mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
Release code
This commit is contained in:
parent
fa1048e7a7
commit
51c42e97bd
8
.gitignore
vendored
Normal file
8
.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
output/
|
||||
*__pycache__/
|
||||
samples*/
|
||||
runs/
|
||||
checkpoints/
|
||||
master_ip
|
||||
logs/
|
||||
*.DS_Store
|
58
README.md
58
README.md
@ -2,9 +2,30 @@
|
||||
|
||||
This is the official repo for the paper: [CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](http://arxiv.org/abs/2205.15868).
|
||||
|
||||
**News!** The [demo](https://wudao.aminer.cn/cogvideo/) for CogVideo is available!
|
||||
|
||||
**News!** The code and model for text-to-video generation is now available! Currently we only supports *simplified Chinese input*.
|
||||
|
||||
https://user-images.githubusercontent.com/48993524/170857367-2033c514-3c9f-4297-876f-2468592a254b.mp4
|
||||
|
||||
* **Read** our paper [CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868) on ArXiv for a formal introduction.
|
||||
* **Try** our demo at [https://wudao.aminer.cn/cogvideo/](https://wudao.aminer.cn/cogvideo/)
|
||||
* **Run** our pretrained models for text-to-video generation. Please use A100 GPU.
|
||||
* **Cite** our paper if you find our work helpful
|
||||
|
||||
```
|
||||
@article{hong2022cogvideo,
|
||||
title={CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers},
|
||||
author={Hong, Wenyi and Ding, Ming and Zheng, Wendi and Liu, Xinghan and Tang, Jie},
|
||||
journal={arXiv preprint arXiv:2205.15868},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
|
||||
## Web Demo
|
||||
|
||||
The demo for CogVideo is at [https://wudao.aminer.cn/cogvideo/](https://wudao.aminer.cn/cogvideo/), where you can get hands-on practice on text-to-video generation. *The original input is in Chinese.*
|
||||
|
||||
|
||||
## Generated Samples
|
||||
|
||||
@ -20,3 +41,40 @@ https://user-images.githubusercontent.com/48993524/170857367-2033c514-3c9f-4297-
|
||||
A 4-second clip of 32 frames is shown below.
|
||||
|
||||

|
||||
|
||||
## Getting Started
|
||||
|
||||
### Setup
|
||||
|
||||
* Hardware: Linux servers with Nvidia A100s are recommended, but it is also okay to run the pretrained models with smaller `--max-inference-batch-size` and `--batch-size` or training smaller models on less powerful GPUs.
|
||||
* Environment: install dependencies via `pip install -r requirements.txt`.
|
||||
* LocalAttention: Make sure you have CUDA installed and compile the local attention kernel.
|
||||
|
||||
```shell
|
||||
git clone https://github.com/Sleepychord/Image-Local-Attention
|
||||
cd Image-Local-Attention && python setup.py install
|
||||
```
|
||||
|
||||
### Download
|
||||
|
||||
Our code will automatically download or detect the models into the path defined by environment variable `SAT_HOME`. You can also manually download [CogVideo-Stage1](https://lfs.aminer.cn/misc/cogvideo/cogvideo-stage1.zip) and [CogVideo-Stage2](https://lfs.aminer.cn/misc/cogvideo/cogvideo-stage2.zip) and place them under SAT_HOME (with folders named `cogvideo-stage1` and `cogvideo-stage2`)
|
||||
|
||||
### Text-to-Video Generation
|
||||
|
||||
```
|
||||
./script/inference_cogvideo_pipeline.sh
|
||||
```
|
||||
|
||||
Arguments useful in inference are mainly:
|
||||
|
||||
* `--input-source [path or "interactive"]`. The path of the input file with one query per line. A CLI would be launched when using "interactive".
|
||||
* `--output-path [path]`. The folder containing the results.
|
||||
* `--batch-size [int]`. The number of samples will be generated per query.
|
||||
* `--max-inference-batch-size [int]`. Maximum batch size per forward. Reduce it if OOM.
|
||||
* `--stage1-max-inference-batch-size [int]` Maximum batch size per forward in Stage 1. Reduce it if OOM.
|
||||
* `--both-stages`. Run both stage1 and stage2 sequentially.
|
||||
* `--use-guidance-stage1` Use classifier-free guidance in stage1, which is strongly suggested to get better results.
|
||||
|
||||
You'd better specify an environment variable `SAT_HOME` to specify the path to store the downloaded model.
|
||||
|
||||
*Currently only Chinese input is supported.*
|
||||
|
BIN
cluster_label2.npy
Normal file
BIN
cluster_label2.npy
Normal file
Binary file not shown.
101
coglm_strategy.py
Normal file
101
coglm_strategy.py
Normal file
@ -0,0 +1,101 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : coglm_strategy.py
|
||||
@Time : 2021/10/08 22:22:42
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-65504):
|
||||
# This function has been mostly taken from huggingface conversational ai code at
|
||||
# https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
|
||||
|
||||
if top_k > 0:
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p > 0.0:
|
||||
# convert to 1D
|
||||
logits = logits.view(logits.size()[1]).contiguous()
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
||||
logits[indices_to_remove] = filter_value
|
||||
# going back to 2D
|
||||
logits = logits.view(1, -1).contiguous()
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
class CoglmStrategy:
|
||||
def __init__(self, invalid_slices=[], temperature=1., top_k=200, eps=1e-4, top_p=0.0, end_tokens=None, temperature2=0.89):
|
||||
self.invalid_slices = invalid_slices
|
||||
self.temperature = temperature
|
||||
self.temperature2 = temperature2
|
||||
self.topk = top_k
|
||||
self.top_p = top_p
|
||||
self.eps = eps
|
||||
if end_tokens is None:
|
||||
end_tokens = []
|
||||
self.end_tokens = end_tokens
|
||||
self._is_done = False
|
||||
self.outlier_count_down = torch.zeros(16)
|
||||
self.vis_list = [[]for i in range(16)]
|
||||
self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
|
||||
self.start_pos = -1
|
||||
self.white_cluster = []
|
||||
# self.fout = open('tmp.txt', 'w')
|
||||
|
||||
@property
|
||||
def is_done(self) -> bool:
|
||||
return self._is_done
|
||||
|
||||
def forward(self, logits, tokens, mems, temperature=None, temperature2=None):
|
||||
if temperature is None:
|
||||
temperature = self.temperature
|
||||
if temperature2 is None:
|
||||
temperature2 = self.temperature2
|
||||
logits = logits / temperature
|
||||
for invalid_slice in self.invalid_slices:
|
||||
logits[..., invalid_slice] = -65504
|
||||
|
||||
rprobs = F.softmax(logits.float(), dim=-1)
|
||||
c = self.cluster_labels.expand(*rprobs.shape)
|
||||
cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs)
|
||||
# self.fout.write(str(tokens.shape[-1])+ ' ' + str(cprobs.topk(10)) + '\n')
|
||||
# self.fout.flush()
|
||||
best_scores, best_clusters = cprobs.topk(self.topk)
|
||||
bz = logits.shape[0]
|
||||
for i in range(bz):
|
||||
selected_cluster = best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)]
|
||||
logits[i, self.cluster_labels != selected_cluster] = -65504
|
||||
|
||||
# logits = top_k_logits(logits, self.topk, self.top_p)
|
||||
probs = F.softmax(logits.float()/temperature2, dim=-1) # float is essetial, due to a bug in Pytorch
|
||||
pred = torch.multinomial(probs, num_samples=1)
|
||||
|
||||
if pred.numel() == 1 and pred.item() in self.end_tokens:
|
||||
self._is_done = True
|
||||
tokens = torch.cat((tokens, pred.view(tokens.shape[0], 1)), dim=1)
|
||||
return tokens, mems
|
||||
|
||||
def finalize(self, tokens, mems):
|
||||
self._is_done = False
|
||||
return tokens, mems
|
793
cogvideo_pipeline.py
Normal file
793
cogvideo_pipeline.py
Normal file
@ -0,0 +1,793 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : cogvideo_pipeline.py
|
||||
@Time : 2022/07/15 11:24:56
|
||||
@Author : Wenyi Hong
|
||||
@Version : 1.0
|
||||
@Contact : hwy22@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import argparse
|
||||
import time
|
||||
from torchvision.utils import save_image
|
||||
import stat
|
||||
from icetk import icetk as tokenizer
|
||||
import logging, sys
|
||||
|
||||
import torch.distributed as dist
|
||||
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
|
||||
|
||||
|
||||
from SwissArmyTransformer import get_args
|
||||
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
|
||||
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
|
||||
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
|
||||
from SwissArmyTransformer.resources import auto_create
|
||||
|
||||
from models.cogvideo_cache_model import CogVideoCacheModel
|
||||
from coglm_strategy import CoglmStrategy
|
||||
|
||||
|
||||
def get_masks_and_position_ids_stage1(data, textlen, framelen):
|
||||
# Extract batch size and sequence length.
|
||||
tokens = data
|
||||
seq_length = len(data[0])
|
||||
# Attention mask (lower triangular).
|
||||
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
||||
attention_mask[:, :textlen, textlen:] = 0
|
||||
attention_mask[:, textlen:, textlen:].tril_()
|
||||
attention_mask.unsqueeze_(1)
|
||||
# Unaligned version
|
||||
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
||||
device=data.device)
|
||||
torch.arange(textlen, out=position_ids[:textlen],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
|
||||
dtype=torch.long, device=data.device)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
def get_masks_and_position_ids_stage2(data, textlen, framelen):
|
||||
# Extract batch size and sequence length.
|
||||
tokens = data
|
||||
seq_length = len(data[0])
|
||||
|
||||
# Attention mask (lower triangular).
|
||||
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
||||
attention_mask[:, :textlen, textlen:] = 0
|
||||
attention_mask[:, textlen:, textlen:].tril_()
|
||||
attention_mask.unsqueeze_(1)
|
||||
|
||||
# Unaligned version
|
||||
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
||||
device=data.device)
|
||||
torch.arange(textlen, out=position_ids[:textlen],
|
||||
dtype=torch.long, device=data.device)
|
||||
frame_num = (seq_length-textlen)//framelen
|
||||
assert frame_num == 5
|
||||
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
|
||||
dtype=torch.long, device=data.device)
|
||||
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
|
||||
if hiddens is None:
|
||||
return None, mems_indexs
|
||||
mem_num = len(hiddens)
|
||||
ret_mem = []
|
||||
with torch.no_grad():
|
||||
for id in range(mem_num):
|
||||
if hiddens[id][0] is None:
|
||||
ret_mem.append(None)
|
||||
else:
|
||||
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
|
||||
if mems_indexs[id] == 0:
|
||||
for layer, hidden in enumerate(hiddens[id]):
|
||||
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
|
||||
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
|
||||
if new_mem_len_part2 > 0:
|
||||
for layer, hidden in enumerate(hiddens[id]):
|
||||
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
|
||||
mems_indexs[id] = text_len+new_mem_len_part2
|
||||
else:
|
||||
for layer, hidden in enumerate(hiddens[id]):
|
||||
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
|
||||
mems_indexs[id] += hidden.shape[1]
|
||||
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
|
||||
return ret_mem, mems_indexs
|
||||
|
||||
|
||||
def my_save_multiple_images(imgs, path, subdir, debug=True):
|
||||
# imgs: list of tensor images
|
||||
if debug:
|
||||
imgs = torch.cat(imgs, dim=0)
|
||||
print("\nSave to: ", path, flush=True)
|
||||
save_image(imgs, path, normalize=True)
|
||||
else:
|
||||
print("\nSave to: ", path, flush=True)
|
||||
single_frame_path = os.path.join(path, subdir)
|
||||
os.makedirs(single_frame_path, exist_ok=True)
|
||||
for i in range(len(imgs)):
|
||||
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
|
||||
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
||||
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
|
||||
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
||||
|
||||
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
|
||||
# The fisrt token's position id of the frame that the next token belongs to;
|
||||
if total_len < text_len:
|
||||
return None
|
||||
return (total_len-text_len)//frame_len * frame_len + text_len
|
||||
|
||||
def my_filling_sequence(
|
||||
model,
|
||||
args,
|
||||
seq,
|
||||
batch_size,
|
||||
get_masks_and_position_ids,
|
||||
text_len,
|
||||
frame_len,
|
||||
strategy=BaseStrategy(),
|
||||
strategy2=BaseStrategy(),
|
||||
mems=None,
|
||||
log_text_attention_weights=0, # default to 0: no artificial change
|
||||
mode_stage1=True,
|
||||
enforce_no_swin=False,
|
||||
guider_seq=None,
|
||||
guider_text_len=0,
|
||||
guidance_alpha=1,
|
||||
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
|
||||
**kw_args
|
||||
):
|
||||
'''
|
||||
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
|
||||
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
|
||||
cache, should be first mems.shape[1] parts of context_tokens.
|
||||
mems are the first-level citizens here, but we don't assume what is memorized.
|
||||
input mems are used when multi-phase generation.
|
||||
'''
|
||||
if guider_seq is not None:
|
||||
logging.debug("Using Guidance In Inference")
|
||||
if limited_spatial_channel_mem:
|
||||
logging.debug("Limit spatial-channel's mem to current frame")
|
||||
assert len(seq.shape) == 2
|
||||
|
||||
# building the initial tokens, attention_mask, and position_ids
|
||||
actual_context_length = 0
|
||||
|
||||
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
|
||||
actual_context_length += 1 # [0, context_length-1] are given
|
||||
assert actual_context_length > 0
|
||||
current_frame_num = (actual_context_length-text_len) // frame_len
|
||||
assert current_frame_num >= 0
|
||||
context_length = text_len + current_frame_num * frame_len
|
||||
|
||||
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
|
||||
tokens = tokens[..., :context_length]
|
||||
input_tokens = tokens.clone()
|
||||
|
||||
if guider_seq is not None:
|
||||
guider_index_delta = text_len - guider_text_len
|
||||
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
|
||||
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
|
||||
guider_input_tokens = guider_tokens.clone()
|
||||
|
||||
for fid in range(current_frame_num):
|
||||
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
|
||||
if guider_seq is not None:
|
||||
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
|
||||
|
||||
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
|
||||
# initialize generation
|
||||
counter = context_length - 1 # Last fixed index is ``counter''
|
||||
index = 0 # Next forward starting index, also the length of cache.
|
||||
mems_buffers_on_GPU = False
|
||||
mems_indexs = [0, 0]
|
||||
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
|
||||
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
||||
for mem_len in mems_len]
|
||||
|
||||
|
||||
if guider_seq is not None:
|
||||
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
|
||||
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
||||
for mem_len in mems_len]
|
||||
guider_mems_indexs = [0, 0]
|
||||
guider_mems = None
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
# step-by-step generation
|
||||
while counter < len(seq[0]) - 1:
|
||||
# we have generated counter+1 tokens
|
||||
# Now, we want to generate seq[counter + 1],
|
||||
# token[:, index: counter+1] needs forwarding.
|
||||
if index == 0:
|
||||
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
|
||||
|
||||
logits_all = None
|
||||
for batch_idx in range(0, input_tokens.shape[0], group_size):
|
||||
logits, *output_per_layers = model(
|
||||
input_tokens[batch_idx:batch_idx+group_size, index:],
|
||||
position_ids[..., index: counter+1],
|
||||
attention_mask, # TODO memlen
|
||||
mems=mems,
|
||||
text_len=text_len,
|
||||
frame_len=frame_len,
|
||||
counter=counter,
|
||||
log_text_attention_weights=log_text_attention_weights,
|
||||
enforce_no_swin=enforce_no_swin,
|
||||
**kw_args
|
||||
)
|
||||
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
|
||||
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
|
||||
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
|
||||
for id, mem_kv in enumerate(mem_kv01):
|
||||
for layer, mem_kv_perlayer in enumerate(mem_kv):
|
||||
if limited_spatial_channel_mem and id == 0:
|
||||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
|
||||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
|
||||
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
|
||||
else:
|
||||
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
||||
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
|
||||
if limited_spatial_channel_mem:
|
||||
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
|
||||
|
||||
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
||||
logits = logits_all
|
||||
|
||||
# Guider
|
||||
if guider_seq is not None:
|
||||
guider_logits_all = None
|
||||
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
|
||||
guider_logits, *guider_output_per_layers = model(
|
||||
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
|
||||
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
||||
guider_attention_mask,
|
||||
mems=guider_mems,
|
||||
text_len=guider_text_len,
|
||||
frame_len=frame_len,
|
||||
counter=counter-guider_index_delta,
|
||||
log_text_attention_weights=log_text_attention_weights,
|
||||
enforce_no_swin=enforce_no_swin,
|
||||
**kw_args
|
||||
)
|
||||
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
|
||||
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
|
||||
for id, guider_mem_kv in enumerate(guider_mem_kv01):
|
||||
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
|
||||
if limited_spatial_channel_mem and id == 0:
|
||||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
|
||||
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
|
||||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
|
||||
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
|
||||
else:
|
||||
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
||||
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
|
||||
if limited_spatial_channel_mem:
|
||||
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
|
||||
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
||||
guider_logits = guider_logits_all
|
||||
else:
|
||||
if not mems_buffers_on_GPU:
|
||||
if not mode_stage1:
|
||||
torch.cuda.empty_cache()
|
||||
for idx, mem in enumerate(mems):
|
||||
mems[idx] = mem.to(next(model.parameters()).device)
|
||||
if guider_seq is not None:
|
||||
for idx, mem in enumerate(guider_mems):
|
||||
guider_mems[idx] = mem.to(next(model.parameters()).device)
|
||||
else:
|
||||
torch.cuda.empty_cache()
|
||||
for idx, mem_buffer in enumerate(mems_buffers):
|
||||
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
||||
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
||||
if guider_seq is not None:
|
||||
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
||||
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
||||
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
||||
mems_buffers_on_GPU = True
|
||||
|
||||
logits, *output_per_layers = model(
|
||||
input_tokens[:, index:],
|
||||
position_ids[..., index: counter+1],
|
||||
attention_mask, # TODO memlen
|
||||
mems=mems,
|
||||
text_len=text_len,
|
||||
frame_len=frame_len,
|
||||
counter=counter,
|
||||
log_text_attention_weights=log_text_attention_weights,
|
||||
enforce_no_swin=enforce_no_swin,
|
||||
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
||||
**kw_args
|
||||
)
|
||||
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
|
||||
|
||||
if guider_seq is not None:
|
||||
guider_logits, *guider_output_per_layers = model(
|
||||
guider_input_tokens[:, max(index-guider_index_delta, 0):],
|
||||
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
||||
guider_attention_mask,
|
||||
mems=guider_mems,
|
||||
text_len=guider_text_len,
|
||||
frame_len=frame_len,
|
||||
counter=counter-guider_index_delta,
|
||||
log_text_attention_weights=0,
|
||||
enforce_no_swin=enforce_no_swin,
|
||||
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
||||
**kw_args
|
||||
)
|
||||
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
|
||||
|
||||
if not mems_buffers_on_GPU:
|
||||
torch.cuda.empty_cache()
|
||||
for idx, mem_buffer in enumerate(mems_buffers):
|
||||
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
||||
if guider_seq is not None:
|
||||
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
||||
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
||||
mems_buffers_on_GPU = True
|
||||
|
||||
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
|
||||
if guider_seq is not None:
|
||||
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
|
||||
|
||||
|
||||
counter += 1
|
||||
index = counter
|
||||
|
||||
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
|
||||
tokens = tokens.expand(batch_size, -1)
|
||||
if guider_seq is not None:
|
||||
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
|
||||
guider_tokens = guider_tokens.expand(batch_size, -1)
|
||||
|
||||
if seq[-1][counter].item() < 0:
|
||||
# sampling
|
||||
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
|
||||
if mode_stage1 and counter < text_len + 400:
|
||||
tokens, mems = strategy.forward(guided_logits, tokens, mems)
|
||||
else:
|
||||
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
|
||||
if guider_seq is not None:
|
||||
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
|
||||
|
||||
if seq[0][counter].item() >= 0:
|
||||
for si in range(seq.shape[0]):
|
||||
if seq[si][counter].item() >= 0:
|
||||
tokens[si, -1] = seq[si, counter]
|
||||
if guider_seq is not None:
|
||||
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
|
||||
|
||||
else:
|
||||
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
|
||||
if guider_seq is not None:
|
||||
guider_tokens = torch.cat((guider_tokens,
|
||||
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
|
||||
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
|
||||
|
||||
input_tokens = tokens.clone()
|
||||
if guider_seq is not None:
|
||||
guider_input_tokens = guider_tokens.clone()
|
||||
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
|
||||
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
|
||||
while boi_idx < input_tokens.shape[-1]:
|
||||
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
|
||||
if guider_seq is not None:
|
||||
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
|
||||
boi_idx += 400
|
||||
|
||||
if strategy.is_done:
|
||||
break
|
||||
return strategy.finalize(tokens, mems)
|
||||
|
||||
class InferenceModel_Sequential(CogVideoCacheModel):
|
||||
def __init__(self, args, transformer=None, parallel_output=True):
|
||||
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
|
||||
# TODO: check it
|
||||
|
||||
def final_forward(self, logits, **kwargs):
|
||||
logits_parallel = logits
|
||||
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
||||
return logits_parallel
|
||||
|
||||
class InferenceModel_Interpolate(CogVideoCacheModel):
|
||||
def __init__(self, args, transformer=None, parallel_output=True):
|
||||
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
|
||||
# TODO: check it
|
||||
|
||||
def final_forward(self, logits, **kwargs):
|
||||
logits_parallel = logits
|
||||
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
||||
return logits_parallel
|
||||
|
||||
def main(args):
|
||||
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
|
||||
rank_id = args.device % args.parallel_size
|
||||
generate_frame_num = args.generate_frame_num
|
||||
|
||||
if args.stage_1 or args.both_stages:
|
||||
model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
|
||||
model_stage1.eval()
|
||||
if args.both_stages:
|
||||
model_stage1 = model_stage1.cpu()
|
||||
|
||||
if args.stage_2 or args.both_stages:
|
||||
model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
|
||||
model_stage2.eval()
|
||||
if args.both_stages:
|
||||
model_stage2 = model_stage2.cpu()
|
||||
|
||||
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
||||
strategy_cogview2 = CoglmStrategy(invalid_slices,
|
||||
temperature=1.0, top_k=16)
|
||||
strategy_cogvideo = CoglmStrategy(invalid_slices,
|
||||
temperature=args.temperature, top_k=args.top_k,
|
||||
temperature2=args.coglm_temperature2)
|
||||
if not args.stage_1:
|
||||
from sr_pipeline import DirectSuperResolution
|
||||
dsr_path = auto_create('cogview2-dsr', path=None) # path=os.getenv('SAT_HOME', '~/.sat_models')
|
||||
dsr = DirectSuperResolution(args, dsr_path,
|
||||
max_bz=12, onCUDA=False)
|
||||
|
||||
def process_stage2(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1):
|
||||
stage2_starttime = time.time()
|
||||
use_guidance = args.use_guidance_stage2
|
||||
if args.both_stages:
|
||||
move_start_time = time.time()
|
||||
logging.debug("moving stage-2 model to cuda")
|
||||
model = model.cuda()
|
||||
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
|
||||
|
||||
try:
|
||||
if parent_given_tokens is None:
|
||||
assert conddir is not None
|
||||
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
|
||||
sample_num_allgpu = parent_given_tokens.shape[0]
|
||||
sample_num = sample_num_allgpu // gpu_parallel_size
|
||||
assert sample_num * gpu_parallel_size == sample_num_allgpu
|
||||
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
|
||||
except:
|
||||
logging.critical("No frame_tokens found in interpolation, skip")
|
||||
return False
|
||||
|
||||
# CogVideo Stage2 Generation
|
||||
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
|
||||
parent_given_tokens_num = parent_given_tokens.shape[1]
|
||||
generate_batchsize_persample = (parent_given_tokens_num-1)//2
|
||||
generate_batchsize_total = generate_batchsize_persample * sample_num
|
||||
total_frames = generate_frame_num
|
||||
frame_len = 400
|
||||
enc_text = tokenizer.encode(seq_text)
|
||||
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
||||
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||||
text_len = len(seq) - frame_len*generate_frame_num - 1
|
||||
|
||||
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
|
||||
|
||||
# generation
|
||||
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
||||
for sample_i in range(sample_num):
|
||||
for i in range(generate_batchsize_persample):
|
||||
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
||||
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
||||
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
||||
|
||||
if use_guidance:
|
||||
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||||
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
|
||||
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
||||
for sample_i in range(sample_num):
|
||||
for i in range(generate_batchsize_persample):
|
||||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
||||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
||||
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
||||
video_log_text_attention_weights = 0
|
||||
else:
|
||||
guider_seq=None
|
||||
guider_text_len=0
|
||||
video_log_text_attention_weights = 1.4
|
||||
|
||||
mbz = args.max_inference_batch_size
|
||||
|
||||
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
|
||||
output_list = []
|
||||
start_time = time.time()
|
||||
for tim in range(max(generate_batchsize_total // mbz, 1)):
|
||||
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
||||
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
||||
output_list.append(
|
||||
my_filling_sequence(model, args, input_seq,
|
||||
batch_size=min(generate_batchsize_total, mbz),
|
||||
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
|
||||
text_len=text_len, frame_len=frame_len,
|
||||
strategy=strategy_cogview2,
|
||||
strategy2=strategy_cogvideo,
|
||||
log_text_attention_weights=video_log_text_attention_weights,
|
||||
mode_stage1=False,
|
||||
guider_seq=guider_seq2,
|
||||
guider_text_len=guider_text_len,
|
||||
guidance_alpha=args.guidance_alpha,
|
||||
limited_spatial_channel_mem=True,
|
||||
)[0]
|
||||
)
|
||||
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
|
||||
|
||||
output_tokens = torch.cat(output_list, dim=0)
|
||||
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
|
||||
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
|
||||
output_tokens[:, :, 400*3:4*400],
|
||||
output_tokens[:, :, 400*1:2*400],
|
||||
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
|
||||
|
||||
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
|
||||
duration /= 2
|
||||
parent_given_tokens = output_tokens_merge
|
||||
|
||||
if args.both_stages:
|
||||
move_start_time = time.time()
|
||||
logging.debug("moving stage 2 model to cpu")
|
||||
model = model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
logging.debug("moving out model2 takes time: {:.2f}".format(time.time()-move_start_time))
|
||||
|
||||
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
|
||||
|
||||
# decoding
|
||||
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
|
||||
# os.makedirs(output_dir_full_path, exist_ok=True)
|
||||
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
|
||||
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
|
||||
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
|
||||
|
||||
# direct super-resolution by CogView2
|
||||
logging.info("[Direct super-resolution]")
|
||||
dsr_starttime = time.time()
|
||||
enc_text = tokenizer.encode(seq_text)
|
||||
frame_num_per_sample = parent_given_tokens.shape[1]
|
||||
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
|
||||
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
|
||||
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
|
||||
decoded_sr_videos = []
|
||||
|
||||
for sample_i in range(sample_num):
|
||||
decoded_sr_imgs = []
|
||||
for frame_i in range(frame_num_per_sample):
|
||||
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
|
||||
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
|
||||
decoded_sr_videos.append(decoded_sr_imgs)
|
||||
|
||||
for sample_i in range(sample_num):
|
||||
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
|
||||
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125")
|
||||
|
||||
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def process_stage1(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
|
||||
process_start_time = time.time()
|
||||
use_guide = args.use_guidance_stage1
|
||||
if args.both_stages:
|
||||
move_start_time = time.time()
|
||||
logging.debug("moving stage 1 model to cuda")
|
||||
model = model.cuda()
|
||||
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
|
||||
|
||||
if video_raw_text is None:
|
||||
video_raw_text = seq_text
|
||||
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
|
||||
assert batch_size < mbz or batch_size % mbz == 0
|
||||
frame_len = 400
|
||||
|
||||
# generate the first frame:
|
||||
enc_text = tokenizer.encode(seq_text+image_text_suffix)
|
||||
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
|
||||
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
|
||||
text_len_1st = len(seq_1st) - frame_len*1 - 1
|
||||
|
||||
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
|
||||
output_list_1st = []
|
||||
for tim in range(max(batch_size // mbz, 1)):
|
||||
start_time = time.time()
|
||||
output_list_1st.append(
|
||||
my_filling_sequence(model, args,seq_1st.clone(),
|
||||
batch_size=min(batch_size, mbz),
|
||||
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
||||
text_len=text_len_1st,
|
||||
frame_len=frame_len,
|
||||
strategy=strategy_cogview2,
|
||||
strategy2=strategy_cogvideo,
|
||||
log_text_attention_weights=1.4,
|
||||
enforce_no_swin=True,
|
||||
mode_stage1=True,
|
||||
)[0]
|
||||
)
|
||||
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
|
||||
output_tokens_1st = torch.cat(output_list_1st, dim=0)
|
||||
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
|
||||
|
||||
# generate subsequent frames:
|
||||
total_frames = generate_frame_num
|
||||
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
||||
if use_guide:
|
||||
video_raw_text = video_raw_text + " 视频"
|
||||
enc_text_video = tokenizer.encode(video_raw_text)
|
||||
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||||
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
|
||||
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
|
||||
|
||||
text_len = len(seq) - frame_len*generate_frame_num - 1
|
||||
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
|
||||
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
||||
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
||||
|
||||
for given_frame_id in range(given_tokens.shape[1]):
|
||||
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
||||
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
||||
output_list = []
|
||||
|
||||
if use_guide:
|
||||
video_log_text_attention_weights = 0
|
||||
else:
|
||||
guider_seq = None
|
||||
video_log_text_attention_weights = 1.4
|
||||
|
||||
for tim in range(max(batch_size // mbz, 1)):
|
||||
start_time = time.time()
|
||||
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
||||
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
||||
output_list.append(
|
||||
my_filling_sequence(model, args,input_seq,
|
||||
batch_size=min(batch_size, mbz),
|
||||
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
||||
text_len=text_len, frame_len=frame_len,
|
||||
strategy=strategy_cogview2,
|
||||
strategy2=strategy_cogvideo,
|
||||
log_text_attention_weights=video_log_text_attention_weights,
|
||||
guider_seq=guider_seq2,
|
||||
guider_text_len=guider_text_len,
|
||||
guidance_alpha=args.guidance_alpha,
|
||||
limited_spatial_channel_mem=True,
|
||||
mode_stage1=True,
|
||||
)[0]
|
||||
)
|
||||
|
||||
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
|
||||
|
||||
if args.both_stages:
|
||||
move_start_time = time.time()
|
||||
logging.debug("moving stage 1 model to cpu")
|
||||
model = model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
|
||||
|
||||
# decoding
|
||||
imgs, sred_imgs, txts = [], [], []
|
||||
for seq in output_tokens:
|
||||
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
|
||||
imgs.append(decoded_imgs) # only the last image (target)
|
||||
|
||||
assert len(imgs) == batch_size
|
||||
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
|
||||
if outputdir is not None:
|
||||
for clip_i in range(len(imgs)):
|
||||
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
|
||||
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
|
||||
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
|
||||
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
|
||||
|
||||
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
|
||||
|
||||
return save_tokens
|
||||
|
||||
# ======================================================================================================
|
||||
|
||||
if args.stage_1 or args.both_stages:
|
||||
if args.input_source != "interactive":
|
||||
with open(args.input_source, 'r') as fin:
|
||||
promptlist = fin.readlines()
|
||||
promptlist = [p.strip() for p in promptlist]
|
||||
else:
|
||||
promptlist = None
|
||||
|
||||
now_qi = -1
|
||||
while True:
|
||||
now_qi += 1
|
||||
|
||||
if promptlist is not None: # with input-source
|
||||
if args.multi_gpu:
|
||||
if now_qi % dist.get_world_size() != dist.get_rank():
|
||||
continue
|
||||
rk = dist.get_rank()
|
||||
else:
|
||||
rk = 0
|
||||
raw_text = promptlist[now_qi]
|
||||
raw_text = raw_text.strip()
|
||||
print(f'Working on Line No. {now_qi} on {rk}... [{raw_text}]')
|
||||
else: # interactive
|
||||
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
|
||||
raw_text = raw_text.strip()
|
||||
if not raw_text:
|
||||
print('Query should not be empty!')
|
||||
continue
|
||||
if raw_text == "stop":
|
||||
return
|
||||
|
||||
try:
|
||||
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
|
||||
parent_given_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频",
|
||||
image_text_suffix=" 高清摄影",
|
||||
outputdir=path if args.stage_1 else None, batch_size=args.batch_size)
|
||||
if args.both_stages:
|
||||
process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
|
||||
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
|
||||
outputdir=path,
|
||||
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
|
||||
except (ValueError, FileNotFoundError) as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
elif args.stage_2:
|
||||
sample_dirs = os.listdir(args.output_path)
|
||||
for sample in sample_dirs:
|
||||
raw_text = sample.split('_')[-1]
|
||||
path = os.path.join(args.output_path, sample, 'Interp')
|
||||
parent_given_tokens = torch.load(os.path.join(args.output_path, sample, "frame_tokens.pt"))
|
||||
|
||||
process_stage2(raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
|
||||
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
|
||||
outputdir=path,
|
||||
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
|
||||
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
|
||||
|
||||
py_parser = argparse.ArgumentParser(add_help=False)
|
||||
py_parser.add_argument('--generate-frame-num', type=int, default=5)
|
||||
py_parser.add_argument('--coglm-temperature2', type=float, default=0.89)
|
||||
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧
|
||||
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
|
||||
py_parser.add_argument('--use-guidance-stage1', action='store_true')
|
||||
py_parser.add_argument('--use-guidance-stage2', action='store_true')
|
||||
py_parser.add_argument('--guidance-alpha', type=float, default=3.0)
|
||||
py_parser.add_argument('--stage-1', action='store_true') # stage 1: sequential generation
|
||||
py_parser.add_argument('--stage-2', action='store_true') # stage 2: interp + dsr
|
||||
py_parser.add_argument('--both-stages', action='store_true') # stage 1&2: sequential generation; interp + dsr
|
||||
py_parser.add_argument('--parallel-size', type=int, default=1)
|
||||
py_parser.add_argument('--stage1-max-inference-batch-size', type=int, default=-1) # -1: use max-inference-batch-size
|
||||
py_parser.add_argument('--multi-gpu', action='store_true')
|
||||
|
||||
CogVideoCacheModel.add_model_specific_args(py_parser)
|
||||
|
||||
known, args_list = py_parser.parse_known_args()
|
||||
args = get_args(args_list)
|
||||
args = argparse.Namespace(**vars(args), **vars(known))
|
||||
args.layout = [int(x) for x in args.layout.split(',')]
|
||||
args.do_train = False
|
||||
|
||||
torch.cuda.set_device(args.device)
|
||||
|
||||
with torch.no_grad():
|
||||
main(args)
|
695
models/cogvideo_cache_model.py
Normal file
695
models/cogvideo_cache_model.py
Normal file
@ -0,0 +1,695 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : cogvideo_cache_model.py
|
||||
@Time : 2022/07/15 11:22:19
|
||||
@Author : Wenyi Hong
|
||||
@Version : 1.0
|
||||
@Contact : hwy22@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
|
||||
from multiprocessing import context
|
||||
from tkinter import E
|
||||
import torch
|
||||
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
|
||||
|
||||
from SwissArmyTransformer.mpu.utils import split_tensor_along_last_dim
|
||||
from SwissArmyTransformer.model.transformer import unscaled_init_method
|
||||
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
|
||||
import torch.nn.functional as F
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
|
||||
import math
|
||||
|
||||
|
||||
class PositionEmbeddingMixin(BaseMixin):
|
||||
def __init__(self, additional_sequence_length, hidden_size,
|
||||
init_method_std=0.02, reinit_slice=slice(512, 912),
|
||||
):
|
||||
super(PositionEmbeddingMixin, self).__init__()
|
||||
self.reinit_slice = reinit_slice
|
||||
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
|
||||
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
||||
|
||||
def reinit(self, parent_model=None):
|
||||
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
|
||||
old_len, hidden_size = old_weights.shape
|
||||
assert hidden_size == self.position_embeddings.weight.shape[-1]
|
||||
self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
|
||||
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Args:
|
||||
x: (B, framenum, H, W, C)
|
||||
window_size (int): window size
|
||||
Returns:
|
||||
windows: (num_windows*B, frame_num, window_size, window_size, C)
|
||||
"""
|
||||
B, framenum, H, W, C = x.shape
|
||||
x = x.view(B, framenum, H // window_size, window_size, W // window_size, window_size, C)
|
||||
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(-1, framenum, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, frame_num, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
Returns:
|
||||
x: (B, frame_num, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
framenum = windows.shape[1]
|
||||
x = windows.view(B, H // window_size, W // window_size, framenum, window_size, window_size, -1)
|
||||
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, framenum, H, W, -1)
|
||||
return x
|
||||
|
||||
class WindowAttentionMixin(BaseMixin):
|
||||
def __init__(self, num_layers,
|
||||
hidden_size,
|
||||
frame_resolution,
|
||||
window_size,
|
||||
shift_size,
|
||||
n_head,
|
||||
frame_num,
|
||||
init_method=unscaled_init_method(0.02),
|
||||
output_layer_init_method=unscaled_init_method(0.02),
|
||||
time_dim_attend_length=0
|
||||
):
|
||||
super(WindowAttentionMixin, self).__init__()
|
||||
self.num_layers = num_layers # replace attention in the LAST n layers
|
||||
self.query_key_value = torch.nn.ModuleList(
|
||||
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
|
||||
gather_output=False,init_method=init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
self.dense = torch.nn.ModuleList(
|
||||
[RowParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
init_method=output_layer_init_method,
|
||||
bias=True,
|
||||
module=self,
|
||||
name="dense")
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
|
||||
self.n_head = n_head
|
||||
self.window_size = window_size
|
||||
self.frame_resolution = frame_resolution
|
||||
self.frame_len = frame_resolution * frame_resolution
|
||||
self.time_dim_attend_length = time_dim_attend_length
|
||||
assert frame_resolution % window_size == 0
|
||||
assert 0 < shift_size < window_size
|
||||
nW = (self.frame_resolution // self.window_size) ** 2
|
||||
ws_squre = self.window_size * self.window_size
|
||||
|
||||
# odd non-shift, even shift
|
||||
img_mask = torch.zeros((1, 1, frame_resolution, frame_resolution, 1))
|
||||
h_slices = (slice(0, -shift_size),
|
||||
slice(-shift_size, None))
|
||||
w_slices = (slice(0, -shift_size),
|
||||
slice(-shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, :, h, w, :] = cnt
|
||||
cnt += 1
|
||||
mask_windows = window_partition(img_mask, self.window_size) # nW, 1, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||
sub_attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) #[nW, self.window_size * self.window_size, self.window_size * self.window_size]
|
||||
sub_attn_mask = sub_attn_mask.masked_fill(sub_attn_mask != 0, float(0.0)).masked_fill(sub_attn_mask == 0, float(1.00))
|
||||
attn_mask = sub_attn_mask.repeat(1, frame_num, frame_num)
|
||||
attn_mask = attn_mask.tril()
|
||||
|
||||
causal_mask = torch.ones(ws_squre*frame_num, ws_squre*frame_num)
|
||||
causal_mask = causal_mask.tril()
|
||||
|
||||
self.shift_sizes = [0, shift_size]
|
||||
self.attn_mask = attn_mask
|
||||
self.causal_mask = causal_mask
|
||||
self.mask_initialized = False
|
||||
|
||||
self.attn_distribution = torch.nn.ParameterList([
|
||||
torch.nn.Parameter(torch.zeros(hidden_size))
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
def reinit(self, *pre_mixins):
|
||||
start_layer = len(self.transformer.layers) - self.num_layers
|
||||
assert start_layer >= 0
|
||||
for layer_id in range(self.num_layers):
|
||||
old_attention = self.transformer.layers[start_layer + layer_id].attention
|
||||
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
|
||||
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
|
||||
|
||||
def attention_extra_NAR_inference(self, frame_hidden_state, layer_id, attn_dropout=None, memkv_text=None, stage=1):
|
||||
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
|
||||
if not self.mask_initialized:
|
||||
self.attn_mask = self.attn_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.causal_mask = self.causal_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.mask_initialized = True
|
||||
b0, s1, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
frame_len = self.frame_resolution * self.frame_resolution
|
||||
frame_num = s1 // frame_len
|
||||
if stage == 2:
|
||||
assert frame_num == 3
|
||||
assert frame_num*frame_len == s1
|
||||
wind_square = self.window_size * self.window_size
|
||||
nW = frame_len // wind_square
|
||||
bswin = b0 * nW
|
||||
|
||||
if memkv_text is not None:
|
||||
s0 = memkv_text.shape[-2]
|
||||
k_text = memkv_text[..., :h0].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
|
||||
v_text = memkv_text[..., h0:].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
|
||||
|
||||
# shift
|
||||
frame_hidden_state = frame_hidden_state.reshape(b0, frame_num, self.frame_resolution, self.frame_resolution, h0)
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
frame_hidden_state = torch.roll(frame_hidden_state, shifts=(-self.shift_sizes[layer_id%2], -self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
# window partition
|
||||
frame_hidden_state = window_partition(frame_hidden_state, self.window_size).reshape(bswin, frame_num*wind_square, h0)
|
||||
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(bswin, frame_num*wind_square, 3, self.n_head, h)\
|
||||
.permute(2, 0, 3, 1, 4) #[3, bswin, n_head, frame_num*wind_size*wind_size, h]
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
|
||||
|
||||
if stage == 1:
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square),
|
||||
self.attn_mask[:,:frame_num*wind_square, :frame_num*wind_square].unsqueeze(1).unsqueeze(0))\
|
||||
- 10000.0 * (1.0 - self.attn_mask[:,:frame_num*wind_square, :frame_num*wind_square].unsqueeze(1).unsqueeze(0))
|
||||
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
|
||||
else:
|
||||
attn = torch.mul(attn, self.causal_mask[:frame_num*wind_square, :frame_num*wind_square].unsqueeze(0).unsqueeze(0))\
|
||||
- 10000.0 * (1.0 - self.causal_mask[:frame_num*wind_square, :frame_num*wind_square].unsqueeze(0).unsqueeze(0))
|
||||
|
||||
if memkv_text is None:
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
else:
|
||||
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / math.sqrt(h), k_text.unsqueeze(1).transpose(-1, -2))
|
||||
attn_frame2text = attn_frame2text.reshape(bswin, self.n_head, frame_num*wind_square, s0)
|
||||
attn = torch.cat((attn, attn_frame2text), dim=-1)
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
|
||||
context_swin = (torch.matmul(attn[..., :-s0], v) +
|
||||
torch.matmul(attn[..., -s0:].reshape(b0, -1, self.n_head,frame_num*wind_square, s0), v_text.unsqueeze(1))\
|
||||
.reshape(bswin, self.n_head, frame_num*wind_square, h))\
|
||||
.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
|
||||
context_swin = window_reverse(context_swin, self.window_size, self.frame_resolution, self.frame_resolution)
|
||||
|
||||
# reverse cycle shift
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
context_swin = torch.roll(context_swin, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
ret_context = context_swin.reshape(b0, s1, h0)
|
||||
|
||||
# for mem
|
||||
memk = k.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
memv = v.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
memk = window_reverse(memk, self.window_size, self.frame_resolution, self.frame_resolution)
|
||||
memv = window_reverse(memv, self.window_size, self.frame_resolution, self.frame_resolution)
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
memk = torch.roll(memk, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
memv = torch.roll(memv, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
memk, memv = memk.reshape(b0, s1, h0), memv.reshape(b0, s1, h0)
|
||||
|
||||
ret_mem = torch.cat((memk, memv), dim=-1)
|
||||
return ret_context, ret_mem
|
||||
|
||||
def attention_extra_AR_inference(self, frame_hidden_state, memkv, pos, layer_id, log_text_attention_weights=0, attn_dropout=None, memkv_text=None, stage=1):
|
||||
# frame_hidden_state [batchsize, 1, n_head*hiddensize_perhead]
|
||||
# memkv [batchsize, pos, hidden_size*2] (include frames only)
|
||||
# if memkv_text is not None: will attend to text
|
||||
# pos: token's pos
|
||||
b0, sin, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
assert sin == 1
|
||||
this_qkv = self.query_key_value[layer_id](frame_hidden_state)
|
||||
thisq, thisk, thisv = this_qkv[..., :h0], this_qkv[..., h0:2*h0], this_qkv[..., 2*h0:]
|
||||
s1 = memkv.shape[1] if memkv is not None else 0
|
||||
frame_len = self.frame_resolution * self.frame_resolution
|
||||
frame_num_before = s1 // frame_len
|
||||
|
||||
|
||||
if memkv is not None:
|
||||
pos_inframe = pos - frame_num_before * frame_len
|
||||
|
||||
xpos = pos_inframe // self.frame_resolution # pos = xpos*self.frame_resolution + ypos
|
||||
ypos = pos_inframe % self.frame_resolution
|
||||
# [start, end)
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
xstart = ((xpos+self.shift_sizes[layer_id%2]) // self.window_size) * self.window_size - self.shift_sizes[layer_id%2]
|
||||
ystart = ((ypos+self.shift_sizes[layer_id%2]) // self.window_size) * self.window_size - self.shift_sizes[layer_id%2]
|
||||
xend = xstart + self.window_size
|
||||
yend = ystart + self.window_size
|
||||
xstart, ystart = max(0, xstart), max(0, ystart)
|
||||
xend, yend = min(xend, self.frame_resolution), min(yend, self.frame_resolution)
|
||||
else:
|
||||
xstart = (xpos // self.window_size) * self.window_size
|
||||
ystart = (ypos // self.window_size) * self.window_size
|
||||
xend, yend = xstart + self.window_size, ystart+self.window_size
|
||||
|
||||
# select index
|
||||
selected_index = list()
|
||||
if frame_num_before > 0:
|
||||
# frames before
|
||||
frame_attended_start = max(0, frame_num_before-self.time_dim_attend_length+1) if self.time_dim_attend_length > 0 else 0
|
||||
for x in range(xstart, xend):
|
||||
for y in range(ystart, yend):
|
||||
selected_index.append(x*self.frame_resolution+y+frame_len*frame_attended_start)
|
||||
cnt_per_frame = len(selected_index)
|
||||
for _ in range((frame_num_before-frame_attended_start-1)*cnt_per_frame):
|
||||
selected_index.append(selected_index[-cnt_per_frame]+frame_len)
|
||||
|
||||
# the last frame
|
||||
for x in range(xstart, xend):
|
||||
for y in range(ystart, yend):
|
||||
tmppos = x*self.frame_resolution+y + frame_num_before * frame_len
|
||||
if tmppos < pos:
|
||||
selected_index.append(tmppos)
|
||||
else:
|
||||
break
|
||||
cnt_all = len(selected_index)+1
|
||||
selected_index = torch.tensor(selected_index, device=memkv.device)
|
||||
used_memkv = torch.index_select(memkv, 1, selected_index)
|
||||
used_k, used_v = used_memkv[..., :h0], used_memkv[..., h0:]
|
||||
used_k = torch.cat((used_k.expand(thisk.shape[0], -1, -1), thisk), dim=-2)
|
||||
used_v = torch.cat((used_v.expand(thisv.shape[0], -1, -1), thisv), dim=-2)
|
||||
if memkv_text is not None:
|
||||
cnt_all += memkv_text.shape[-2]
|
||||
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
|
||||
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
|
||||
used_k = used_k.reshape(b0, cnt_all, self.n_head, h).permute(0, 2, 1, 3)
|
||||
used_v = used_v.reshape(b0, cnt_all, self.n_head, h).permute(0, 2, 1, 3)
|
||||
else:
|
||||
used_k = thisk
|
||||
used_v = thisv
|
||||
|
||||
if memkv_text is not None:
|
||||
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
|
||||
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
|
||||
used_k = used_k.reshape(b0, 1+memkv_text.shape[-2], self.n_head, h).permute(0, 2, 1, 3)
|
||||
used_v = used_v.reshape(b0, 1+memkv_text.shape[-2], self.n_head, h).permute(0, 2, 1, 3)
|
||||
else:
|
||||
used_k = used_k.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3)
|
||||
used_v = used_v.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3)
|
||||
|
||||
thisq = thisq.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3) # [b0, n_head, 1, h]
|
||||
attn = torch.matmul(thisq / math.sqrt(h), used_k.transpose(-1, -2))
|
||||
if memkv_text is not None:
|
||||
attn[..., :memkv_text.shape[-2]] += log_text_attention_weights
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
context_swin = torch.matmul(attn, used_v).permute(0, 2, 1, 3).reshape(b0, 1, h0)
|
||||
|
||||
return context_swin, this_qkv[..., h0:]
|
||||
|
||||
class FullAttentionMixin(BaseMixin):
|
||||
def __init__(self, num_layers,
|
||||
hidden_size,
|
||||
frame_resolution,
|
||||
n_head,
|
||||
frame_num,
|
||||
init_method=unscaled_init_method(0.02),
|
||||
output_layer_init_method=unscaled_init_method(0.02),
|
||||
**kwargs,
|
||||
):
|
||||
super(FullAttentionMixin, self).__init__()
|
||||
self.num_layers = num_layers # replace attention in the LAST n layers
|
||||
self.query_key_value = torch.nn.ModuleList(
|
||||
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
|
||||
gather_output=False,init_method=init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
self.dense = torch.nn.ModuleList(
|
||||
[RowParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
init_method=output_layer_init_method,
|
||||
bias=True,
|
||||
module=self,
|
||||
name="dense")
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
|
||||
self.n_head = n_head
|
||||
self.frame_resolution = frame_resolution
|
||||
self.frame_len = frame_resolution * frame_resolution
|
||||
|
||||
self.attn_distribution = torch.nn.ParameterList([
|
||||
torch.nn.Parameter(torch.zeros(hidden_size))
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
def reinit(self, *pre_mixins):
|
||||
start_layer = len(self.transformer.layers) - self.num_layers
|
||||
assert start_layer >= 0
|
||||
for layer_id in range(self.num_layers):
|
||||
old_attention = self.transformer.layers[start_layer + layer_id].attention
|
||||
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
|
||||
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
|
||||
|
||||
|
||||
def attention_extra_NAR_inference(self, frame_hidden_state, layer_id, attn_dropout=None, memkv_text=None, stage=1):
|
||||
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
|
||||
assert stage == 1
|
||||
|
||||
b0, s1, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
frame_len = self.frame_resolution * self.frame_resolution
|
||||
frame_num = s1 // frame_len
|
||||
assert frame_num*frame_len == s1
|
||||
|
||||
if memkv_text is not None:
|
||||
s0 = memkv_text.shape[-2]
|
||||
k_text = memkv_text[..., :h0].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
|
||||
v_text = memkv_text[..., h0:].expand(b0, -1, -1).reshape(b0, s0, self.n_head, h).permute(0, 2, 1, 3)
|
||||
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(b0, s1, 3, self.n_head, h)\
|
||||
.permute(2, 0, 3, 1, 4) #[3, b0, n_head, s1, h]
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
|
||||
attn = attn - 10000.0 * (1.0-torch.ones(b0, self.n_head, s1, s1, device=attn.device, dtype=attn.dtype).tril())
|
||||
|
||||
if memkv_text is None:
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
else:
|
||||
attn_frame2text = torch.matmul(q / math.sqrt(h), k_text.transpose(-1, -2)) #[b0, s1, s0]
|
||||
attn = torch.cat((attn, attn_frame2text), dim=-1)
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
context_swin = (torch.matmul(attn[..., :-s0], v) + torch.matmul(attn[..., -s0:], v_text))\
|
||||
.permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
|
||||
# for mem
|
||||
memk = k.permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
memv = v.permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
ret_mem = torch.cat((memk, memv), dim=-1)
|
||||
|
||||
return context_swin, ret_mem
|
||||
|
||||
def attention_extra_AR_inference(self, frame_hidden_state, memkv, pos, layer_id, log_text_attention_weights=0, attn_dropout=None, memkv_text=None, stage=1):
|
||||
# pos: current token's pos
|
||||
b0, sin, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
assert sin == 1
|
||||
assert stage == 1
|
||||
|
||||
this_qkv = self.query_key_value[layer_id](frame_hidden_state)
|
||||
thisq, thisk, thisv = this_qkv[..., :h0], this_qkv[..., h0:2*h0], this_qkv[..., 2*h0:]
|
||||
|
||||
if memkv is not None:
|
||||
used_k, used_v = memkv[..., :h0], memkv[..., h0:]
|
||||
used_k = torch.cat((used_k.expand(thisk.shape[0], -1, -1), thisk), dim=-2)
|
||||
used_v = torch.cat((used_v.expand(thisv.shape[0], -1, -1), thisv), dim=-2)
|
||||
else:
|
||||
used_k, used_v = thisk, thisv
|
||||
|
||||
if memkv_text is not None:
|
||||
used_k = torch.cat((memkv_text[..., :h0].expand(thisk.shape[0], -1, -1), used_k), dim=-2)
|
||||
used_v = torch.cat((memkv_text[..., h0:].expand(thisv.shape[0], -1, -1), used_v), dim=-2)
|
||||
|
||||
used_k = used_k.reshape(b0, -1, self.n_head, h).permute(0, 2, 1, 3)
|
||||
used_v = used_v.reshape(b0, -1, self.n_head, h).permute(0, 2, 1, 3)
|
||||
thisq = thisq.reshape(b0, 1, self.n_head, h).permute(0, 2, 1, 3) # [b0, n_head, 1, h]
|
||||
attn = torch.matmul(thisq / math.sqrt(h), used_k.transpose(-1, -2))
|
||||
if memkv_text is not None:
|
||||
attn[..., :memkv_text.shape[-2]] += log_text_attention_weights
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
|
||||
context_swin = torch.matmul(attn, used_v).permute(0, 2, 1, 3).reshape(b0, 1, h0)
|
||||
|
||||
return context_swin, this_qkv[..., h0:]
|
||||
|
||||
|
||||
def attention_localframe_and_text_NAR(q0, k0, v0, attention_mask,
|
||||
n_head, text_len, frame_len, frame_num,
|
||||
attention_dropout=None, log_text_attention_weights=0, stage=1, **kwargs):
|
||||
b, s0, h0 = q0.shape
|
||||
s1 = s0 - text_len
|
||||
h = h0 // n_head
|
||||
assert q0.shape[1] == v0.shape[1] == k0.shape[1] == text_len+frame_len*frame_num
|
||||
# attention_mask.shape [4, b or 1, 1, text_len+frame_len, text_len+frame_len]
|
||||
if stage == 2:
|
||||
assert frame_num == 3
|
||||
|
||||
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0 = k0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.transpose(-1, -2)
|
||||
|
||||
score_any2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
|
||||
score_any2text += log_text_attention_weights
|
||||
score_any2text_part1 = torch.mul(score_any2text[..., :text_len, :], attention_mask[..., :text_len, :text_len]) \
|
||||
- 10000.0 * (1.0 - attention_mask[..., :text_len, :text_len])
|
||||
# context for text
|
||||
attention_probs_text = F.softmax(score_any2text_part1, dim=-1)
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs_text = attention_dropout(attention_probs_text)
|
||||
context_text2text = torch.matmul(attention_probs_text, v0[..., :text_len, :])
|
||||
context_text2text = context_text2text.transpose(1, 2).reshape(b, text_len, h0)
|
||||
|
||||
if frame_num > 0:
|
||||
score_any2text_part2 = score_any2text[..., text_len:, :]
|
||||
|
||||
# score: frame local
|
||||
q0_frame = q0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
|
||||
v0_frame = v0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
|
||||
k0T_frame = k0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h).transpose(-1, -2)
|
||||
score_frame_local0 = torch.matmul(q0_frame / math.sqrt(q0_frame.shape[-1]), k0T_frame)
|
||||
if stage == 1:
|
||||
score_frame_local0 = torch.mul(score_frame_local0, attention_mask[..., text_len:, text_len:].unsqueeze(1)) \
|
||||
- 10000.0 * (1.0 - attention_mask[..., text_len:, text_len:].unsqueeze(1))
|
||||
|
||||
# context for frame
|
||||
score_frame_all = torch.cat((score_any2text_part2,
|
||||
score_frame_local0.view(b, n_head, s1, frame_len)), dim=-1)
|
||||
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs_frame = attention_dropout(attention_probs_frame)
|
||||
context_frame2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
|
||||
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:text_len+frame_len].\
|
||||
view(b, n_head, frame_num, frame_len, frame_len), v0_frame).view(b, n_head, s1, h)
|
||||
|
||||
context_frame = (context_frame2text + context_frame_local0).transpose(1, 2).reshape(b, s1, h0)
|
||||
else:
|
||||
context_frame = None
|
||||
|
||||
return context_text2text, context_frame
|
||||
|
||||
def attention_localframe_and_text_AR(q0, k0, v0, n_head, text_len, frame_len, frame_num,
|
||||
attention_dropout=None, log_text_attention_weights=0, layer_id=None, limited_spatial_channel_mem=False, stage=1, **kwargs):
|
||||
# limited_spatial_channel_mem=True means: mems in spatial channel is consisted of {mem_text, mem_current_frame}
|
||||
b, s0, h0 = k0.shape
|
||||
frame_num_before = (s0-text_len-1) // frame_len # frame_num == frame_num_before or frame_num == frame_num_before+1
|
||||
h = h0 // n_head
|
||||
assert q0.shape[1] == 1
|
||||
assert v0.shape[1] == k0.shape[1]
|
||||
|
||||
q0 = q0.reshape(b, 1, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
|
||||
|
||||
if limited_spatial_channel_mem:
|
||||
assert frame_num_before == 0
|
||||
assert stage == 1 # not implemented for stage-2 yet
|
||||
score = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
|
||||
score[..., :text_len] += log_text_attention_weights
|
||||
attention_probs_frame = F.softmax(score, dim=-1)
|
||||
context_frame = torch.matmul(attention_probs_frame, v0).transpose(1, 2).reshape(b, 1, h0)
|
||||
|
||||
else:
|
||||
score_token2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
|
||||
score_token2text += log_text_attention_weights
|
||||
score_frame_local0 = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., text_len+frame_num_before*frame_len:])
|
||||
score_frame_all = torch.cat((score_token2text,
|
||||
score_frame_local0), dim=-1)
|
||||
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
|
||||
|
||||
context_token2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
|
||||
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:], \
|
||||
v0[:, :, text_len+frame_num_before*frame_len:, :])
|
||||
context_frame = (context_token2text + context_frame_local0).transpose(1, 2).reshape(b, 1, h0)
|
||||
|
||||
return context_frame
|
||||
|
||||
|
||||
class CogVideoCacheModel(BaseModel):
|
||||
def __init__(self, args, transformer=None, parallel_output=True, window_size=None, cogvideo_stage=None):
|
||||
super().__init__(args, transformer=transformer, parallel_output=parallel_output)
|
||||
self.layout = args.layout # [64, 64+1024, 64+6*1024]
|
||||
self.stage = cogvideo_stage if cogvideo_stage is not None else args.cogvideo_stage # 1 or 2
|
||||
self.n_head = args.num_attention_heads
|
||||
self.window_size = window_size if window_size is not None else args.window_size
|
||||
|
||||
frame_resolution = int(math.sqrt(self.layout[1]-self.layout[0]))
|
||||
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
|
||||
args.additional_seqlen, args.hidden_size
|
||||
))
|
||||
|
||||
if self.stage == 1:
|
||||
self.add_mixin('attention_plus', FullAttentionMixin(
|
||||
num_layers=args.num_layers,
|
||||
hidden_size=args.hidden_size,
|
||||
frame_resolution=frame_resolution,
|
||||
n_head=args.num_attention_heads,
|
||||
frame_num=(args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0]),
|
||||
))
|
||||
else:
|
||||
self.add_mixin('attention_plus', WindowAttentionMixin(
|
||||
num_layers=args.num_layers,
|
||||
hidden_size=args.hidden_size,
|
||||
frame_resolution=frame_resolution,
|
||||
window_size=self.window_size,
|
||||
shift_size=self.window_size//2,
|
||||
n_head=args.num_attention_heads,
|
||||
frame_num=(args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0]),
|
||||
))
|
||||
|
||||
|
||||
@classmethod
|
||||
def add_model_specific_args(cls, parser):
|
||||
group = parser.add_argument_group('VideoSwinLocalModel', 'video swin local model configurations')
|
||||
group.add_argument("--layout", type=str, default='64, 464, 2064')
|
||||
group.add_argument("--window-size", type=int, default=10) # 优先级在直接参数赋值之后
|
||||
group.add_argument("--additional-seqlen", type=int, default=2000)
|
||||
group.add_argument("--cogvideo-stage", type=int, default=1, choices=[1,2]) # 优先级在直接参数赋值之后
|
||||
return parser
|
||||
|
||||
def disable_untrainable_params(self):
|
||||
pass
|
||||
|
||||
def position_embedding_forward(self, position_ids, **kw_args):
|
||||
if position_ids.shape[-1] > 1:
|
||||
if self.stage == 1:
|
||||
if position_ids[0,-1] >= (512+400):
|
||||
frame_num = position_ids.shape[-1] // 400
|
||||
position_embeddings = torch.cat(
|
||||
(
|
||||
self.transformer.position_embeddings(position_ids[..., :-400*(frame_num-1)]),
|
||||
self.get_mixin('extra_position_embedding').position_embeddings(position_ids[..., -400*(frame_num-1):]-(512+400))
|
||||
),
|
||||
dim=-2
|
||||
)
|
||||
else:
|
||||
position_embeddings = self.transformer.position_embeddings(position_ids)
|
||||
else:
|
||||
# given 3, interpolate 2
|
||||
position_embeddings = torch.cat(
|
||||
(
|
||||
self.transformer.position_embeddings(position_ids[..., :-800]),
|
||||
self.get_mixin('extra_position_embedding').position_embeddings(position_ids[..., -800:]-(512+400))
|
||||
),
|
||||
dim=-2
|
||||
)
|
||||
else:
|
||||
if position_ids[0, 0] >= (512+400):
|
||||
position_embeddings = self.get_mixin('extra_position_embedding').position_embeddings(position_ids-(512+400))
|
||||
else:
|
||||
position_embeddings = self.transformer.position_embeddings(position_ids)
|
||||
return position_embeddings
|
||||
|
||||
def attention_forward(self, hidden_states, mask, layer_id, mems=None, log_text_attention_weights=0, text_len=0, frame_len=0, counter=0, enforce_no_swin=False, limited_spatial_channel_mem=False, **kw_args):
|
||||
attn_module = self.transformer.layers[layer_id].attention
|
||||
hidden_size = hidden_states.shape[-1]
|
||||
|
||||
# base model qkv
|
||||
if mems is None:
|
||||
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
||||
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
assert (q0.shape[1]-text_len) % frame_len == 0
|
||||
memkv0 = torch.cat((k0, v0), dim=-1)
|
||||
context_text, context_frame_local_text = attention_localframe_and_text_NAR(
|
||||
q0, k0, v0,
|
||||
mask,
|
||||
n_head=attn_module.num_attention_heads_per_partition,
|
||||
text_len=text_len,
|
||||
frame_len=frame_len,
|
||||
frame_num=(q0.shape[1]-text_len)//frame_len,
|
||||
log_text_attention_weights=log_text_attention_weights,
|
||||
stage=self.stage
|
||||
)
|
||||
|
||||
# change: self.swin_attend_to_text默认为True:
|
||||
memkv1_text = self.get_mixin('attention_plus').query_key_value[layer_id](hidden_states[..., :text_len, :])[..., hidden_size:]
|
||||
output_text = attn_module.dense(context_text)
|
||||
|
||||
if (q0.shape[1]-text_len)//frame_len > 0:
|
||||
assert (q0.shape[1]-text_len) % frame_len == 0
|
||||
context_frame_swin, memkv1_frame = self.get_mixin('attention_plus').attention_extra_NAR_inference(
|
||||
hidden_states[:,text_len:], layer_id, memkv_text=memkv1_text, stage=self.stage)
|
||||
if not enforce_no_swin:
|
||||
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
|
||||
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
|
||||
output_frame = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
|
||||
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
|
||||
else:
|
||||
output_frame = attn_module.dense(context_frame_local_text[..., :frame_len, :])
|
||||
output = torch.cat((output_text, output_frame), dim=-2)
|
||||
memkv1 = torch.cat((memkv1_text, memkv1_frame), dim=-2) if memkv1_text is not None else memkv1_frame
|
||||
else:
|
||||
output = output_text
|
||||
memkv1 = memkv1_text
|
||||
kw_args['output_this_layer']['mem_kv'] = (memkv0, memkv1)
|
||||
|
||||
|
||||
else:
|
||||
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
||||
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
new_memkv0 = torch.cat((k0, v0), dim=-1)
|
||||
old_k0, old_v0 = mems[0][layer_id][..., :hidden_size], mems[0][layer_id][..., hidden_size:]
|
||||
|
||||
context_frame_local_text = attention_localframe_and_text_AR(
|
||||
q0,
|
||||
torch.cat((old_k0.expand(k0.shape[0], -1, -1), k0), dim=-2),
|
||||
torch.cat((old_v0.expand(v0.shape[0], -1, -1), v0), dim=-2),
|
||||
n_head=attn_module.num_attention_heads_per_partition,
|
||||
text_len=text_len,
|
||||
frame_len=frame_len,
|
||||
frame_num=None,
|
||||
log_text_attention_weights=log_text_attention_weights,
|
||||
layer_id=layer_id,
|
||||
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
||||
)
|
||||
|
||||
old_memkv1 = mems[1][layer_id] if mems[1] is not None else None
|
||||
|
||||
context_frame_swin, new_memkv1 = self.get_mixin('attention_plus').attention_extra_AR_inference(hidden_states,
|
||||
old_memkv1[..., text_len:, :] if old_memkv1.shape[-2]>text_len else None,
|
||||
counter-text_len,
|
||||
layer_id,
|
||||
memkv_text=old_memkv1[..., :text_len, :],
|
||||
log_text_attention_weights=log_text_attention_weights)
|
||||
if not enforce_no_swin:
|
||||
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
|
||||
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
|
||||
output = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
|
||||
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
|
||||
else:
|
||||
output = attn_module.dense(context_frame_local_text)
|
||||
|
||||
kw_args['output_this_layer']['mem_kv'] = (new_memkv0, new_memkv1)
|
||||
|
||||
return output
|
543
models/cogvideo_model.py
Normal file
543
models/cogvideo_model.py
Normal file
@ -0,0 +1,543 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : cogvideo_model.py
|
||||
@Time : 2022/07/11 16:12:05
|
||||
@Author : Wenyi Hong
|
||||
@Version : 1.0
|
||||
@Contact : hwy22@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
|
||||
import torch
|
||||
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
|
||||
|
||||
from SwissArmyTransformer.mpu.utils import split_tensor_along_last_dim
|
||||
from SwissArmyTransformer.model.transformer import unscaled_init_method
|
||||
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
|
||||
import torch.nn.functional as F
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
|
||||
import math
|
||||
|
||||
class PositionEmbeddingMixin(BaseMixin):
|
||||
def __init__(self, additional_sequence_length, hidden_size,
|
||||
init_method_std=0.02, reinit_slice=slice(512, 912),
|
||||
):
|
||||
super(PositionEmbeddingMixin, self).__init__()
|
||||
self.reinit_slice = reinit_slice
|
||||
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
|
||||
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
||||
|
||||
def reinit(self, parent_model=None):
|
||||
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
|
||||
old_len, hidden_size = old_weights.shape
|
||||
assert hidden_size == self.position_embeddings.weight.shape[-1]
|
||||
self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Args:
|
||||
x: (B, framenum, H, W, C)
|
||||
window_size (int): window size
|
||||
Returns:
|
||||
windows: (num_windows*B, frame_num, window_size, window_size, C)
|
||||
"""
|
||||
B, framenum, H, W, C = x.shape
|
||||
x = x.view(B, framenum, H // window_size, window_size, W // window_size, window_size, C)
|
||||
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(-1, framenum, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, frame_num, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
Returns:
|
||||
x: (B, frame_num, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
framenum = windows.shape[1]
|
||||
x = windows.view(B, H // window_size, W // window_size, framenum, window_size, window_size, -1)
|
||||
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, framenum, H, W, -1)
|
||||
return x
|
||||
|
||||
class WindowAttentionMixin(BaseMixin):
|
||||
def __init__(self, num_layers,
|
||||
hidden_size,
|
||||
frame_resolution,
|
||||
window_size,
|
||||
shift_size,
|
||||
n_head,
|
||||
frame_num,
|
||||
init_method=unscaled_init_method(0.02),
|
||||
output_layer_init_method=unscaled_init_method(0.02),
|
||||
):
|
||||
super(WindowAttentionMixin, self).__init__()
|
||||
self.num_layers = num_layers # replace attention in the LAST n layers
|
||||
self.query_key_value = torch.nn.ModuleList(
|
||||
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
|
||||
gather_output=False,init_method=init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
self.dense = torch.nn.ModuleList(
|
||||
[RowParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
init_method=output_layer_init_method,
|
||||
bias=True,
|
||||
module=self,
|
||||
name="dense",
|
||||
)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
|
||||
self.n_head = n_head
|
||||
self.window_size = window_size
|
||||
self.frame_resolution = frame_resolution
|
||||
self.frame_len = frame_resolution * frame_resolution
|
||||
assert frame_resolution % window_size == 0
|
||||
assert 0 < shift_size < window_size
|
||||
nW = (self.frame_resolution // self.window_size) ** 2
|
||||
ws_squre = self.window_size * self.window_size
|
||||
|
||||
# odd non-shift, even shift
|
||||
img_mask = torch.zeros((1, 1, frame_resolution, frame_resolution, 1))
|
||||
h_slices = (slice(0, -shift_size),
|
||||
slice(-shift_size, None))
|
||||
w_slices = (slice(0, -shift_size),
|
||||
slice(-shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, :, h, w, :] = cnt
|
||||
cnt += 1
|
||||
mask_windows = window_partition(img_mask, self.window_size) # nW, 1, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||
sub_attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) #[nW, self.window_size * self.window_size, self.window_size * self.window_size]
|
||||
sub_attn_mask = sub_attn_mask.masked_fill(sub_attn_mask != 0, float(0.0)).masked_fill(sub_attn_mask == 0, float(1.00))
|
||||
attn_mask = sub_attn_mask.repeat(1, frame_num, frame_num)
|
||||
|
||||
self.attn_mask_sequential = attn_mask.clone().tril()
|
||||
self.causal_mask_sequential = torch.ones(1, ws_squre*frame_num, ws_squre*frame_num).tril()
|
||||
|
||||
self.causal_mask_interp = torch.ones(1, ws_squre*frame_num, ws_squre*frame_num)
|
||||
self.attn_mask_interp = attn_mask.clone()
|
||||
|
||||
# bi-dir
|
||||
for bi_idx in range(0, frame_num, 2):
|
||||
for uni_idx in range(1, frame_num, 2):
|
||||
self.attn_mask_interp[:, bi_idx*ws_squre:(bi_idx+1)*ws_squre, uni_idx*ws_squre:(uni_idx+1)*ws_squre] = 0
|
||||
self.causal_mask_interp[:, bi_idx*ws_squre:(bi_idx+1)*ws_squre, uni_idx*ws_squre:(uni_idx+1)*ws_squre] = 0
|
||||
# uni-dir
|
||||
for uni_idx in range(1, frame_num, 2):
|
||||
self.attn_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx:ws_squre*(uni_idx+1)].tril_()
|
||||
self.causal_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx:ws_squre*(uni_idx+1)].tril_()
|
||||
for uni_idx2 in range(uni_idx+2, frame_num, 2):
|
||||
self.attn_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx2:ws_squre*(uni_idx2+1)] = 0
|
||||
self.causal_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx2:ws_squre*(uni_idx2+1)] = 0
|
||||
|
||||
# expand dim
|
||||
self.attn_mask_sequential = self.attn_mask_sequential[None, None, :, None]
|
||||
self.attn_mask_interp = self.attn_mask_interp[None, None, :, None]
|
||||
self.causal_mask_sequential = self.causal_mask_sequential[None, None, :, None]
|
||||
self.causal_mask_interp = self.causal_mask_interp[None, None, :, None]
|
||||
|
||||
self.shift_sizes = [0, shift_size]
|
||||
# self.register_buffer("attn_mask", attn_mask)
|
||||
# self.register_buffer("causal_mask", causal_mask)
|
||||
self.mask_initialized = False
|
||||
|
||||
self.attn_distribution = torch.nn.ParameterList([
|
||||
torch.nn.Parameter(torch.zeros(hidden_size))
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
def reinit(self, *pre_mixins):
|
||||
start_layer = len(self.transformer.layers) - self.num_layers
|
||||
assert start_layer >= 0
|
||||
for layer_id in range(self.num_layers):
|
||||
old_attention = self.transformer.layers[start_layer + layer_id].attention
|
||||
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
|
||||
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
|
||||
|
||||
def attention_extra(self, frame_hidden_state, layer_id, attn_dropout, text_hidden_state=None,
|
||||
text_attn_mask=None, mode_sequential=True):
|
||||
# pb relax
|
||||
swin_pb_relax = True
|
||||
alpha = 16
|
||||
|
||||
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
|
||||
if not self.mask_initialized:
|
||||
self.attn_mask_sequential = self.attn_mask_sequential.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.causal_mask_sequential = self.causal_mask_sequential.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.attn_mask_interp = self.attn_mask_interp.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.causal_mask_interp = self.causal_mask_interp.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.mask_initialized = True
|
||||
b0, s1, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
frame_len = self.frame_resolution * self.frame_resolution
|
||||
frame_num = s1 // frame_len
|
||||
assert frame_num*frame_len == s1
|
||||
wind_square = self.window_size * self.window_size
|
||||
nW = frame_len // wind_square
|
||||
bswin = b0 * nW
|
||||
|
||||
causal_mask = self.causal_mask_sequential if mode_sequential else self.causal_mask_interp
|
||||
attn_mask = self.attn_mask_sequential if mode_sequential else self.attn_mask_interp
|
||||
if text_hidden_state is not None:
|
||||
s0 = text_hidden_state.shape[1]
|
||||
qkv_text = self.query_key_value[layer_id](text_hidden_state).reshape(b0, s0, 3, self.n_head, h).permute(2, 0, 3, 1, 4) #[3, b0, n_head, s0, h]
|
||||
q_text, k_text, v_text = qkv_text[0], qkv_text[1], qkv_text[2]
|
||||
|
||||
# shift
|
||||
frame_hidden_state = frame_hidden_state.reshape(b0, frame_num, self.frame_resolution, self.frame_resolution, h0)
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
frame_hidden_state = torch.roll(frame_hidden_state, shifts=(-self.shift_sizes[layer_id%2], -self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
# window partition
|
||||
frame_hidden_state = window_partition(frame_hidden_state, self.window_size).reshape(bswin, frame_num*wind_square, h0)
|
||||
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(bswin, frame_num*wind_square, 3, self.n_head, h)\
|
||||
.permute(2, 0, 3, 1, 4) #[3, bswin, n_head, frame_num*wind_size*wind_size, h]
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
|
||||
# pb-relax
|
||||
if swin_pb_relax:
|
||||
attn = torch.matmul(q / (math.sqrt(h)*alpha), k.transpose(-1, -2))
|
||||
else:
|
||||
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
|
||||
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
# attn = attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square) + self.attn_mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square), attn_mask)\
|
||||
- 10000.0 * (1.0 - attn_mask)
|
||||
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
|
||||
else:
|
||||
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square), causal_mask)\
|
||||
- 10000.0 * (1.0 - causal_mask)
|
||||
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
|
||||
if swin_pb_relax:
|
||||
swin_pb_relax_const = torch.max(attn.reshape(bswin, self.n_head, -1), dim=-1, keepdim=True)[0].detach().unsqueeze(-1)
|
||||
attn = (attn - swin_pb_relax_const)*alpha
|
||||
|
||||
if text_hidden_state is None:
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
else:
|
||||
assert text_attn_mask is not None
|
||||
text_attn_mask = text_attn_mask.unsqueeze(2).unsqueeze(2)
|
||||
# pb-relax
|
||||
if swin_pb_relax:
|
||||
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / (math.sqrt(h)*alpha), k_text.unsqueeze(1).transpose(-1, -2))
|
||||
attn_frame2text = (attn_frame2text-swin_pb_relax_const.reshape(b0, -1, self.n_head, 1, 1))*alpha
|
||||
else:
|
||||
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / math.sqrt(h), k_text.unsqueeze(1).transpose(-1, -2))
|
||||
|
||||
attn_frame2text = torch.mul(text_attn_mask, attn_frame2text) - 10000.0 * (1.0 - text_attn_mask)
|
||||
attn_frame2text = attn_frame2text.reshape(bswin, self.n_head, frame_num*wind_square, s0)
|
||||
attn = torch.cat((attn, attn_frame2text), dim=-1)
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
|
||||
context_swin = (torch.matmul(attn[..., :-s0], v) +
|
||||
torch.matmul(attn[..., -s0:].reshape(b0, -1, self.n_head,frame_num*wind_square, s0), v_text.unsqueeze(1))\
|
||||
.reshape(bswin, self.n_head, frame_num*wind_square, h))\
|
||||
.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
|
||||
|
||||
context_swin = window_reverse(context_swin, self.window_size, self.frame_resolution, self.frame_resolution)
|
||||
# reverse cycle shift
|
||||
if self.shift_sizes[layer_id%2] > 0:
|
||||
context_swin = torch.roll(context_swin, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
|
||||
context_swin = context_swin.reshape(b0, s1, h0)
|
||||
|
||||
return context_swin
|
||||
|
||||
|
||||
class FullAttentionMixin(BaseMixin):
|
||||
def __init__(self, num_layers,
|
||||
hidden_size,
|
||||
frame_resolution,
|
||||
n_head,
|
||||
frame_num,
|
||||
init_method=unscaled_init_method(0.02),
|
||||
output_layer_init_method=unscaled_init_method(0.02),
|
||||
):
|
||||
super(FullAttentionMixin, self).__init__()
|
||||
self.num_layers = num_layers # replace attention in the LAST n layers
|
||||
self.query_key_value = torch.nn.ModuleList(
|
||||
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
|
||||
gather_output=False,init_method=init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
self.dense = torch.nn.ModuleList(
|
||||
[RowParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
init_method=output_layer_init_method,
|
||||
bias=True,
|
||||
module=self,
|
||||
name="dense",)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
|
||||
self.n_head = n_head
|
||||
self.frame_resolution = frame_resolution
|
||||
self.frame_len = frame_resolution * frame_resolution
|
||||
self.causal_mask = torch.ones(1, 1, self.frame_len*frame_num, self.frame_len*frame_num).tril()
|
||||
|
||||
self.mask_initialized = False
|
||||
|
||||
self.attn_distribution = torch.nn.ParameterList([
|
||||
torch.nn.Parameter(torch.zeros(hidden_size))
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
def reinit(self, *pre_mixins):
|
||||
start_layer = len(self.transformer.layers) - self.num_layers
|
||||
assert start_layer >= 0
|
||||
for layer_id in range(self.num_layers):
|
||||
base_attention = self.transformer.layers[start_layer + layer_id].attention
|
||||
self.query_key_value[layer_id].weight.data.copy_(base_attention.query_key_value.weight.data)
|
||||
self.query_key_value[layer_id].bias.data.copy_(base_attention.query_key_value.bias.data)
|
||||
|
||||
def attention_extra(self, frame_hidden_state, layer_id, attn_dropout, text_hidden_state=None,
|
||||
text_attn_mask=None, mode_sequential=False):
|
||||
# pb relax
|
||||
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
|
||||
assert mode_sequential == True # only
|
||||
swin_pb_relax = True
|
||||
alpha = 16
|
||||
|
||||
if not self.mask_initialized:
|
||||
self.causal_mask = self.causal_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
|
||||
self.mask_initialized = True
|
||||
b0, s1, h0 = frame_hidden_state.shape
|
||||
h = h0 // self.n_head
|
||||
frame_len = self.frame_resolution * self.frame_resolution
|
||||
frame_num = s1 // frame_len
|
||||
assert frame_num*frame_len == s1
|
||||
|
||||
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(b0, s1, 3, self.n_head, h)\
|
||||
.permute(2, 0, 3, 1, 4) #[3, b0, n_head, s1, h]
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
|
||||
# frames-to-frames
|
||||
if swin_pb_relax:
|
||||
attn = torch.matmul(q / (math.sqrt(h)*alpha), k.transpose(-1, -2))
|
||||
else:
|
||||
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
|
||||
attn = torch.mul(attn, self.causal_mask) - 10000.0 * (1.0 - self.causal_mask)
|
||||
if swin_pb_relax:
|
||||
swin_pb_relax_const = torch.max(attn.reshape(b0, self.n_head, -1), dim=-1, keepdim=True)[0].detach().unsqueeze(-1)
|
||||
attn = (attn - swin_pb_relax_const)*alpha
|
||||
|
||||
if text_hidden_state is None:
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
else:
|
||||
# frame-to-text
|
||||
assert text_attn_mask is not None
|
||||
s0 = text_hidden_state.shape[1]
|
||||
qkv_text = self.query_key_value[layer_id](text_hidden_state).reshape(b0, s0, 3, self.n_head, h).permute(2, 0, 3, 1, 4) #[3, b0, n_head, s0, h]
|
||||
q_text, k_text, v_text = qkv_text[0], qkv_text[1], qkv_text[2]
|
||||
text_attn_mask = text_attn_mask.unsqueeze(2)
|
||||
if swin_pb_relax:
|
||||
attn_frame2text = torch.matmul(q.reshape(b0, self.n_head, s1, h) / (math.sqrt(h)*alpha), k_text.transpose(-1, -2))
|
||||
attn_frame2text = (attn_frame2text-swin_pb_relax_const.reshape(b0, self.n_head, 1, 1))*alpha
|
||||
else:
|
||||
attn_frame2text = torch.matmul(q.reshape(b0, self.n_head, s1, h) / math.sqrt(h), k_text.transpose(-1, -2))
|
||||
attn_frame2text = torch.mul(text_attn_mask, attn_frame2text) - 10000.0 * (1.0 - text_attn_mask)
|
||||
attn_frame2text = attn_frame2text.reshape(b0, self.n_head, s1, s0)
|
||||
|
||||
attn = torch.cat((attn, attn_frame2text), dim=-1)
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
|
||||
if attn_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attn = attn_dropout(attn)
|
||||
|
||||
context_frame = (torch.matmul(attn[..., :-s0], v) +
|
||||
torch.matmul(attn[..., -s0:].reshape(b0, self.n_head,s1, s0), v_text))\
|
||||
.permute(0, 2, 1, 3).reshape(b0, s1, h0)
|
||||
|
||||
return context_frame
|
||||
|
||||
|
||||
def attention_localframe_and_text(q0, k0, v0, attention_mask_totxt, attention_mask_local,
|
||||
n_head, text_len, frame_len, frame_num, attention_dropout=None, layer_id=0, **kwargs):
|
||||
b, s0, h0 = q0.shape
|
||||
s1 = s0 - text_len
|
||||
h = h0 // n_head
|
||||
assert q0.shape[1] == v0.shape[1] == k0.shape[1] == text_len+frame_len*frame_num
|
||||
# attention_mask_totxt [b, 1, 1, text_len]
|
||||
# attention_mask_local [1, 1, frame_num, frame_len, frame_len]
|
||||
# attention_mask: [1, 1, text_len+frame_len, text_len+frame_len]
|
||||
|
||||
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0 = k0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.transpose(-1, -2)
|
||||
|
||||
# score: any2text
|
||||
score_any2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
|
||||
score_any2text_part1 = torch.mul(score_any2text[..., :text_len, :], attention_mask_totxt) \
|
||||
- 10000.0 * (1.0 - attention_mask_totxt)
|
||||
score_any2text_part2 = torch.mul(score_any2text[..., text_len:, :], attention_mask_totxt) - \
|
||||
10000.0 * (1.0 - attention_mask_totxt)
|
||||
|
||||
# score: frame local
|
||||
q0_frame = q0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
|
||||
v0_frame = v0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
|
||||
k0T_frame = k0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h).transpose(-1, -2)
|
||||
score_frame_local0 = torch.matmul(q0_frame / math.sqrt(q0_frame.shape[-1]), k0T_frame)
|
||||
score_frame_local0 = torch.mul(score_frame_local0, attention_mask_local) \
|
||||
- 10000.0 * (1.0 - attention_mask_local)
|
||||
|
||||
# context for frame
|
||||
score_frame_all = torch.cat((score_any2text_part2,
|
||||
score_frame_local0.view(b, n_head, s1, frame_len)), dim=-1)
|
||||
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
|
||||
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs_frame = attention_dropout(attention_probs_frame)
|
||||
|
||||
context_frame2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
|
||||
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:text_len+frame_len].\
|
||||
view(b, n_head, frame_num, frame_len, frame_len), v0_frame).view(b, n_head, s1, h)
|
||||
context_frame = (context_frame2text + context_frame_local0).transpose(1, 2).reshape(b, s1, h0)
|
||||
|
||||
# context for text
|
||||
attention_probs_text = F.softmax(score_any2text_part1, dim=-1)
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs_text = attention_dropout(attention_probs_text)
|
||||
context_text2text = torch.matmul(attention_probs_text, v0[..., :text_len, :])
|
||||
context_text2text = context_text2text.transpose(1, 2).reshape(b, text_len, h0)
|
||||
|
||||
return context_text2text, context_frame
|
||||
|
||||
|
||||
class CogVideoModel(BaseModel):
|
||||
def __init__(self, args, transformer=None, parallel_output=True):
|
||||
super().__init__(args, transformer=transformer, parallel_output=parallel_output)
|
||||
self.stage = args.cogvideo_stage # 1 or 2
|
||||
self.mode_sequential = True if self.stage==1 else False
|
||||
self.layout = args.layout # [64, 64+400, 64+5*400]
|
||||
self.n_head = args.num_attention_heads
|
||||
frame_resolution = int(math.sqrt(self.layout[1]-self.layout[0]))
|
||||
frame_num = (args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0])
|
||||
frame_len = self.layout[1]-self.layout[0]
|
||||
|
||||
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
|
||||
args.additional_seqlen, args.hidden_size
|
||||
))
|
||||
|
||||
if args.window_size == -1:
|
||||
# full attention
|
||||
assert self.stage == 1
|
||||
self.add_mixin('attention_plus', FullAttentionMixin(
|
||||
num_layers=args.num_layers,
|
||||
hidden_size=args.hidden_size,
|
||||
frame_resolution=frame_resolution,
|
||||
n_head=args.num_attention_heads,
|
||||
frame_num=frame_num,
|
||||
))
|
||||
else:
|
||||
self.add_mixin('attention_plus', WindowAttentionMixin(
|
||||
num_layers=args.num_layers,
|
||||
hidden_size=args.hidden_size,
|
||||
frame_resolution=frame_resolution,
|
||||
window_size=args.window_size,
|
||||
shift_size=args.window_size//2,
|
||||
n_head=args.num_attention_heads,
|
||||
frame_num=frame_num,
|
||||
))
|
||||
# attention_mask_local
|
||||
self.attention_mask_local_sequential = torch.ones(1, 1, frame_num, frame_len, frame_len).tril().unsqueeze(0)
|
||||
self.attention_mask_local_interp = torch.ones(1, 1, frame_num, frame_len, frame_len)
|
||||
|
||||
for idx in range(1, frame_num, 2):
|
||||
self.attention_mask_local_interp[:, :, idx:idx+1].tril_()
|
||||
self.attention_mask_local_interp = self.attention_mask_local_interp.unsqueeze(0)
|
||||
self.mask_initialized = False
|
||||
|
||||
@classmethod
|
||||
def add_model_specific_args(cls, parser):
|
||||
group = parser.add_argument_group('CogVideoModel', 'CogVideo model configurations')
|
||||
group.add_argument("--layout", type=str, default='64, 464, 2064', help='text_len, textlen+frame_len, textlen+frame_len*frame_num')
|
||||
group.add_argument("--window-size", type=int, default=10, help="swin attention's window size in temperal channel, -1 represents full attention")
|
||||
group.add_argument("--additional-seqlen", type=int, default=2000)
|
||||
group.add_argument("--cogvideo-stage", type=int, default=1, choices=[1,2])
|
||||
return parser
|
||||
|
||||
def disable_untrainable_params(self):
|
||||
self.transformer.requires_grad_(False)
|
||||
|
||||
def position_embedding_forward(self, position_ids, **kw_args):
|
||||
position = position_ids[..., :(64+400)]
|
||||
position_plus = position_ids[..., (64+400):]
|
||||
position_embeddings = torch.cat(
|
||||
(
|
||||
self.transformer.position_embeddings(position),
|
||||
self.get_mixin('extra_position_embedding').position_embeddings(position_plus-(512+400))
|
||||
),
|
||||
dim=-2
|
||||
)
|
||||
return position_embeddings
|
||||
|
||||
def attention_forward(self, hidden_states, mask, layer_id, **kw_args):
|
||||
# mask.shape=[bs, 1, 1, 64]
|
||||
if not self.mask_initialized:
|
||||
self.attention_mask_local_sequential = self.attention_mask_local_sequential.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
||||
self.attention_mask_local_interp = self.attention_mask_local_interp.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
||||
self.mask_initialized = True
|
||||
|
||||
attn_module = self.transformer.layers[layer_id].attention
|
||||
hidden_size = hidden_states.shape[-1]
|
||||
bs = hidden_states.shape[0]
|
||||
|
||||
# base model qkv
|
||||
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
||||
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
dropout_fn = self.transformer.layers[layer_id].attention.attention_dropout if self.training else None
|
||||
|
||||
attention_mask_local = self.attention_mask_local_sequential if self.mode_sequential else self.attention_mask_local_interp
|
||||
context_text, context_frame_local_text = attention_localframe_and_text(
|
||||
q0, k0, v0,
|
||||
attention_mask_totxt=mask,
|
||||
attention_mask_local=attention_mask_local,
|
||||
n_head=attn_module.num_attention_heads_per_partition,
|
||||
text_len=self.layout[0],
|
||||
frame_len=self.layout[1]-self.layout[0],
|
||||
frame_num=(self.layout[2]-self.layout[0])//(self.layout[1]-self.layout[0]),
|
||||
attention_dropout=dropout_fn,
|
||||
layer_id=layer_id,
|
||||
)
|
||||
|
||||
context_frame_swin = self.get_mixin('attention_plus').attention_extra(
|
||||
hidden_states[:, self.layout[0]:], layer_id, dropout_fn,
|
||||
text_hidden_state=hidden_states[:, :self.layout[0]],
|
||||
text_attn_mask=mask[..., 0, :],
|
||||
mode_sequential=self.mode_sequential)
|
||||
|
||||
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
|
||||
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
|
||||
|
||||
output_text = attn_module.dense(context_text)
|
||||
output_frame = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
|
||||
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
|
||||
output = torch.cat((output_text, output_frame), dim=-2)
|
||||
|
||||
return output
|
184
pretrain_cogvideo.py
Normal file
184
pretrain_cogvideo.py
Normal file
@ -0,0 +1,184 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : pretrain_cogvideo.py
|
||||
@Time : 2021/10/06 00:58:32
|
||||
@Author : Wenyi Hong
|
||||
@Contact : hwy22@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
import argparse
|
||||
import numpy as np
|
||||
from icetk import icetk as tokenizer
|
||||
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
|
||||
|
||||
from models.cogvideo_model import CogVideoModel
|
||||
from SwissArmyTransformer import mpu, get_args
|
||||
from SwissArmyTransformer.training.deepspeed_training import training_main
|
||||
from SwissArmyTransformer.data_utils import BinaryDataset
|
||||
|
||||
def get_masks_and_position_ids_video(data, attention_mask_totxt=None, args=None):
|
||||
# Extract batch size and sequence length.
|
||||
batch_size, seq_length = data.size()
|
||||
assert attention_mask_totxt is not None
|
||||
layout = args.layout
|
||||
assert seq_length == layout[-1]
|
||||
n_pads = layout[0] - attention_mask_totxt.sum(dim=-1).long()
|
||||
frame_len = layout[1]-layout[0]
|
||||
position_ids = torch.zeros(batch_size, layout[2], dtype=torch.long,
|
||||
device=data.device)
|
||||
for i in range(batch_size):
|
||||
torch.arange(layout[0] - n_pads[i], out=position_ids[i, n_pads[i]:layout[0]],
|
||||
dtype=torch.long, device=data.device)
|
||||
torch.arange(512, 512+layout[2]-layout[0],
|
||||
out=position_ids[i, layout[0]:], dtype=torch.long, device=data.device)
|
||||
return position_ids
|
||||
|
||||
|
||||
def get_batch(data_iterator, args, timers):
|
||||
# Items and their type.
|
||||
keys = ['text', 'loss_mask', 'attention_mask_totxt']
|
||||
datatype = torch.int64
|
||||
|
||||
# Broadcast data.
|
||||
timers('data loader').start()
|
||||
if data_iterator is not None:
|
||||
data = next(data_iterator)
|
||||
else:
|
||||
data = None
|
||||
timers('data loader').stop()
|
||||
|
||||
data_b = mpu.broadcast_data(keys, data, datatype)
|
||||
# Unpack.
|
||||
tokens_ = data_b['text'].long()
|
||||
loss_mask = data_b['loss_mask'].float()
|
||||
attention_mask_totxt = data_b['attention_mask_totxt'].float()
|
||||
|
||||
labels = tokens_[:, 1:].clone().contiguous()
|
||||
loss_mask = loss_mask[:, 1:].contiguous()
|
||||
tokens = tokens_[:, :-1].clone().contiguous()
|
||||
|
||||
for idx in range(args.layout[0], args.layout[2], 400):
|
||||
tokens[:, idx] = tokenizer['<start_of_image>']
|
||||
# Get the masks and postition ids.
|
||||
position_ids = get_masks_and_position_ids_video(
|
||||
tokens,
|
||||
attention_mask_totxt=attention_mask_totxt,
|
||||
args=args
|
||||
)
|
||||
attention_mask_totxt = attention_mask_totxt.unsqueeze(1).unsqueeze(1)
|
||||
# Convert
|
||||
if args.fp16:
|
||||
attention_mask_totxt = attention_mask_totxt.half()
|
||||
return tokens, labels, loss_mask, attention_mask_totxt, position_ids
|
||||
|
||||
|
||||
def forward_step(data_iterator, model, args, timers):
|
||||
"""Forward step."""
|
||||
|
||||
# Get the batch.
|
||||
timers('batch generator').start()
|
||||
tokens, labels, loss_mask, attention_mask_totxt, position_ids = get_batch(
|
||||
data_iterator, args, timers)
|
||||
timers('batch generator').stop()
|
||||
|
||||
# Forward model.
|
||||
logits, *mems = model(tokens, position_ids, attention_mask_totxt)
|
||||
# ======= hyper params =======#
|
||||
perframe_len = 400
|
||||
text_len=64
|
||||
frame_num = 5
|
||||
logits_img_tokens = logits[:, text_len:, :tokenizer.num_image_tokens].float().contiguous()
|
||||
losses = mpu.vocab_parallel_cross_entropy(logits_img_tokens, labels[:, text_len:])
|
||||
# scaling loss mask
|
||||
loss_mask = loss_mask[:, text_len:].reshape(-1)
|
||||
|
||||
losses_1d = losses.reshape(-1) * loss_mask
|
||||
loss = torch.sum(losses_1d) / loss_mask.sum()
|
||||
# ===================== Log partial losses ======================== #
|
||||
log_loss_dict = {}
|
||||
bs = losses.shape[0]
|
||||
|
||||
if args.cogvideo_stage == 1:
|
||||
for i in range(frame_num):
|
||||
log_loss_dict[f'AR_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
|
||||
else:
|
||||
for i in range(1, frame_num-1):
|
||||
log_loss_dict[f'ITP_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
|
||||
|
||||
# ===================== END OF BLOCK ======================= #
|
||||
return loss, log_loss_dict
|
||||
|
||||
|
||||
def create_dataset_function(path, args):
|
||||
dataset_layout = [64, 464, 2064]
|
||||
input_layout = [64, 464, 2064]
|
||||
# frame_num = 6
|
||||
# frame_interval = 2 # DEBUG!!!
|
||||
def process_fn(row):
|
||||
row = row.astype(np.int64)
|
||||
text = row[:dataset_layout[0]]
|
||||
frames = row[dataset_layout[0]:]
|
||||
|
||||
if text[0] == tokenizer['<pad>']:
|
||||
text = text[1:] # due to our way of data processing
|
||||
if args.cogvideo_stage == 1:
|
||||
text, loss_mask, frames = make_text_video_generation(text, frames)
|
||||
else:
|
||||
text, loss_mask, frames = mask_video_frame_interpolation(text, frames)
|
||||
|
||||
n_pad = input_layout[0] - len(text)
|
||||
parts = [
|
||||
np.array([tokenizer['<pad>']] * n_pad, dtype=np.int64),
|
||||
text,
|
||||
np.array([tokenizer['<start_of_image>']], dtype=np.int64),
|
||||
frames,
|
||||
]
|
||||
ret = np.concatenate(parts, axis=0)
|
||||
|
||||
attention_mask_totxt = np.array([0] * n_pad + [1] * (input_layout[0]-n_pad))
|
||||
return {'text': ret,
|
||||
'loss_mask': loss_mask,
|
||||
'attention_mask_totxt': attention_mask_totxt,
|
||||
}
|
||||
return BinaryDataset(path, process_fn, length_per_sample=dataset_layout[-1])
|
||||
|
||||
def make_text_video_generation(text, frames):
|
||||
input_layout = [64, 464, 2064]
|
||||
text = text[text!= tokenizer['<pad>']][:input_layout[0]] # dataset format: 1.0秒<n>{text}<pad><pad> ...
|
||||
loss_mask = np.array([0] * (input_layout[1]+1) + [1] * (input_layout[2] - input_layout[1])) # 按照input的,之后loss_mask会左移一位
|
||||
return text, loss_mask, frames
|
||||
|
||||
def mask_video_frame_interpolation(text, frames):
|
||||
input_layout = [64, 464, 2064]
|
||||
frame_len = input_layout[1]-input_layout[0]
|
||||
# text format: <pad> 1.0秒 <n> {text} <pad> <pad>
|
||||
text = text[text!= tokenizer['<pad>']][:input_layout[0]]
|
||||
loss_mask = np.array([0] * (input_layout[1]+1)
|
||||
+ [1] * (input_layout[1]-input_layout[0])
|
||||
+ [0] * (input_layout[1]-input_layout[0])
|
||||
+ [1] * (input_layout[1]-input_layout[0])
|
||||
+ [0] * (input_layout[1]-input_layout[0]) )# 按照input的,之后loss_mask会左移一位
|
||||
|
||||
return text, loss_mask, frames
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
py_parser = argparse.ArgumentParser(add_help=False)
|
||||
py_parser.add_argument('--txt-loss-scale', type=float, default=1)
|
||||
CogVideoModel.add_model_specific_args(py_parser)
|
||||
|
||||
known, args_list = py_parser.parse_known_args()
|
||||
|
||||
args = get_args(args_list)
|
||||
args = argparse.Namespace(**vars(args), **vars(known))
|
||||
|
||||
args.layout = [int(x) for x in args.layout.split(',')]
|
||||
|
||||
training_main(args, model_cls=CogVideoModel, forward_step_function=forward_step, create_dataset_function=create_dataset_function)
|
4
requirements.txt
Normal file
4
requirements.txt
Normal file
@ -0,0 +1,4 @@
|
||||
SwissArmyTransformer>=0.2
|
||||
icetk
|
||||
gifmaker
|
||||
torchvision
|
108
scripts/ds_brain_pretrain_cogvideo_stage1.sh
Normal file
108
scripts/ds_brain_pretrain_cogvideo_stage1.sh
Normal file
@ -0,0 +1,108 @@
|
||||
#! /bin/bash
|
||||
|
||||
# Change for multinode config
|
||||
|
||||
NUM_WORKERS=1
|
||||
NUM_GPUS_PER_WORKER=8
|
||||
MP_SIZE=1
|
||||
|
||||
script_path=$(realpath $0)
|
||||
script_dir=$(dirname $script_path)
|
||||
main_dir=$(dirname $script_dir)
|
||||
|
||||
OPTIONS_NCCL="NCCL_DEBUG=warning NCCL_IB_DISABLE=0 NCCL_NET_GDR_LEVEL=2"
|
||||
HOST_FILE_PATH="hostfile"
|
||||
# HOST_FILE_PATH="hostfile_single"
|
||||
|
||||
video_data_test="" # TODO
|
||||
CHECKPOINT_PATH="" # TODO: CogView2 ckpt
|
||||
|
||||
config_json="$script_dir/ds_config_zero.json"
|
||||
gpt_options=" \
|
||||
--experiment-name pretrain-cogvideo-stage1 \
|
||||
--tokenizer-type fake \
|
||||
--vocab-size 150010 \
|
||||
--model-parallel-size ${MP_SIZE} \
|
||||
--mode finetune \
|
||||
--num-workers 0 \
|
||||
--num-layers 48 \
|
||||
--hidden-size 3072 \
|
||||
--num-attention-heads 48 \
|
||||
--layout 64,464,2064 \
|
||||
--window-size -1 \
|
||||
--cogvideo-stage 1 \
|
||||
--additional-seqlen 2000 \
|
||||
--train-iters 500000 \
|
||||
--resume-dataloader \
|
||||
--train-data ${video_data_test} \
|
||||
--train-data-weights 1 \
|
||||
--split 949,50,1 \
|
||||
--distributed-backend nccl \
|
||||
--lr-decay-style cosine \
|
||||
--warmup .001 \
|
||||
--checkpoint-activations \
|
||||
--max-sequence-length 1024 \
|
||||
--fp16 \
|
||||
--save-interval 2000 \
|
||||
--eval-interval 500 \
|
||||
--eval-iters 15 \
|
||||
--log-interval 50 \
|
||||
--save $main_dir/checkpoints \
|
||||
--sandwich-ln \
|
||||
--load $CHECKPOINT_PATH \
|
||||
"
|
||||
# --load $CHECKPOINT_PATH \
|
||||
# \ --sandwich-ln
|
||||
|
||||
|
||||
gpt_options="${gpt_options}
|
||||
--deepspeed \
|
||||
--deepspeed_config ${config_json} \
|
||||
"
|
||||
|
||||
#!/bin/bash
|
||||
|
||||
# Distribute Example
|
||||
#export NCCL_SOCKET_IFNAME=eth0
|
||||
export NCCL_IB_DISABLE=0
|
||||
export NCCL_NET_GDR_LEVEL=2
|
||||
#export NCCL_IB_CUDA_SUPPORT=1
|
||||
#export NCCL_IB_GID_INDEX=3
|
||||
#export NCCL_IB_HCA=$(pushd /sys/class/infiniband/ > /dev/null; for i in mlx5_*; do cat $i/ports/1/gid_attrs/types/* 2>/dev/null | grep v >/dev/null && echo $i ; done; popd > /dev/null)
|
||||
export NCCL_DEBUG=info
|
||||
export OMP_NUM_THREADS=4
|
||||
|
||||
if [ $RLAUNCH_REPLICA == "0" ]; then
|
||||
ifconfig eth0 | grep inet | grep -v inet6 | awk '{print $2}' > master_ip
|
||||
fi
|
||||
|
||||
function finish {
|
||||
rm -rf master_ip
|
||||
}
|
||||
|
||||
trap finish EXIT INT TERM
|
||||
|
||||
while [ ! -f master_ip ]; do
|
||||
echo "wait master_ip..."
|
||||
ls > /dev/null && sleep 1;
|
||||
done
|
||||
|
||||
export MASTER_ADDR=$(cat master_ip)
|
||||
echo "master_ip: $MASTER_ADDR"
|
||||
|
||||
MP_SIZE=1
|
||||
task_set=$2
|
||||
source $1
|
||||
DATESTR=$(date +"%m-%d-%H-%M")
|
||||
|
||||
mkdir logs
|
||||
run_cmd="sudo /opt/conda/bin/python -m torch.distributed.launch --nproc_per_node=8 \
|
||||
--nnodes=$RLAUNCH_REPLICA_TOTAL --node_rank=$RLAUNCH_REPLICA \
|
||||
--master_addr=$MASTER_ADDR --master_port=12355 pretrain_cogvideo.py $@ ${gpt_options} 2>&1 | tee logs/log-${DATESTR}-${RLAUNCH_REPLICA}.txt"
|
||||
|
||||
|
||||
# run_cmd="${OPTIONS_NCCL} deepspeed --num_nodes ${NUM_WORKERS} --num_gpus ${NUM_GPUS_PER_WORKER} --hostfile ${HOST_FILE_PATH} pretrain_video_swin_cond_glm_interp.py $@ ${gpt_options}"
|
||||
echo ${run_cmd}
|
||||
eval ${run_cmd}
|
||||
|
||||
set +x
|
108
scripts/ds_brain_pretrain_cogvideo_stage2.sh
Normal file
108
scripts/ds_brain_pretrain_cogvideo_stage2.sh
Normal file
@ -0,0 +1,108 @@
|
||||
#! /bin/bash
|
||||
|
||||
# Change for multinode config
|
||||
|
||||
NUM_WORKERS=1
|
||||
NUM_GPUS_PER_WORKER=8
|
||||
MP_SIZE=1
|
||||
|
||||
script_path=$(realpath $0)
|
||||
script_dir=$(dirname $script_path)
|
||||
main_dir=$(dirname $script_dir)
|
||||
|
||||
OPTIONS_NCCL="NCCL_DEBUG=warning NCCL_IB_DISABLE=0 NCCL_NET_GDR_LEVEL=2"
|
||||
HOST_FILE_PATH="hostfile"
|
||||
# HOST_FILE_PATH="hostfile_single"
|
||||
|
||||
video_data_test="" # TODO
|
||||
CHECKPOINT_PATH="" # TODO: CogView2 ckpt
|
||||
|
||||
config_json="$script_dir/ds_config_zero.json"
|
||||
gpt_options=" \
|
||||
--experiment-name pretrain-cogvideo-stage2 \
|
||||
--tokenizer-type fake \
|
||||
--vocab-size 150010 \
|
||||
--model-parallel-size ${MP_SIZE} \
|
||||
--mode finetune \
|
||||
--num-workers 0 \
|
||||
--num-layers 48 \
|
||||
--hidden-size 3072 \
|
||||
--num-attention-heads 48 \
|
||||
--layout 64,464,2064 \
|
||||
--window-size 10 \
|
||||
--cogvideo-stage 2 \
|
||||
--additional-seqlen 2000 \
|
||||
--train-iters 500000 \
|
||||
--resume-dataloader \
|
||||
--train-data ${video_data_test} \
|
||||
--train-data-weights 1 \
|
||||
--split 949,50,1 \
|
||||
--distributed-backend nccl \
|
||||
--lr-decay-style cosine \
|
||||
--warmup .001 \
|
||||
--checkpoint-activations \
|
||||
--max-sequence-length 1024 \
|
||||
--fp16 \
|
||||
--save-interval 2000 \
|
||||
--eval-interval 500 \
|
||||
--eval-iters 15 \
|
||||
--log-interval 50 \
|
||||
--save $main_dir/checkpoints \
|
||||
--sandwich-ln \
|
||||
--load $CHECKPOINT_PATH \
|
||||
"
|
||||
# --load $CHECKPOINT_PATH \
|
||||
# \ --sandwich-ln
|
||||
|
||||
|
||||
gpt_options="${gpt_options}
|
||||
--deepspeed \
|
||||
--deepspeed_config ${config_json} \
|
||||
"
|
||||
|
||||
#!/bin/bash
|
||||
|
||||
# Distribute Example
|
||||
#export NCCL_SOCKET_IFNAME=eth0
|
||||
export NCCL_IB_DISABLE=0
|
||||
export NCCL_NET_GDR_LEVEL=2
|
||||
#export NCCL_IB_CUDA_SUPPORT=1
|
||||
#export NCCL_IB_GID_INDEX=3
|
||||
#export NCCL_IB_HCA=$(pushd /sys/class/infiniband/ > /dev/null; for i in mlx5_*; do cat $i/ports/1/gid_attrs/types/* 2>/dev/null | grep v >/dev/null && echo $i ; done; popd > /dev/null)
|
||||
export NCCL_DEBUG=info
|
||||
export OMP_NUM_THREADS=4
|
||||
|
||||
if [ $RLAUNCH_REPLICA == "0" ]; then
|
||||
ifconfig eth0 | grep inet | grep -v inet6 | awk '{print $2}' > master_ip
|
||||
fi
|
||||
|
||||
function finish {
|
||||
rm -rf master_ip
|
||||
}
|
||||
|
||||
trap finish EXIT INT TERM
|
||||
|
||||
while [ ! -f master_ip ]; do
|
||||
echo "wait master_ip..."
|
||||
ls > /dev/null && sleep 1;
|
||||
done
|
||||
|
||||
export MASTER_ADDR=$(cat master_ip)
|
||||
echo "master_ip: $MASTER_ADDR"
|
||||
|
||||
MP_SIZE=1
|
||||
task_set=$2
|
||||
source $1
|
||||
DATESTR=$(date +"%m-%d-%H-%M")
|
||||
|
||||
mkdir logs
|
||||
run_cmd="sudo /opt/conda/bin/python -m torch.distributed.launch --nproc_per_node=8 \
|
||||
--nnodes=$RLAUNCH_REPLICA_TOTAL --node_rank=$RLAUNCH_REPLICA \
|
||||
--master_addr=$MASTER_ADDR --master_port=12355 pretrain_cogvideo.py $@ ${gpt_options} 2>&1 | tee logs/log-${DATESTR}-${RLAUNCH_REPLICA}.txt"
|
||||
|
||||
|
||||
# run_cmd="${OPTIONS_NCCL} deepspeed --num_nodes ${NUM_WORKERS} --num_gpus ${NUM_GPUS_PER_WORKER} --hostfile ${HOST_FILE_PATH} pretrain_video_swin_cond_glm_interp.py $@ ${gpt_options}"
|
||||
echo ${run_cmd}
|
||||
eval ${run_cmd}
|
||||
|
||||
set +x
|
42
scripts/ds_config_zero.json
Normal file
42
scripts/ds_config_zero.json
Normal file
@ -0,0 +1,42 @@
|
||||
{
|
||||
"train_micro_batch_size_per_gpu": 4,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"steps_per_print": 1,
|
||||
"gradient_clipping": 0.1,
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"cpu_offload": true,
|
||||
"contiguous_gradients": false,
|
||||
"overlap_comm": true,
|
||||
"reduce_scatter": false,
|
||||
"reduce_bucket_size": 100000000,
|
||||
"allgather_bucket_size": 1000000000,
|
||||
"load_from_fp32_weights": false
|
||||
},
|
||||
"zero_allow_untested_optimizer": true,
|
||||
"fp16": {
|
||||
"enabled": true,
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 400,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "Adam",
|
||||
"params": {
|
||||
"lr": 0.0002,
|
||||
"betas": [
|
||||
0.9,
|
||||
0.95
|
||||
],
|
||||
"eps": 1e-8,
|
||||
"weight_decay": 1e-4
|
||||
}
|
||||
},
|
||||
"activation_checkpointing": {
|
||||
"partition_activations": false,
|
||||
"contiguous_memory_optimization": false
|
||||
},
|
||||
"wall_clock_breakdown": false
|
||||
}
|
||||
|
38
scripts/inference_cogvideo_pipeline.sh
Normal file
38
scripts/inference_cogvideo_pipeline.sh
Normal file
@ -0,0 +1,38 @@
|
||||
#!/bin/bash
|
||||
|
||||
NLAYERS=48
|
||||
NHIDDEN=3072
|
||||
NATT=48
|
||||
MAXSEQLEN=1024
|
||||
MASTER_PORT=$(shuf -n 1 -i 10000-65535)
|
||||
MPSIZE=1
|
||||
|
||||
#SAMPLING ARGS
|
||||
TEMP=1.05
|
||||
TOPK=12
|
||||
|
||||
script_path=$(realpath $0)
|
||||
script_dir=$(dirname $script_path)
|
||||
|
||||
MASTER_PORT=${MASTER_PORT} SAT_HOME=/sharefs/cogview-new python cogvideo_pipeline.py \
|
||||
--input-source interactive \
|
||||
--output-path ./output \
|
||||
--parallel-size 1 \
|
||||
--both-stages \
|
||||
--use-guidance-stage1 \
|
||||
--guidance-alpha 3.0 \
|
||||
--generate-frame-num 5 \
|
||||
--tokenizer-type fake \
|
||||
--mode inference \
|
||||
--distributed-backend nccl \
|
||||
--fp16 \
|
||||
--model-parallel-size $MPSIZE \
|
||||
--temperature $TEMP \
|
||||
--coglm-temperature2 0.89 \
|
||||
--top_k $TOPK \
|
||||
--sandwich-ln \
|
||||
--seed 1234 \
|
||||
--num-workers 0 \
|
||||
--batch-size 4 \
|
||||
--max-inference-batch-size 8 \
|
||||
$@
|
17
sr_pipeline/__init__.py
Normal file
17
sr_pipeline/__init__.py
Normal file
@ -0,0 +1,17 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : __init__.py
|
||||
@Time : 2022/03/02 13:57:09
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
|
||||
from .direct_sr import DirectSuperResolution
|
||||
from .iterative_sr import IterativeSuperResolution
|
||||
from .sr_group import SRGroup
|
117
sr_pipeline/direct_sr.py
Normal file
117
sr_pipeline/direct_sr.py
Normal file
@ -0,0 +1,117 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : direct_sr.py
|
||||
@Time : 2022/03/02 13:58:11
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : inference_cogview2.py
|
||||
@Time : 2021/10/10 16:31:34
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
from PIL import ImageEnhance, Image
|
||||
|
||||
import torch
|
||||
import argparse
|
||||
from torchvision import transforms
|
||||
|
||||
from SwissArmyTransformer import get_args
|
||||
from SwissArmyTransformer.training.model_io import load_checkpoint
|
||||
from .dsr_sampling import filling_sequence_dsr, IterativeEntfilterStrategy
|
||||
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
|
||||
|
||||
from .dsr_model import DsrModel
|
||||
|
||||
from icetk import icetk as tokenizer
|
||||
|
||||
class DirectSuperResolution:
|
||||
def __init__(self, args, path, max_bz=4, topk=6, onCUDA=False):
|
||||
args.load = path
|
||||
args.kernel_size = 5
|
||||
args.kernel_size2 = 5
|
||||
args.new_sequence_length = 4624
|
||||
args.layout = [96,496,4096]
|
||||
|
||||
model = DsrModel(args)
|
||||
if args.fp16:
|
||||
model = model.half()
|
||||
|
||||
load_checkpoint(model, args) # on cpu
|
||||
model.eval()
|
||||
self.model = model
|
||||
self.onCUDA = onCUDA
|
||||
if onCUDA:
|
||||
self.model = self.model.cuda()
|
||||
|
||||
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
||||
|
||||
self.strategy = IterativeEntfilterStrategy(invalid_slices,
|
||||
temperature=1.0, topk=topk) # temperature not used # Temperature Freezed Here!!
|
||||
self.max_bz = max_bz
|
||||
|
||||
def __call__(self, text_tokens, image_tokens, enhance=False):
|
||||
if len(text_tokens.shape) == 1:
|
||||
text_tokens.unsqueeze_(0)
|
||||
if len(image_tokens.shape) == 1:
|
||||
image_tokens.unsqueeze_(0)
|
||||
# ===================== Debug ======================== #
|
||||
# new_image_tokens = []
|
||||
# for small_img in image_tokens:
|
||||
# decoded = tokenizer.decode(image_ids=small_img)
|
||||
# decoded = torch.nn.functional.interpolate(decoded, size=(480, 480)).squeeze(0)
|
||||
# ndarr = decoded.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
|
||||
# image_pil_raw = ImageEnhance.Sharpness(Image.fromarray(ndarr))
|
||||
# small_img2 = tokenizer.encode(image_pil=image_pil_raw.enhance(1.5), image_size=480).view(-1)
|
||||
# new_image_tokens.append(small_img2)
|
||||
# image_tokens = torch.stack(new_image_tokens)
|
||||
# return image_tokens
|
||||
# ===================== END OF BLOCK ======================= #
|
||||
if enhance:
|
||||
new_image_tokens = []
|
||||
for small_img in image_tokens:
|
||||
decoded = tokenizer.decode(image_ids=small_img).squeeze(0)
|
||||
ndarr = decoded.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
|
||||
image_pil_raw = ImageEnhance.Sharpness(Image.fromarray(ndarr))
|
||||
small_img2 = tokenizer.encode(image_pil=image_pil_raw.enhance(1.), image_size=160).view(-1)
|
||||
new_image_tokens.append(small_img2)
|
||||
image_tokens = torch.stack(new_image_tokens)
|
||||
|
||||
seq = torch.cat((text_tokens,image_tokens), dim=1)
|
||||
seq1 = torch.tensor([tokenizer['<start_of_image>']]*3601, device=image_tokens.device).unsqueeze(0).expand(text_tokens.shape[0], -1)
|
||||
if not self.onCUDA:
|
||||
print('Converting Dsr model...')
|
||||
model = self.model.cuda()
|
||||
else:
|
||||
model = self.model
|
||||
print('Direct super-resolution...')
|
||||
output_list = []
|
||||
for tim in range(max((text_tokens.shape[0]+self.max_bz-1) // self.max_bz, 1)):
|
||||
output1 = filling_sequence_dsr(model,
|
||||
seq[tim*self.max_bz:(tim+1)*self.max_bz],
|
||||
seq1[tim*self.max_bz:(tim+1)*self.max_bz],
|
||||
warmup_steps=1, block_hw=(1, 0),
|
||||
strategy=self.strategy
|
||||
)
|
||||
output_list.extend(output1[1:])
|
||||
if not self.onCUDA:
|
||||
print('Moving back Dsr to cpu...')
|
||||
model = model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
return torch.cat(output_list, dim=0)
|
225
sr_pipeline/dsr_model.py
Normal file
225
sr_pipeline/dsr_model.py
Normal file
@ -0,0 +1,225 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : cuda2d_model.py
|
||||
@Time : 2021/10/02 01:36:32
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
|
||||
|
||||
from SwissArmyTransformer.model.transformer import split_tensor_along_last_dim, unscaled_init_method
|
||||
from SwissArmyTransformer.mpu.utils import sqrt
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
|
||||
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
|
||||
|
||||
class PositionEmbeddingMixin(BaseMixin):
|
||||
def __init__(self, additional_sequence_length, hidden_size,
|
||||
init_method_std=0.02, reinit_slice=slice(512, 512+400)
|
||||
):
|
||||
super(PositionEmbeddingMixin, self).__init__()
|
||||
self.reinit_slice = reinit_slice
|
||||
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
|
||||
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
||||
|
||||
def reinit(self, parent_model=None):
|
||||
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
|
||||
old_len, hidden_size = old_weights.shape
|
||||
assert hidden_size == self.position_embeddings.weight.shape[-1]
|
||||
old_edge, new_edge = sqrt(old_len), sqrt(self.position_embeddings.weight.shape[-2])
|
||||
assert new_edge % old_edge == 0
|
||||
self.position_embeddings.weight.data.view(new_edge // old_edge, old_edge, new_edge // old_edge, old_edge, hidden_size).copy_(old_weights.view(1, old_edge, 1, old_edge, hidden_size))
|
||||
# self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
|
||||
|
||||
|
||||
class AttentionMixin(BaseMixin):
|
||||
def __init__(self, num_layers,
|
||||
hidden_size,
|
||||
init_method=unscaled_init_method(0.02),
|
||||
output_layer_init_method=unscaled_init_method(0.02)
|
||||
):
|
||||
super(AttentionMixin, self).__init__()
|
||||
self.num_layers = num_layers # replace attention in the LAST n layers
|
||||
self.query_key_value = torch.nn.ModuleList(
|
||||
[ColumnParallelLinear(hidden_size, 3 * hidden_size, stride=3,
|
||||
gather_output=False, init_method=init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
self.dense = torch.nn.ModuleList(
|
||||
[RowParallelLinear(hidden_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
init_method=output_layer_init_method)
|
||||
for layer_id in range(num_layers)
|
||||
])
|
||||
|
||||
def reinit(self, parent_model=None):
|
||||
start_layer = len(self.transformer.layers) - self.num_layers
|
||||
assert start_layer >= 0
|
||||
for layer_id in range(self.num_layers):
|
||||
old_attention = self.transformer.layers[start_layer + layer_id].attention
|
||||
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
|
||||
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
|
||||
self.dense[layer_id].weight.data.copy_(old_attention.dense.weight.data)
|
||||
self.dense[layer_id].bias.data.copy_(old_attention.dense.bias.data)
|
||||
|
||||
class DsrModel(BaseModel):
|
||||
def __init__(self, args, transformer=None):
|
||||
super().__init__(args, transformer=transformer)
|
||||
self.original_sequence_length = args.max_sequence_length
|
||||
additional_seqlen = args.new_sequence_length - args.max_sequence_length
|
||||
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
|
||||
additional_seqlen, args.hidden_size
|
||||
))
|
||||
self.add_mixin('attention_plus', AttentionMixin(
|
||||
num_layers=args.num_layers,
|
||||
hidden_size=args.hidden_size
|
||||
))
|
||||
self.layout = args.layout
|
||||
# [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1] 4095 {layout[2]}
|
||||
self.kernel_size = args.kernel_size
|
||||
self.kernel_size2 = args.kernel_size2
|
||||
self.log_attention_weights = None
|
||||
|
||||
def position_embedding_forward(self, position_ids, **kw_args):
|
||||
position = position_ids[..., :self.layout[1]]
|
||||
position_plus = position_ids[..., self.layout[1]:] - self.original_sequence_length
|
||||
position_embeddings = torch.cat(
|
||||
(
|
||||
self.transformer.position_embeddings(position),
|
||||
self.get_mixin('extra_position_embedding').position_embeddings(position_plus)
|
||||
),
|
||||
dim=-2
|
||||
)
|
||||
return position_embeddings
|
||||
|
||||
def attention_forward(self, hidden_states, mask,
|
||||
layer_id=None, log_attention_weights=None, **kw_args):
|
||||
attn_module = self.transformer.layers[layer_id].attention
|
||||
# attention_plus on all layers
|
||||
query_key_value_plus = self.get_mixin('attention_plus').query_key_value[layer_id]
|
||||
dense_plus = self.get_mixin('attention_plus').dense[layer_id]
|
||||
# split two parts
|
||||
hidden_states_plus = hidden_states[:, self.layout[1]:]
|
||||
hidden_states = hidden_states[:, :self.layout[1]]
|
||||
# base model qkv
|
||||
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
||||
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
# cuda2d model qkv
|
||||
mixed_raw_layer = query_key_value_plus(hidden_states_plus)
|
||||
q1, k1, v1 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
|
||||
dropout_fn = attn_module.attention_dropout if self.training else None
|
||||
|
||||
# cuda2d attention
|
||||
context_layer0, context_layer1 = sparse_attention_2d_light(
|
||||
q0, k0, v0,
|
||||
q1, k1, v1,
|
||||
mask,
|
||||
n_head=attn_module.num_attention_heads_per_partition,
|
||||
text_len=self.layout[0],
|
||||
kernel_size=self.kernel_size,
|
||||
kernel_size2=self.kernel_size2,
|
||||
attention_dropout=dropout_fn,
|
||||
log_attention_weights=log_attention_weights,
|
||||
add_scalar=(kw_args['add_scalar'] if 'add_scalar' in kw_args else 0)
|
||||
)
|
||||
|
||||
output_0 = attn_module.dense(context_layer0)
|
||||
output_1 = dense_plus(context_layer1)
|
||||
output = torch.cat((output_0, output_1), dim=1)
|
||||
|
||||
return output
|
||||
|
||||
def final_forward(self, logits, **kwargs):
|
||||
logits_parallel = logits
|
||||
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
||||
# logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000])
|
||||
return logits_parallel
|
||||
|
||||
def disable_untrainable_params(self):
|
||||
self.transformer.requires_grad_(False)
|
||||
|
||||
@classmethod
|
||||
def add_model_specific_args(cls, parser):
|
||||
group = parser.add_argument_group('Cuda2dModel', 'cuda2d model configurations')
|
||||
group.add_argument("--kernel-size", type=int, default=5)
|
||||
group.add_argument("--kernel-size2", type=int, default=5)
|
||||
group.add_argument("--layout", type=str, default='96,496,4096')
|
||||
group.add_argument("--new-sequence-length", type=int, default=4096)
|
||||
return parser
|
||||
|
||||
def sparse_attention_2d_light(q0, k0, v0, q1, k1, v1, attention_mask, n_head, text_len, kernel_size=9, kernel_size2=7, attention_dropout=None, log_attention_weights = None, add_scalar=0, **kwargs):
|
||||
'''
|
||||
q0, k0, v0: [batch_size, 1088, hidden_size]
|
||||
q1, k1, v1: [batch_size, 4096, h2]
|
||||
n_head: int
|
||||
attention_mask: [batch_size, 1088, 1088]
|
||||
'''
|
||||
from SwissArmyTransformer.ops.local_attention_function import f_similar, f_weighting
|
||||
|
||||
b, s0, h0 = q0.shape
|
||||
b, s1, h1 = q1.shape
|
||||
h, l0, l1 = h0 // n_head, sqrt(s0-text_len), sqrt(s1)
|
||||
|
||||
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
|
||||
|
||||
# standard attention for level 0
|
||||
attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
|
||||
|
||||
if log_attention_weights is not None:
|
||||
attention_scores += log_attention_weights
|
||||
attention_scores = torch.mul(attention_scores, attention_mask) - \
|
||||
10000.0 * (1.0 - attention_mask)
|
||||
|
||||
attention_probs0 = F.softmax(attention_scores, dim=-1)
|
||||
|
||||
# local attention for level 1
|
||||
q1 = (q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1//n_head)).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
# scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, True)
|
||||
scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, False)
|
||||
|
||||
# cross attention
|
||||
k0T = k0T[..., -l0**2:].reshape(b*n_head, h, l0, l0).contiguous()
|
||||
scores_1_to_0 = f_similar(q1, k0T, kernel_size2, kernel_size2, False) # [b*n_head, l1, l1, field]
|
||||
scores_1 = torch.cat(
|
||||
(
|
||||
scores_1_to_0.view(b*n_head, -1, scores_1_to_0.shape[3]) + add_scalar,
|
||||
scores_1_to_1.view(b*n_head, -1, scores_1_to_1.shape[3])
|
||||
),
|
||||
dim=-1)
|
||||
attention_probs1 = F.softmax(scores_1, dim=-1)
|
||||
|
||||
if attention_dropout is not None:
|
||||
# with get_cuda_rng_tracker().fork():
|
||||
attention_probs0 = attention_dropout(attention_probs0)
|
||||
attention_probs1 = attention_dropout(attention_probs1)
|
||||
|
||||
# weighting for level 0
|
||||
context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h]
|
||||
# weighting for level 1
|
||||
probs_1_to_1 = attention_probs1[:, :, -scores_1_to_1.shape[3]:].view_as(scores_1_to_1)
|
||||
# context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, True)
|
||||
context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, False)
|
||||
|
||||
context1 = context1_to_1.view(b, n_head * h, l1**2)
|
||||
# weighting for cross attention
|
||||
probs_1_to_0 = attention_probs1[:, :, :scores_1_to_0.shape[3]].view_as(scores_1_to_0)
|
||||
v0_part = v0[:, :, -l0**2:].transpose(-1, -2).contiguous().view(b*n_head, h, l0, l0)
|
||||
context1_to_0 = f_weighting(v0_part, probs_1_to_0.contiguous(), kernel_size2, kernel_size2, False)
|
||||
context1_to_0 = context1_to_0.view(b, n_head * h, l1**2)
|
||||
context1 = context1 + context1_to_0
|
||||
return context0.transpose(1, 2).reshape(b, s0, h0), context1.transpose(-1, -2)
|
159
sr_pipeline/dsr_sampling.py
Normal file
159
sr_pipeline/dsr_sampling.py
Normal file
@ -0,0 +1,159 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : cuda2d_sampling.py
|
||||
@Time : 2021/10/09 00:46:04
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
from cv2 import reduce
|
||||
import torch
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
|
||||
def top_k_logits_(logits, top_k=0, filter_value=-float('Inf')):
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
class IterativeEntfilterStrategy:
|
||||
def __init__(self, invalid_slices=[], temperature=1., topk=6):
|
||||
self.invalid_slices = invalid_slices
|
||||
self.temperature = temperature
|
||||
self.topk = topk
|
||||
self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
|
||||
|
||||
|
||||
def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
|
||||
# In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
|
||||
if temperature is None:
|
||||
temperature = self.temperature
|
||||
|
||||
logits = logits_.float() / temperature
|
||||
for invalid_slice in self.invalid_slices:
|
||||
logits[..., invalid_slice] = -float('Inf')
|
||||
logits = logits.view(-1, logits.shape[-1])
|
||||
|
||||
rprobs = F.softmax(logits.float(), dim=-1)
|
||||
c = self.cluster_labels.expand(*rprobs.shape)
|
||||
cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs)
|
||||
|
||||
best_scores, best_clusters = cprobs.topk(self.topk)
|
||||
bz = logits.shape[0]
|
||||
best_scores = best_scores / best_scores.sum(dim=-1, keepdim=True)
|
||||
sampled_ids = torch.multinomial(best_scores, num_samples=1)
|
||||
selected_clusters = torch.gather(best_clusters, dim=1, index=sampled_ids)
|
||||
selected_mask = (self.cluster_labels.unsqueeze(0).expand(bz, -1) != selected_clusters) # cluster_labels [1, 20000] \in [0,500)
|
||||
logits[selected_mask] = -65504
|
||||
# for i in range(bz):
|
||||
# selected_cluster = best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)]
|
||||
# logits[i, self.cluster_labels != selected_cluster] = -65504
|
||||
|
||||
# logits = top_k_logits(logits, self.topk, self.top_p)
|
||||
probs = F.softmax(logits.float()/0.6, dim=-1) # float is essetial, due to a bug in Pytorch
|
||||
pred = torch.multinomial(probs, num_samples=1).view(*logits_.shape[:2])
|
||||
|
||||
assert tokens.shape[1] == pred.shape[1] + 1
|
||||
tokens = torch.cat((tokens[:, :1], pred), dim=1)
|
||||
return tokens
|
||||
|
||||
def filling_sequence_dsr(
|
||||
model,
|
||||
seq0,
|
||||
seq1,
|
||||
warmup_steps=3,
|
||||
block_hw=(4, 4),
|
||||
strategy=IterativeEntfilterStrategy(topk=10),
|
||||
):
|
||||
'''
|
||||
seq: [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1]
|
||||
4095 {layout[2]} final_token.
|
||||
Attention:
|
||||
The sampling temperature are changing, temporally we hard code them here.
|
||||
The temperature in the strategy is not used.
|
||||
'''
|
||||
assert hasattr(model, 'layout')
|
||||
layout = model.layout
|
||||
assert len(seq0.shape) == 2 and len(seq1.shape) == 2 \
|
||||
and seq0.shape[0] == seq1.shape[0]
|
||||
assert len(layout) == 3
|
||||
assert seq1.shape[1] == layout[-1] - layout[-2] + 1
|
||||
assert (seq1 >= 0).all() and (seq0 >= 0).all()
|
||||
device = seq0.device
|
||||
# concat and pad sequences
|
||||
batch_size = seq0.shape[0]
|
||||
n_pad = layout[1] - seq0.shape[1]
|
||||
assert n_pad > 0, "You should truncate long input before filling."
|
||||
seq = torch.cat((
|
||||
torch.tensor([0]*n_pad, device=device, dtype=seq0.dtype)
|
||||
.unsqueeze(0).expand(batch_size, n_pad),
|
||||
seq0, seq1), dim=1) # [b, layout[-1]+1]
|
||||
assert seq.shape[1] == layout[-1] + 1
|
||||
|
||||
# build initial tokens, attention_mask, and position_ids
|
||||
tokens = seq.clone()
|
||||
attention_mask = torch.ones(layout[1], layout[1]).to(device)
|
||||
attention_mask[:layout[0], layout[0]:] = 0
|
||||
attention_mask[n_pad:, :n_pad] = 0
|
||||
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
|
||||
position_ids = torch.cat((
|
||||
torch.zeros(n_pad, dtype=torch.long),
|
||||
torch.arange(0, layout[0] - n_pad),
|
||||
torch.arange(513, 513 + layout[1] - layout[0]),
|
||||
torch.arange(1024, 1024+layout[2]-layout[1]))).to(device)
|
||||
log_attention_weights = torch.zeros(layout[1], layout[1],
|
||||
device=device).type_as(next(model.parameters()))
|
||||
log_attention_weights[layout[0]:, n_pad:layout[0]] = 0.
|
||||
|
||||
# prepare for interation
|
||||
unfixed = (tokens < 0) # just init an all-False tensor
|
||||
unfixed[:, -layout[-1] + layout[-2]:] = True
|
||||
|
||||
ll, rr = block_hw
|
||||
edge_len = int(math.sqrt(layout[-1] - layout[-2]) + 1e-4)
|
||||
num_steps = warmup_steps + ll - 1 + rr
|
||||
# interative refining
|
||||
|
||||
# unfixed[..., -(layout[-1] - layout[-2]):].view(
|
||||
# batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, :, :, -1] = False
|
||||
|
||||
|
||||
ret = []
|
||||
ret.append(tokens[:, layout[-2]+1:].clone())
|
||||
for step_cnt in range(1, num_steps+1):
|
||||
if step_cnt <= warmup_steps:
|
||||
logits, *_dump = model(tokens[:,:-1], position_ids, attention_mask, log_attention_weights=log_attention_weights)
|
||||
real_temp = 1.
|
||||
new_tokens = strategy.forward(logits, tokens, real_temp)
|
||||
tokens[unfixed] = new_tokens[unfixed]
|
||||
else:
|
||||
logits, *_dump = model(tokens[:,:-1], position_ids, attention_mask, log_attention_weights=log_attention_weights)
|
||||
real_temp = 1.
|
||||
new_tokens = strategy.forward(
|
||||
logits, tokens, real_temp,
|
||||
entfilter=1.3,
|
||||
filter_topk=5,
|
||||
temperature2=0.6
|
||||
)
|
||||
# tokens[unfixed] = new_tokens[unfixed]
|
||||
# fixed tokens (update unfixed)
|
||||
unfixed2 = (tokens > 10000000)
|
||||
for x in range(min(ll, step_cnt - warmup_steps)):
|
||||
y = step_cnt - warmup_steps - x - 1
|
||||
if y < rr:
|
||||
unfixed[..., -(layout[-1] - layout[-2]):].view(
|
||||
batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, x, :, y] = False
|
||||
unfixed2[..., -(layout[-1] - layout[-2]):].view(
|
||||
batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, x, :, y] = True
|
||||
tokens[unfixed2] = new_tokens[unfixed2]
|
||||
|
||||
ret.append(tokens[:, layout[-2]+1:].clone())
|
||||
|
||||
return ret
|
118
sr_pipeline/iterative_sr.py
Normal file
118
sr_pipeline/iterative_sr.py
Normal file
@ -0,0 +1,118 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : iterative_sr.py
|
||||
@Time : 2022/03/02 15:57:45
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
from PIL import ImageEnhance, Image
|
||||
|
||||
import torch
|
||||
import argparse
|
||||
from torchvision import transforms
|
||||
|
||||
from SwissArmyTransformer.training.model_io import load_checkpoint
|
||||
from SwissArmyTransformer import get_args
|
||||
from .itersr_sampling import filling_sequence_itersr, IterativeEntfilterStrategy
|
||||
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
|
||||
|
||||
from .itersr_model import ItersrModel
|
||||
|
||||
from icetk import icetk as tokenizer
|
||||
|
||||
class IterativeSuperResolution:
|
||||
def __init__(self, args, path, max_bz=4, shared_transformer=None):
|
||||
args.load = path
|
||||
args.kernel_size = 5
|
||||
args.kernel_size2 = 5
|
||||
args.new_sequence_length = 4624
|
||||
args.layout = [16,3616]
|
||||
|
||||
model = ItersrModel(args, transformer=shared_transformer)
|
||||
if args.fp16:
|
||||
model = model.half()
|
||||
|
||||
load_checkpoint(model, args) # on cpu
|
||||
model.eval()
|
||||
self.model = model.cuda()
|
||||
|
||||
# save cpu weights
|
||||
self.saved_weights = dict((k,v.cpu())
|
||||
for k, v in model.named_parameters()
|
||||
if 'transformer' in k
|
||||
)
|
||||
|
||||
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
||||
|
||||
self.strategy = IterativeEntfilterStrategy(invalid_slices,
|
||||
temperature=args.temp_all_itersr, topk=args.topk_itersr)
|
||||
self.max_bz = max_bz
|
||||
|
||||
def _restore_transformer_from_cpu(self, non_blocking=False):
|
||||
for k, v in self.model.named_parameters():
|
||||
if k in self.saved_weights:
|
||||
v.copy_(self.saved_weights[k])
|
||||
|
||||
def __call__(self, text_tokens, image_tokens, enhance=False, input_mask=None):
|
||||
if len(text_tokens.shape) == 1:
|
||||
text_tokens.unsqueeze_(0)
|
||||
text_tokens = text_tokens.clone()[..., :16]
|
||||
if len(image_tokens.shape) == 1:
|
||||
image_tokens.unsqueeze_(0)
|
||||
if enhance:
|
||||
new_image_tokens = []
|
||||
for big_img in image_tokens:
|
||||
decoded = tokenizer.decode(image_ids=big_img).squeeze(0)
|
||||
ndarr = decoded.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
|
||||
image_pil_raw = ImageEnhance.Sharpness(Image.fromarray(ndarr))
|
||||
big_img2 = tokenizer.encode(image_pil=image_pil_raw.enhance(1.5), image_size=480).view(-1)
|
||||
new_image_tokens.append(big_img2)
|
||||
image_tokens = torch.stack(new_image_tokens)
|
||||
print('Converting Itersr model...')
|
||||
self._restore_transformer_from_cpu()
|
||||
model = self.model
|
||||
print('iterative super-resolution...')
|
||||
output_list = []
|
||||
for tim in range(max(text_tokens.shape[0] // self.max_bz, 1)):
|
||||
big_img = image_tokens[tim*self.max_bz:(tim+1)*self.max_bz]
|
||||
text_seq = text_tokens[tim*self.max_bz:(tim+1)*self.max_bz]
|
||||
mask_raw = torch.tensor(
|
||||
[
|
||||
-1, 0, 1, 2, 3, 4,
|
||||
0, -1, 2, -1, -2, 5,
|
||||
1, -2, 3, 4, 5, 6,
|
||||
2, 3, 4, 5, -1, 1,
|
||||
3, -1, -2, 0, -1, 2,
|
||||
4, 5, 6, 1, 3, -2
|
||||
]
|
||||
).view(1, 6, 1, 6).expand(10, 6, 10, 6).reshape(-1).contiguous()
|
||||
|
||||
topks = [60, 40, 40, 40, 20, 20, 10]
|
||||
|
||||
for mask_ratio in range(1, 7):
|
||||
self.strategy.topk = topks[mask_ratio]
|
||||
mask = (mask_raw.to(big_img.device) >= mask_ratio)
|
||||
if input_mask is not None:
|
||||
mask = mask & input_mask
|
||||
big_img.masked_fill_(mask, tokenizer['<start_of_image>'])
|
||||
seq1 = big_img
|
||||
output1 = filling_sequence_itersr(model, text_seq, seq1,
|
||||
warmup_steps=1, block_hw=(1, 0),
|
||||
strategy=self.strategy
|
||||
)
|
||||
big_img = output1
|
||||
print(f'Iter {mask_ratio} times.')
|
||||
output_list.append(output1.clone())
|
||||
return torch.cat(output_list, dim=0)
|
232
sr_pipeline/itersr_model.py
Normal file
232
sr_pipeline/itersr_model.py
Normal file
@ -0,0 +1,232 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : itersr_model.py
|
||||
@Time : 2021/10/02 01:36:32
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
|
||||
|
||||
from SwissArmyTransformer.mpu.utils import sqrt
|
||||
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
|
||||
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
|
||||
from SwissArmyTransformer.model.transformer import unscaled_init_method, split_tensor_along_last_dim
|
||||
|
||||
class PositionEmbeddingMixin(BaseMixin):
|
||||
def __init__(self, additional_sequence_length, hidden_size,
|
||||
init_method_std=0.02, reinit_slice=slice(512, 512+400)
|
||||
):
|
||||
super(PositionEmbeddingMixin, self).__init__()
|
||||
self.reinit_slice = reinit_slice
|
||||
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
|
||||
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
||||
|
||||
def reinit(self, parent_model=None):
|
||||
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
|
||||
old_len, hidden_size = old_weights.shape
|
||||
assert hidden_size == self.position_embeddings.weight.shape[-1]
|
||||
old_edge, new_edge = sqrt(old_len), sqrt(self.position_embeddings.weight.shape[-2])
|
||||
assert new_edge % old_edge == 0
|
||||
self.position_embeddings.weight.data.view(new_edge // old_edge, old_edge, new_edge // old_edge, old_edge, hidden_size).copy_(old_weights.view(1, old_edge, 1, old_edge, hidden_size))
|
||||
|
||||
class ItersrModel(BaseModel):
|
||||
def __init__(self, args, transformer=None):
|
||||
super().__init__(args, transformer=transformer)
|
||||
self.original_sequence_length = args.max_sequence_length
|
||||
additional_seqlen = args.new_sequence_length - args.max_sequence_length
|
||||
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
|
||||
additional_seqlen, args.hidden_size
|
||||
))
|
||||
# self.add_mixin('attention_plus', AttentionMixin(
|
||||
# num_layers=args.num_layers,
|
||||
# hidden_size=args.hidden_size
|
||||
# ))
|
||||
self.layout = args.layout
|
||||
# [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1] 4095 {layout[2]}
|
||||
self.kernel_size = args.kernel_size
|
||||
self.kernel_size2 = args.kernel_size2
|
||||
self.log_attention_weights = None
|
||||
|
||||
def position_embedding_forward(self, position_ids, **kw_args):
|
||||
position = position_ids[..., :self.layout[0]]
|
||||
position_plus = position_ids[..., self.layout[0]:] - self.original_sequence_length
|
||||
position_embeddings = torch.cat(
|
||||
(
|
||||
self.transformer.position_embeddings(position),
|
||||
self.get_mixin('extra_position_embedding').position_embeddings(position_plus)
|
||||
),
|
||||
dim=-2
|
||||
)
|
||||
return position_embeddings
|
||||
|
||||
def attention_forward(self, hidden_states, mask,
|
||||
layer_id=None, log_attention_weights=None, **kw_args):
|
||||
attn_module = self.transformer.layers[layer_id].attention
|
||||
# base model qkv
|
||||
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
||||
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer[:, :self.layout[0]], 3)
|
||||
# cuda2d model qkv
|
||||
q1, k1, v1 = split_tensor_along_last_dim(mixed_raw_layer[:, self.layout[0]:], 3)
|
||||
|
||||
dropout_fn = attn_module.attention_dropout if self.training else None
|
||||
|
||||
# cuda2d attention
|
||||
context_layer = sparse_attention_2d_text(
|
||||
q0, k0, v0,
|
||||
q1, k1, v1,
|
||||
mask,
|
||||
n_head=attn_module.num_attention_heads_per_partition,
|
||||
text_len=self.layout[0],
|
||||
kernel_size=self.kernel_size,
|
||||
attention_dropout=dropout_fn,
|
||||
log_attention_weights=log_attention_weights,
|
||||
)
|
||||
|
||||
output = attn_module.dense(context_layer)
|
||||
|
||||
return output
|
||||
|
||||
def final_forward(self, logits, **kwargs):
|
||||
logits_parallel = logits
|
||||
logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000]).float()
|
||||
# logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000])
|
||||
return logits_parallel
|
||||
|
||||
# def disable_untrainable_params(self):
|
||||
# self.transformer.requires_grad_(False)
|
||||
|
||||
@classmethod
|
||||
def add_model_specific_args(cls, parser):
|
||||
group = parser.add_argument_group('Cuda2dModel', 'cuda2d model configurations')
|
||||
group.add_argument("--kernel-size", type=int, default=5)
|
||||
group.add_argument("--kernel-size2", type=int, default=5)
|
||||
group.add_argument("--layout", type=str, default='16,3616')
|
||||
group.add_argument("--new-sequence-length", type=int, default=4096)
|
||||
return parser
|
||||
|
||||
def sparse_attention_2d_text(q0, k0, v0, q1, k1, v1, attention_mask, n_head, text_len, kernel_size=9, attention_dropout=None, log_attention_weights = None, **kwargs):
|
||||
'''
|
||||
q0, k0, v0: [batch_size, 16, hidden_size]
|
||||
q1, k1, v1: [batch_size, 3600, hidden_size]
|
||||
n_head: int
|
||||
attention_mask: [batch_size, 16]
|
||||
'''
|
||||
from SwissArmyTransformer.ops.local_attention_function import f_similar, f_weighting
|
||||
b, s0, h0 = q0.shape
|
||||
b, s1, h1 = q1.shape
|
||||
h, l1 = h0 // n_head, sqrt(s1)
|
||||
assert attention_mask.shape[-1] == s0, f"Mask Shape: {attention_mask.shape}"
|
||||
|
||||
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
|
||||
|
||||
# standard attention for level 0
|
||||
attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
|
||||
|
||||
attention_scores = torch.mul(attention_scores, attention_mask) - \
|
||||
10000.0 * (1.0 - attention_mask)
|
||||
|
||||
attention_probs0 = F.softmax(attention_scores, dim=-1)
|
||||
|
||||
# local attention for level 1
|
||||
q1 = (q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1//n_head)).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, False)
|
||||
|
||||
# cross attention
|
||||
scores_1_to_0 = torch.matmul(q1.view(b, n_head, h, s1).transpose(-1, -2), k0T)
|
||||
if log_attention_weights is not None:
|
||||
scores_1_to_0 += log_attention_weights
|
||||
scores_1_to_0 = torch.mul(scores_1_to_0, attention_mask) - \
|
||||
10000.0 * (1.0 - attention_mask)
|
||||
scores_1 = torch.cat(
|
||||
(
|
||||
scores_1_to_0.view(b*n_head, s1, s0),
|
||||
scores_1_to_1.view(b*n_head, -1, scores_1_to_1.shape[3])
|
||||
),
|
||||
dim=-1)
|
||||
attention_probs1 = F.softmax(scores_1, dim=-1)
|
||||
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs1 = attention_dropout(attention_probs1)
|
||||
|
||||
# weighting for level 0
|
||||
context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h]
|
||||
# weighting for level 1
|
||||
probs_1_to_1 = attention_probs1[:, :, -scores_1_to_1.shape[3]:].view_as(scores_1_to_1)
|
||||
context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, False)
|
||||
|
||||
context1 = context1_to_1.view(b, n_head, h, l1**2)
|
||||
# weighting for cross attention
|
||||
probs_1_to_0 = attention_probs1[:, :, :scores_1_to_0.shape[3]].view(b, n_head, -1, scores_1_to_0.shape[3])
|
||||
|
||||
context1_to_0 = torch.matmul(probs_1_to_0, v0)
|
||||
context1 = context1.transpose(-1, -2) + context1_to_0
|
||||
|
||||
output = torch.cat((context0, context1), dim=2).transpose(1, 2).reshape(b, s0+s1, h0)
|
||||
|
||||
return output
|
||||
|
||||
def sparse_attention_2d_notext(q0, k0, v0, q1, k1, v1, attention_mask, n_head, text_len, kernel_size=9, attention_dropout=None, log_attention_weights = None, **kwargs):
|
||||
'''
|
||||
q0, k0, v0: [batch_size, 16, hidden_size]
|
||||
q1, k1, v1: [batch_size, 3600, hidden_size]
|
||||
n_head: int
|
||||
attention_mask: [batch_size, 16]
|
||||
'''
|
||||
from SwissArmyTransformer.mpu.local_attention_function import f_similar, f_weighting
|
||||
b, s0, h0 = q0.shape
|
||||
b, s1, h1 = q1.shape
|
||||
h, l1 = h0 // n_head, sqrt(s1)
|
||||
assert len(attention_mask.shape) == 4 and attention_mask.shape[-1] == s0, f"Mask Shape: {attention_mask.shape}"
|
||||
|
||||
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
||||
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
|
||||
|
||||
# standard attention for level 0
|
||||
attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
|
||||
|
||||
attention_scores = torch.mul(attention_scores, attention_mask) - \
|
||||
10000.0 * (1.0 - attention_mask)
|
||||
|
||||
attention_probs0 = F.softmax(attention_scores, dim=-1)
|
||||
|
||||
# local attention for level 1
|
||||
q1 = (q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1//n_head)).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1)
|
||||
scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, False)
|
||||
|
||||
attention_probs1 = F.softmax(scores_1_to_1, dim=-1)
|
||||
|
||||
if attention_dropout is not None:
|
||||
with get_cuda_rng_tracker().fork():
|
||||
attention_probs1 = attention_dropout(attention_probs1)
|
||||
|
||||
# weighting for level 0
|
||||
context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h]
|
||||
# weighting for level 1
|
||||
probs_1_to_1 = attention_probs1
|
||||
context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, False)
|
||||
|
||||
context1 = context1_to_1.view(b, n_head, h, l1**2)
|
||||
# weighting for cross attention
|
||||
context1 = context1.transpose(-1, -2)
|
||||
|
||||
output = torch.cat((context0, context1), dim=2).transpose(1, 2).reshape(b, s0+s1, h0)
|
||||
|
||||
return output
|
168
sr_pipeline/itersr_sampling.py
Normal file
168
sr_pipeline/itersr_sampling.py
Normal file
@ -0,0 +1,168 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : itersr_sampling.py
|
||||
@Time : 2022/03/03 14:24:28
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from icetk import icetk as tokenizer
|
||||
|
||||
def top_k_logits_(logits, top_k=0, filter_value=-float('Inf')):
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
# class IterativeEntfilterStrategy:
|
||||
# def __init__(self, invalid_slices=[], temperature=1., topk=10):
|
||||
# self.invalid_slices = invalid_slices
|
||||
# self.temperature = temperature
|
||||
# self.topk = topk
|
||||
# self.cluster_labels = torch.tensor(np.load('cluster_label.npy'), device='cuda', dtype=torch.long)
|
||||
|
||||
|
||||
# def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
|
||||
# # In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
|
||||
# if temperature is None:
|
||||
# temperature = self.temperature
|
||||
|
||||
# logits = logits_.float() / temperature
|
||||
# for invalid_slice in self.invalid_slices:
|
||||
# logits[..., invalid_slice] = -float('Inf')
|
||||
# logits = logits.view(-1, logits.shape[-1])
|
||||
|
||||
# rprobs = F.softmax(logits.float(), dim=-1)
|
||||
# c = self.cluster_labels.expand(*rprobs.shape)
|
||||
# cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs)
|
||||
|
||||
# best_scores, best_clusters = cprobs.topk(self.topk)
|
||||
# bz = logits.shape[0]
|
||||
# best_scores = best_scores / best_scores.sum(dim=-1, keepdim=True)
|
||||
# sampled_ids = torch.multinomial(best_scores, num_samples=1)
|
||||
# selected_clusters = torch.gather(best_clusters, dim=1, index=sampled_ids)
|
||||
# selected_mask = (self.cluster_labels.unsqueeze(0).expand(bz, -1) != selected_clusters) # cluster_labels [1, 20000] \in [0,500)
|
||||
# logits[selected_mask] = -65504
|
||||
# # for i in range(bz):
|
||||
# # selected_cluster = best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)]
|
||||
# # logits[i, self.cluster_labels != selected_cluster] = -65504
|
||||
|
||||
# # logits = top_k_logits(logits, self.topk, self.top_p)
|
||||
# probs = F.softmax(logits.float(), dim=-1) # float is essetial, due to a bug in Pytorch
|
||||
# pred = torch.multinomial(probs, num_samples=1).view(*logits_.shape[:2])
|
||||
|
||||
# assert tokens.shape[1] == pred.shape[1]
|
||||
# tokens = pred
|
||||
# return tokens
|
||||
|
||||
class IterativeEntfilterStrategy:
|
||||
def __init__(self, invalid_slices=[], temperature=1., topk=10):
|
||||
self.invalid_slices = invalid_slices
|
||||
self.temperature = temperature
|
||||
self.topk = topk
|
||||
|
||||
def forward(self, logits, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
|
||||
# In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
|
||||
if temperature is None:
|
||||
temperature = self.temperature
|
||||
# check entropy filter
|
||||
# if entfilter is not None:
|
||||
# assert temperature2 is not None
|
||||
# topraw = (torch.topk(logits, filter_topk, dim=-1)[0]).softmax(dim=-1)
|
||||
# ent = -(topraw * topraw.log()).sum(dim=-1) # [batch_size, seq_length]
|
||||
# temperature = torch.tensor([[[temperature - temperature2]]], device=logits.device).expand(*logits.shape[:2], 1) * (ent > entfilter).unsqueeze(-1) + temperature2
|
||||
|
||||
logits = logits.float() / temperature
|
||||
for invalid_slice in self.invalid_slices:
|
||||
logits[..., invalid_slice] = -float('Inf')
|
||||
|
||||
# debiased topk
|
||||
# probs = F.softmax(logits, dim=-1)
|
||||
# tk_value, tk_idx = torch.topk(probs, self.topk, dim=-1)
|
||||
# pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1)
|
||||
# edge_idx = tk_idx[:, :, -1:]
|
||||
# edge_value = tk_value[:, :, -1:]
|
||||
# edge_mask = probs.gather(dim=-1, index=pred) < edge_value
|
||||
# pred[edge_mask] = edge_idx[edge_mask] # replace outliers as the "filter_topk"-th token
|
||||
# pred.squeeze_(-1) # [batch_size, seq_length]
|
||||
|
||||
top_k_logits_(logits, self.topk)
|
||||
probs = F.softmax(logits, dim=-1)
|
||||
pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1)
|
||||
pred.squeeze_(-1)
|
||||
|
||||
assert tokens.shape[1] == pred.shape[1]
|
||||
tokens = pred
|
||||
return tokens
|
||||
|
||||
def filling_sequence_itersr(
|
||||
model,
|
||||
seq0,
|
||||
seq1,
|
||||
warmup_steps=3,
|
||||
block_hw=(4, 4),
|
||||
strategy=IterativeEntfilterStrategy(topk=10),
|
||||
):
|
||||
'''
|
||||
seq: [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1]
|
||||
4095 {layout[2]} final_token.
|
||||
Attention:
|
||||
The sampling temperature are changing, temporally we hard code them here.
|
||||
The temperature in the strategy is not used.
|
||||
'''
|
||||
assert hasattr(model, 'layout')
|
||||
layout = model.layout
|
||||
|
||||
device = seq0.device
|
||||
# concat and pad sequences
|
||||
batch_size = seq0.shape[0]
|
||||
n_pad = layout[0] - seq0.shape[1]
|
||||
assert n_pad >= 0, "You should truncate long input before filling."
|
||||
seq = torch.cat((
|
||||
torch.tensor([0]*n_pad, device=device, dtype=seq0.dtype)
|
||||
.unsqueeze(0).expand(batch_size, n_pad),
|
||||
seq0, seq1), dim=1) # [b, layout[-1]+1]
|
||||
assert seq.shape[1] == layout[-1]
|
||||
|
||||
# build initial tokens, attention_mask, and position_ids
|
||||
tokens = seq.clone()
|
||||
attention_mask = torch.ones(layout[0]).to(device)
|
||||
attention_mask[:n_pad] = 0
|
||||
attention_mask = attention_mask.unsqueeze(0).type_as(next(model.parameters())) # if fp16
|
||||
position_ids = torch.cat((
|
||||
torch.zeros(n_pad, dtype=torch.long),
|
||||
torch.arange(0, layout[0] - n_pad),
|
||||
torch.arange(1024, 1024+layout[1]-layout[0]))).to(device)
|
||||
log_attention_weights = torch.zeros(layout[0], device=device).type_as(next(model.parameters()))
|
||||
log_attention_weights[n_pad:layout[0]] = 0.
|
||||
log_attention_weights = log_attention_weights.unsqueeze(0)
|
||||
|
||||
# prepare for interation
|
||||
unfixed = (tokens == tokenizer['<start_of_image>'])
|
||||
ll, rr = block_hw
|
||||
edge_len = int(math.sqrt(layout[-1] - layout[-2]) + 1e-4)
|
||||
num_steps = 1
|
||||
# interative refining
|
||||
|
||||
# unfixed[..., -(layout[-1] - layout[-2]):].view(
|
||||
# batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, :, :, -1] = False
|
||||
|
||||
|
||||
ret = []
|
||||
# ret.append(tokens[:, layout[-2]:-1].clone())
|
||||
for step_cnt in range(1, num_steps+1):
|
||||
logits, *_dump = model(tokens, position_ids, attention_mask, log_attention_weights=log_attention_weights)
|
||||
real_temp = 1.
|
||||
new_tokens = strategy.forward(logits, tokens, real_temp)
|
||||
tokens[unfixed] = new_tokens[unfixed]
|
||||
|
||||
ret.append(tokens[:, layout[-2]:].clone())
|
||||
return torch.cat(ret, dim=0)
|
49
sr_pipeline/sr_group.py
Normal file
49
sr_pipeline/sr_group.py
Normal file
@ -0,0 +1,49 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : sr_group.py
|
||||
@Time : 2022/04/02 01:17:21
|
||||
@Author : Ming Ding
|
||||
@Contact : dm18@mails.tsinghua.edu.cn
|
||||
'''
|
||||
|
||||
# here put the import lib
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from SwissArmyTransformer.resources import auto_create
|
||||
from .direct_sr import DirectSuperResolution
|
||||
from .iterative_sr import IterativeSuperResolution
|
||||
|
||||
class SRGroup:
|
||||
def __init__(self, args, home_path=None,):
|
||||
dsr_path = auto_create('cogview2-dsr', path=home_path)
|
||||
itersr_path = auto_create('cogview2-itersr', path=home_path)
|
||||
dsr = DirectSuperResolution(args, dsr_path)
|
||||
itersr = IterativeSuperResolution(args, itersr_path, shared_transformer=dsr.model.transformer)
|
||||
self.dsr = dsr
|
||||
self.itersr = itersr
|
||||
|
||||
def sr_base(self, img_tokens, txt_tokens):
|
||||
assert img_tokens.shape[-1] == 400 and len(img_tokens.shape) == 2
|
||||
batch_size = img_tokens.shape[0]
|
||||
txt_len = txt_tokens.shape[-1]
|
||||
if len(txt_tokens.shape) == 1:
|
||||
txt_tokens = txt_tokens.unsqueeze(0).expand(batch_size, txt_len)
|
||||
sred_tokens = self.dsr(txt_tokens, img_tokens)
|
||||
iter_tokens = self.itersr(txt_tokens, sred_tokens[:, -3600:].clone())
|
||||
return iter_tokens[-batch_size:]
|
||||
|
||||
# def sr_patch(self, img_tokens, txt_tokens):
|
||||
# assert img_tokens.shape[-1] == 3600 and len(img_tokens.shape) == 2
|
||||
# batch_size = img_tokens.shape[0] * 9
|
||||
# txt_len = txt_tokens.shape[-1]
|
||||
# if len(txt_tokens.shape) == 1:
|
||||
# txt_tokens = txt_tokens.unsqueeze(0).expand(batch_size, txt_len)
|
||||
# img_tokens = img_tokens.view(img_tokens.shape[0], 3, 20, 3, 20).permute(0, 1, 3, 2, 4).reshape(batch_size, 400)
|
||||
# iter_tokens = self.sr_base(img_tokens, txt_tokens)
|
||||
# return iter_tokens
|
Loading…
x
Reference in New Issue
Block a user