Merge branch 'CogVideoX_dev' of github.com:THUDM/CogVideo into CogVideoX_dev

This commit is contained in:
zR 2024-10-05 00:05:08 +08:00
commit e26c3c426f
10 changed files with 382 additions and 2 deletions

View File

@ -22,6 +22,7 @@ Experience the CogVideoX-5B model online at <a href="https://huggingface.co/spac
## Project Updates
- 🔥🔥 **News**: ```2024/9/25```: CogVideoX web demo is available on Replicate. Try the text-to-video model **CogVideoX-5B** here [![Replicate](https://replicate.com/chenxwh/cogvideox-t2v/badge)](https://replicate.com/chenxwh/cogvideox-t2v) and image-to-video model **CogVideoX-5B-I2V** here [![Replicate](https://replicate.com/chenxwh/cogvideox-i2v/badge)](https://replicate.com/chenxwh/cogvideox-i2v).
- 🔥🔥 **News**: ```2024/9/19```: We have open-sourced the CogVideoX series image-to-video model **CogVideoX-5B-I2V**.
This model can take an image as a background input and generate a video combined with prompt words, offering greater
controllability. With this, the CogVideoX series models now support three tasks: text-to-video generation, video
@ -358,6 +359,9 @@ This folder contains some tools for model conversion / caption generation, etc.
Adapter.
+ [llm_flux_cogvideox](tools/llm_flux_cogvideox/llm_flux_cogvideox.py): Automatically generate videos using an
open-source local large language model + Flux + CogVideoX.
+ [parallel_inference_xdit](tools/parallel_inference/parallel_inference_xdit.py):
Supported by [xDiT](https://github.com/xdit-project/xDiT), parallelize the
video generation process on multiple GPUs.
## CogVideo(ICLR'23)

View File

@ -329,6 +329,9 @@ pipe.vae.enable_tiling()
をロードするためのツールコード。
+ [llm_flux_cogvideox](tools/llm_flux_cogvideox/llm_flux_cogvideox.py): オープンソースのローカル大規模言語モデル +
Flux + CogVideoX を使用して自動的に動画を生成します。
+ [parallel_inference_xdit](tools/parallel_inference/parallel_inference_xdit.py)
[xDiT](https://github.com/xdit-project/xDiT)
によってサポートされ、ビデオ生成プロセスを複数の GPU で並列化します。
## CogVideo(ICLR'23)

View File

@ -312,6 +312,9 @@ pipe.vae.enable_tiling()
+ [load_cogvideox_lora](tools/load_cogvideox_lora.py): 载入diffusers版微调Lora Adapter的工具代码。
+ [llm_flux_cogvideox](tools/llm_flux_cogvideox/llm_flux_cogvideox.py): 使用开源本地大语言模型 + Flux +
CogVideoX实现自动化生成视频。
+ [parallel_inference_xdit](tools/parallel_inference/parallel_inference_xdit.py):
在多个 GPU 上并行化视频生成过程,
由[xDiT](https://github.com/xdit-project/xDiT)提供支持。
## CogVideo(ICLR'23)

View File

@ -133,7 +133,7 @@ def generate_video(
video=video, # The path of the video to be used as the background of the video
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
# num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility

View File

@ -12,3 +12,4 @@ imageio-ffmpeg>=0.5.1
openai>=1.45.0
moviepy>=1.0.3
pillow==9.5.0
scikit-video

View File

@ -0,0 +1,105 @@
"""
This is a parallel inference script for CogVideo. The original script
can be found from the xDiT project at
https://github.com/xdit-project/xDiT/blob/main/examples/cogvideox_example.py
By using this code, the inference process is parallelized on multiple GPUs,
and thus speeded up.
Usage:
1. pip install xfuser
2. mkdir results
3. run the following command to generate video
torchrun --nproc_per_node=4 parallel_inference_xdit.py \
--model <cogvideox-model-path> --ulysses_degree 1 --ring_degree 2 \
--use_cfg_parallel --height 480 --width 720 --num_frames 9 \
--prompt 'A small dog.'
You can also use the run.sh file in the same folder to automate running this
code for batch generation of videos, by running:
sh ./run.sh
"""
import time
import torch
import torch.distributed
from diffusers import AutoencoderKLTemporalDecoder
from xfuser import xFuserCogVideoXPipeline, xFuserArgs
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import (
get_world_group,
get_data_parallel_rank,
get_data_parallel_world_size,
get_runtime_state,
is_dp_last_group,
)
from diffusers.utils import export_to_video
def main():
parser = FlexibleArgumentParser(description="xFuser Arguments")
args = xFuserArgs.add_cli_args(parser).parse_args()
engine_args = xFuserArgs.from_cli_args(args)
# Check if ulysses_degree is valid
num_heads = 30
if engine_args.ulysses_degree > 0 and num_heads % engine_args.ulysses_degree != 0:
raise ValueError(
f"ulysses_degree ({engine_args.ulysses_degree}) must be a divisor of the number of heads ({num_heads})"
)
engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
pipe = xFuserCogVideoXPipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
engine_config=engine_config,
torch_dtype=torch.bfloat16,
)
if args.enable_sequential_cpu_offload:
pipe.enable_model_cpu_offload(gpu_id=local_rank)
pipe.vae.enable_tiling()
else:
device = torch.device(f"cuda:{local_rank}")
pipe = pipe.to(device)
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
output = pipe(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
prompt=input_config.prompt,
num_inference_steps=input_config.num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(input_config.seed),
guidance_scale=6,
).frames[0]
end_time = time.time()
elapsed_time = end_time - start_time
peak_memory = torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}")
parallel_info = (
f"dp{engine_args.data_parallel_degree}_cfg{engine_config.parallel_config.cfg_degree}_"
f"ulysses{engine_args.ulysses_degree}_ring{engine_args.ring_degree}_"
f"tp{engine_args.tensor_parallel_degree}_"
f"pp{engine_args.pipefusion_parallel_degree}_patch{engine_args.num_pipeline_patch}"
)
if is_dp_last_group():
world_size = get_data_parallel_world_size()
resolution = f"{input_config.width}x{input_config.height}"
output_filename = f"results/cogvideox_{parallel_info}_{resolution}.mp4"
export_to_video(output, output_filename, fps=8)
print(f"output saved to {output_filename}")
if get_world_group().rank == get_world_group().world_size - 1:
print(f"epoch time: {elapsed_time:.2f} sec, memory: {peak_memory/1e9} GB")
get_runtime_state().destory_distributed_env()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,51 @@
set -x
export PYTHONPATH=$PWD:$PYTHONPATH
# Select the model type
# The model is downloaded to a specified location on disk,
# or you can simply use the model's ID on Hugging Face,
# which will then be downloaded to the default cache path on Hugging Face.
export MODEL_TYPE="CogVideoX"
# Configuration for different model types
# script, model_id, inference_step
declare -A MODEL_CONFIGS=(
["CogVideoX"]="parallel_inference_xdit.py /cfs/dit/CogVideoX-2b 20"
)
if [[ -v MODEL_CONFIGS[$MODEL_TYPE] ]]; then
IFS=' ' read -r SCRIPT MODEL_ID INFERENCE_STEP <<< "${MODEL_CONFIGS[$MODEL_TYPE]}"
export SCRIPT MODEL_ID INFERENCE_STEP
else
echo "Invalid MODEL_TYPE: $MODEL_TYPE"
exit 1
fi
mkdir -p ./results
# task args
if [ "$MODEL_TYPE" = "CogVideoX" ]; then
TASK_ARGS="--height 480 --width 720 --num_frames 9"
fi
# CogVideoX asserts sp_degree == ulysses_degree*ring_degree <= 2. Also, do not set the pipefusion degree.
if [ "$MODEL_TYPE" = "CogVideoX" ]; then
N_GPUS=4
PARALLEL_ARGS="--ulysses_degree 2 --ring_degree 1"
CFG_ARGS="--use_cfg_parallel"
fi
torchrun --nproc_per_node=$N_GPUS ./$SCRIPT \
--model $MODEL_ID \
$PARALLEL_ARGS \
$TASK_ARGS \
$PIPEFUSION_ARGS \
$OUTPUT_ARGS \
--num_inference_steps $INFERENCE_STEP \
--warmup_steps 0 \
--prompt "A small dog." \
$CFG_ARGS \
$PARALLLEL_VAE \
$COMPILE_FLAG

37
tools/replicate/cog.yaml Normal file
View File

@ -0,0 +1,37 @@
# Configuration for Cog ⚙️
# Reference: https://cog.run/yaml
build:
# set to true if your model requires a GPU
gpu: true
# a list of ubuntu apt packages to install
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
# python version in the form '3.11' or '3.11.4'
python_version: "3.11"
# a list of packages in the format <package-name>==<version>
python_packages:
- diffusers>=0.30.3
- accelerate>=0.34.2
- transformers>=4.44.2
- numpy==1.26.0
- torch>=2.4.0
- torchvision>=0.19.0
- sentencepiece>=0.2.0
- SwissArmyTransformer>=0.4.12
- imageio>=2.35.1
- imageio-ffmpeg>=0.5.1
- openai>=1.45.0
- moviepy>=1.0.3
- pillow==9.5.0
- pydantic==1.10.7
run:
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.8.2/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
# predict.py defines how predictions are run on your model
predict: "predict_t2v.py:Predictor"
# predict: "predict_i2v.py:Predictor"

View File

@ -0,0 +1,89 @@
# Prediction interface for Cog ⚙️
# https://cog.run/python
import os
import subprocess
import time
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from cog import BasePredictor, Input, Path
MODEL_CACHE = "model_cache_i2v"
MODEL_URL = (
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar"
)
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HOME"] = MODEL_CACHE
os.environ["TORCH_HOME"] = MODEL_CACHE
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
# model_id: THUDM/CogVideoX-5b-I2V
self.pipe = CogVideoXImageToVideoPipeline.from_pretrained(
MODEL_CACHE, torch_dtype=torch.bfloat16
).to("cuda")
self.pipe.enable_model_cpu_offload()
self.pipe.vae.enable_tiling()
def predict(
self,
prompt: str = Input(
description="Input prompt", default="Starry sky slowly rotating."
),
image: Path = Input(description="Input image"),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=6
),
num_frames: int = Input(
description="Number of frames for the output video", default=49
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
img = load_image(image=str(image))
video = self.pipe(
prompt=prompt,
image=img,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
).frames[0]
out_path = "/tmp/out.mp4"
export_to_video(video, out_path, fps=8)
return Path(out_path)

View File

@ -0,0 +1,87 @@
# Prediction interface for Cog ⚙️
# https://cog.run/python
import os
import subprocess
import time
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
from cog import BasePredictor, Input, Path
MODEL_CACHE = "model_cache"
MODEL_URL = (
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar"
)
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HOME"] = MODEL_CACHE
os.environ["TORCH_HOME"] = MODEL_CACHE
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
# model_id: THUDM/CogVideoX-5b
self.pipe = CogVideoXPipeline.from_pretrained(
MODEL_CACHE,
torch_dtype=torch.bfloat16,
).to("cuda")
self.pipe.enable_model_cpu_offload()
self.pipe.vae.enable_tiling()
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance.",
),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=6
),
num_frames: int = Input(
description="Number of frames for the output video", default=49
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
video = self.pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
).frames[0]
out_path = "/tmp/out.mp4"
export_to_video(video, out_path, fps=8)
return Path(out_path)