):
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
if limited_spatial_channel_mem and id == 0:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
else:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
guider_logits = guider_logits_all
else:
if not mems_buffers_on_GPU:
if not mode_stage1:
torch.cuda.empty_cache()
for idx, mem in enumerate(mems):
mems[idx] = mem.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, mem in enumerate(guider_mems):
guider_mems[idx] = mem.to(next(model.parameters()).device)
else:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
mems_buffers_on_GPU = True
logits, *output_per_layers = model(
input_tokens[:, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
if guider_seq is not None:
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[:, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=0,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
if not mems_buffers_on_GPU:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
mems_buffers_on_GPU = True
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
if guider_seq is not None:
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
counter += 1
index = counter
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
tokens = tokens.expand(batch_size, -1)
if guider_seq is not None:
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
guider_tokens = guider_tokens.expand(batch_size, -1)
if seq[-1][counter].item() < 0:
# sampling
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
if mode_stage1 and counter < text_len + 400:
tokens, mems = strategy.forward(guided_logits, tokens, mems)
else:
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
if seq[0][counter].item() >= 0:
for si in range(seq.shape[0]):
if seq[si][counter].item() >= 0:
tokens[si, -1] = seq[si, counter]
if guider_seq is not None:
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
else:
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens,
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
input_tokens = tokens.clone()
if guider_seq is not None:
guider_input_tokens = guider_tokens.clone()
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
while boi_idx < input_tokens.shape[-1]:
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
boi_idx += 400
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
class InferenceModel_Sequential(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
class InferenceModel_Interpolate(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def main(args):
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
rank_id = args.device % args.parallel_size
generate_frame_num = args.generate_frame_num
if args.stage_1 or args.both_stages:
model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
model_stage1.eval()
if args.both_stages:
model_stage1 = model_stage1.cpu()
if args.stage_2 or args.both_stages:
model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
model_stage2.eval()
if args.both_stages:
model_stage2 = model_stage2.cpu()
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0, top_k=16)
strategy_cogvideo = CoglmStrategy(invalid_slices,
temperature=args.temperature, top_k=args.top_k,
temperature2=args.coglm_temperature2)
if not args.stage_1:
from sr_pipeline import DirectSuperResolution
dsr_path = auto_create('cogview2-dsr', path=None) # path=os.getenv('SAT_HOME', '~/.sat_models')
dsr = DirectSuperResolution(args, dsr_path,
max_bz=12, onCUDA=False)
def process_stage2(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1):
stage2_starttime = time.time()
use_guidance = args.use_guidance_stage2
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage-2 model to cuda")
model = model.cuda()
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
try:
if parent_given_tokens is None:
assert conddir is not None
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
except:
logging.critical("No frame_tokens found in interpolation, skip")
return False
# CogVideo Stage2 Generation
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
parent_given_tokens_num = parent_given_tokens.shape[1]
generate_batchsize_persample = (parent_given_tokens_num-1)//2
generate_batchsize_total = generate_batchsize_persample * sample_num
total_frames = generate_frame_num
frame_len = 400
enc_text = tokenizer.encode(seq_text)
enc_duration = tokenizer.encode(str(float(duration))+"")
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
text_len = len(seq) - frame_len*generate_frame_num - 1
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
# generation
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
if use_guidance:
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
video_log_text_attention_weights = 0
else:
guider_seq=None
guider_text_len=0
video_log_text_attention_weights = 1.4
mbz = args.max_inference_batch_size
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
output_list = []
start_time = time.time()
for tim in range(max(generate_batchsize_total // mbz, 1)):
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args, input_seq,
batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
mode_stage1=False,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
)[0]
)
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
output_tokens = torch.cat(output_list, dim=0)
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
output_tokens[:, :, 400*3:4*400],
output_tokens[:, :, 400*1:2*400],
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
duration /= 2
parent_given_tokens = output_tokens_merge
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 2 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving out model2 takes time: {:.2f}".format(time.time()-move_start_time))
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
# decoding
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
# os.makedirs(output_dir_full_path, exist_ok=True)
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
# direct super-resolution by CogView2
logging.info("[Direct super-resolution]")
dsr_starttime = time.time()
enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
decoded_sr_videos = []
for sample_i in range(sample_num):
decoded_sr_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
decoded_sr_videos.append(decoded_sr_imgs)
for sample_i in range(sample_num):
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125")
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
return True
def process_stage1(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
process_start_time = time.time()
use_guide = args.use_guidance_stage1
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cuda")
model = model.cuda()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
if video_raw_text is None:
video_raw_text = seq_text
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400
# generate the first frame:
enc_text = tokenizer.encode(seq_text+image_text_suffix)
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
text_len_1st = len(seq_1st) - frame_len*1 - 1
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
output_list_1st = []
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
output_list_1st.append(
my_filling_sequence(model, args,seq_1st.clone(),
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len_1st,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=1.4,
enforce_no_swin=True,
mode_stage1=True,
)[0]
)
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
output_tokens_1st = torch.cat(output_list_1st, dim=0)
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
# generate subsequent frames:
total_frames = generate_frame_num
enc_duration = tokenizer.encode(str(float(duration))+"")
if use_guide:
video_raw_text = video_raw_text + " 视频"
enc_text_video = tokenizer.encode(video_raw_text)
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
text_len = len(seq) - frame_len*generate_frame_num - 1
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
for given_frame_id in range(given_tokens.shape[1]):
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
output_list = []
if use_guide:
video_log_text_attention_weights = 0
else:
guider_seq = None
video_log_text_attention_weights = 1.4
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args,input_seq,
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
mode_stage1=True,
)[0]
)
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
# decoding
imgs, sred_imgs, txts = [], [], []
for seq in output_tokens:
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
imgs.append(decoded_imgs) # only the last image (target)
assert len(imgs) == batch_size
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
if outputdir is not None:
for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
return save_tokens
# ======================================================================================================
if args.stage_1 or args.both_stages:
if args.input_source != "interactive":
with open(args.input_source, 'r') as fin:
promptlist = fin.readlines()
promptlist = [p.strip() for p in promptlist]
else:
promptlist = None
now_qi = -1
while True:
now_qi += 1
if promptlist is not None: # with input-source
if args.multi_gpu:
if now_qi % dist.get_world_size() != dist.get_rank():
continue
rk = dist.get_rank()
else:
rk = 0
raw_text = promptlist[now_qi]
raw_text = raw_text.strip()
print(f'Working on Line No. {now_qi} on {rk}... [{raw_text}]')
else: # interactive
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
raw_text = raw_text.strip()
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
return
try:
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
parent_given_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频",
image_text_suffix=" 高清摄影",
outputdir=path if args.stage_1 else None, batch_size=args.batch_size)
if args.both_stages:
process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
except (ValueError, FileNotFoundError) as e:
print(e)
continue
elif args.stage_2:
sample_dirs = os.listdir(args.output_path)
for sample in sample_dirs:
raw_text = sample.split('_')[-1]
path = os.path.join(args.output_path, sample, 'Interp')
parent_given_tokens = torch.load(os.path.join(args.output_path, sample, "frame_tokens.pt"))
process_stage2(raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
else:
assert False
if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--generate-frame-num', type=int, default=5)
py_parser.add_argument('--coglm-temperature2', type=float, default=0.89)
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成0是超分0.5/1/2是插帧
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
py_parser.add_argument('--use-guidance-stage1', action='store_true')
py_parser.add_argument('--use-guidance-stage2', action='store_true')
py_parser.add_argument('--guidance-alpha', type=float, default=3.0)
py_parser.add_argument('--stage-1', action='store_true') # stage 1: sequential generation
py_parser.add_argument('--stage-2', action='store_true') # stage 2: interp + dsr
py_parser.add_argument('--both-stages', action='store_true') # stage 1&2: sequential generation; interp + dsr
py_parser.add_argument('--parallel-size', type=int, default=1)
py_parser.add_argument('--stage1-max-inference-batch-size', type=int, default=-1) # -1: use max-inference-batch-size
py_parser.add_argument('--multi-gpu', action='store_true')
CogVideoCacheModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
args.do_train = False
torch.cuda.set_device(args.device)
with torch.no_grad():
main(args)