mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
90 lines
2.8 KiB
Python
90 lines
2.8 KiB
Python
# Prediction interface for Cog ⚙️
|
|
# https://cog.run/python
|
|
|
|
import os
|
|
import subprocess
|
|
import time
|
|
import torch
|
|
from diffusers import CogVideoXImageToVideoPipeline
|
|
from diffusers.utils import export_to_video, load_image
|
|
from cog import BasePredictor, Input, Path
|
|
|
|
|
|
MODEL_CACHE = "model_cache_i2v"
|
|
MODEL_URL = (
|
|
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar"
|
|
)
|
|
os.environ["HF_DATASETS_OFFLINE"] = "1"
|
|
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
|
os.environ["HF_HOME"] = MODEL_CACHE
|
|
os.environ["TORCH_HOME"] = MODEL_CACHE
|
|
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
|
|
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
|
|
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
|
|
|
|
|
|
def download_weights(url, dest):
|
|
start = time.time()
|
|
print("downloading url: ", url)
|
|
print("downloading to: ", dest)
|
|
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
|
print("downloading took: ", time.time() - start)
|
|
|
|
|
|
class Predictor(BasePredictor):
|
|
def setup(self) -> None:
|
|
"""Load the model into memory to make running multiple predictions efficient"""
|
|
|
|
if not os.path.exists(MODEL_CACHE):
|
|
download_weights(MODEL_URL, MODEL_CACHE)
|
|
|
|
# model_id: THUDM/CogVideoX-5b-I2V
|
|
self.pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
|
MODEL_CACHE, torch_dtype=torch.bfloat16
|
|
).to("cuda")
|
|
|
|
self.pipe.enable_model_cpu_offload()
|
|
self.pipe.vae.enable_tiling()
|
|
|
|
def predict(
|
|
self,
|
|
prompt: str = Input(
|
|
description="Input prompt", default="Starry sky slowly rotating."
|
|
),
|
|
image: Path = Input(description="Input image"),
|
|
num_inference_steps: int = Input(
|
|
description="Number of denoising steps", ge=1, le=500, default=50
|
|
),
|
|
guidance_scale: float = Input(
|
|
description="Scale for classifier-free guidance", ge=1, le=20, default=6
|
|
),
|
|
num_frames: int = Input(
|
|
description="Number of frames for the output video", default=49
|
|
),
|
|
seed: int = Input(
|
|
description="Random seed. Leave blank to randomize the seed", default=None
|
|
),
|
|
) -> Path:
|
|
"""Run a single prediction on the model"""
|
|
|
|
if seed is None:
|
|
seed = int.from_bytes(os.urandom(2), "big")
|
|
print(f"Using seed: {seed}")
|
|
|
|
img = load_image(image=str(image))
|
|
|
|
video = self.pipe(
|
|
prompt=prompt,
|
|
image=img,
|
|
num_videos_per_prompt=1,
|
|
num_inference_steps=num_inference_steps,
|
|
num_frames=num_frames,
|
|
guidance_scale=guidance_scale,
|
|
generator=torch.Generator(device="cuda").manual_seed(seed),
|
|
).frames[0]
|
|
|
|
out_path = "/tmp/out.mp4"
|
|
|
|
export_to_video(video, out_path, fps=8)
|
|
return Path(out_path)
|