rewrite predictor

This commit is contained in:
Stephan Auerhahn 2022-07-25 07:46:49 +00:00
parent 484aacf5f7
commit 4d94efa6d4
2 changed files with 101 additions and 89 deletions

View File

@ -22,10 +22,10 @@ build:
run: run:
- "mkdir -p /sharefs/cogview-new; cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage1.tar.gz -O - | tar xz" - "mkdir -p /sharefs/cogview-new; cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage1.tar.gz -O - | tar xz"
- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage2.tar.gz -O - | tar xz" - "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage2.tar.gz -O - | tar xz"
#- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz"
- "mkdir -p /root/.icetk_models; wget -O /root/.icetk_models/ice_text.model https://models.nmb.ai/cogvideo/ice_text.model" - "mkdir -p /root/.icetk_models; wget -O /root/.icetk_models/ice_text.model https://models.nmb.ai/cogvideo/ice_text.model"
- "mkdir -p /root/.tcetk_models; wget -O /root/.icetk_models/ice_image.pt https://models.nmb.ai/cogvideo/ice_image.pt" - "mkdir -p /root/.tcetk_models; wget -O /root/.icetk_models/ice_image.pt https://models.nmb.ai/cogvideo/ice_image.pt"
#- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz"
predict: "predict.py:Predictor" predict: "predict.py:Predictor"
image: "r8.im/nightmareai/cogvideo" image: "r8.im/nightmareai/cogvideo"

View File

@ -2,7 +2,7 @@ import os
from random import randint from random import randint
import subprocess import subprocess
import tempfile import tempfile
import glob import random
import typing import typing
from typing_extensions import Self from typing_extensions import Self
from deep_translator import GoogleTranslator from deep_translator import GoogleTranslator
@ -468,18 +468,12 @@ class Predictor(BasePredictor):
self.generate_frame_num = 5 self.generate_frame_num = 5
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
self.strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0, top_k=16)
self.strategy_cogvideo = CoglmStrategy(invalid_slices,
temperature=args.temperature, top_k=args.top_k,
temperature2=args.coglm_temperature2)
@torch.no_grad()
def predict( def predict(
self, self,
prompt: str = Input(description="Prompt"), prompt: str = Input(description="Prompt"),
seed: int = Input(description="Seed (leave empty to use a random seed)", default=None, le=(2**32 - 1), ge=0), seed: int = Input(description="Seed (-1 to use a random seed)", default=-1, le=(2**32 - 1), ge=-1),
translate: bool = Input( translate: bool = Input(
description="Translate prompt from English to Simplified Chinese (required if not entering Chinese text)", description="Translate prompt from English to Simplified Chinese (required if not entering Chinese text)",
default=True, default=True,
@ -491,53 +485,52 @@ class Predictor(BasePredictor):
) -> typing.Iterator[Path]: ) -> typing.Iterator[Path]:
if translate: if translate:
prompt = self.translator.translate(prompt.strip()) prompt = self.translator.translate(prompt.strip())
if seed == -1:
seed = randint(0, 2**32)
self.args.seed = seed
self.args.use_guidance_stage1 = use_guidance
self.prompt = prompt
self.args.both_stages = both_stages
yield [Path(file) for file in self.run()]
logging.debug("complete, exiting")
return
def run(self):
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0, top_k=16)
strategy_cogvideo = CoglmStrategy(invalid_slices,
temperature=self.args.temperature, top_k=self.args.top_k,
temperature2=self.args.coglm_temperature2)
torch.manual_seed(self.args.seed)
random.seed(self.args.seed)
workdir = tempfile.mkdtemp() workdir = tempfile.mkdtemp()
os.makedirs(f"{workdir}/output/stage1", exist_ok=True) os.makedirs(f"{workdir}/output/stage1", exist_ok=True)
os.makedirs(f"{workdir}/output/stage2", exist_ok=True) os.makedirs(f"{workdir}/output/stage2", exist_ok=True)
if seed is None: move_start_time = time.time()
seed = randint(0, 2**32) logging.debug("moving stage 2 model to cpu")
self.model_stage2 = self.model_stage2.cpu()
self.args.seed = seed torch.cuda.empty_cache()
self.args.use_guidance_stage1 = use_guidance logging.debug("moving stage 1 model to cuda")
with torch.no_grad(): self.model_stage1 = self.model_stage1.cuda()
move_start_time = time.time() logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
logging.debug("moving stage 2 model to cpu")
self.model_stage2 = self.model_stage2.cpu()
torch.cuda.empty_cache()
logging.debug("moving stage 1 model to cuda")
self.model_stage1 = self.model_stage1.cuda()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
parent_given_tokens = self.process_stage1(self.model_stage1, prompt, duration=4.0, video_raw_text=prompt, video_guidance_text="视频",
image_text_suffix=" 高清摄影",
outputdir=f'{workdir}/output/stage1', batch_size=1)
logging.debug("moving stage 1 model to cpu")
self.model_stage1 = self.model_stage1.cpu()
torch.cuda.empty_cache()
yield Path(f"{workdir}/output/stage1/0.gif")
if both_stages:
move_start_time = time.time()
logging.debug("moving stage 2 model to cuda")
self.model_stage2 = self.model_stage2.cuda()
logging.debug("moving in model2 takes time: {:.2f}".format(time.time()-move_start_time))
self.process_stage2(self.model_stage2, prompt, duration=2.0, video_raw_text=prompt+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=f'{workdir}/output/stage2',
gpu_rank=0, gpu_parallel_size=1)
yield Path(f"{workdir}/output/stage2/0.gif")
return
def process_stage1(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
process_start_time = time.time() process_start_time = time.time()
args = self.args args = self.args
use_guide = args.use_guidance_stage1 use_guide = args.use_guidance_stage1
batch_size = 1
if video_raw_text is None: seq_text = self.prompt
video_raw_text = seq_text video_raw_text = self.prompt
duration=4.0
video_guidance_text="视频"
image_text_suffix=" 高清摄影"
outputdir=f'{workdir}/output/stage1'
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
assert batch_size < mbz or batch_size % mbz == 0 assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400 frame_len = 400
@ -553,13 +546,13 @@ class Predictor(BasePredictor):
for tim in range(max(batch_size // mbz, 1)): for tim in range(max(batch_size // mbz, 1)):
start_time = time.time() start_time = time.time()
output_list_1st.append( output_list_1st.append(
my_filling_sequence(model, args,seq_1st.clone(), my_filling_sequence(self.model_stage1, args,seq_1st.clone(),
batch_size=min(batch_size, mbz), batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1, get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len_1st, text_len=text_len_1st,
frame_len=frame_len, frame_len=frame_len,
strategy=self.strategy_cogview2, strategy=strategy_cogview2,
strategy2=self.strategy_cogvideo, strategy2=strategy_cogvideo,
log_text_attention_weights=1.4, log_text_attention_weights=1.4,
enforce_no_swin=True, enforce_no_swin=True,
mode_stage1=True, mode_stage1=True,
@ -600,12 +593,12 @@ class Predictor(BasePredictor):
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append( output_list.append(
my_filling_sequence(model, args,input_seq, my_filling_sequence(self.model_stage1, args,input_seq,
batch_size=min(batch_size, mbz), batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1, get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len, frame_len=frame_len, text_len=text_len, frame_len=frame_len,
strategy=self.strategy_cogview2, strategy=strategy_cogview2,
strategy2=self.strategy_cogvideo, strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights, log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2, guider_seq=guider_seq2,
guider_text_len=guider_text_len, guider_text_len=guider_text_len,
@ -629,27 +622,37 @@ class Predictor(BasePredictor):
for clip_i in range(len(imgs)): for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") out_filename = f'{outputdir}/{clip_i}.gif'
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{out_filename}' -d 0.25")
yield out_filename
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt')) torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time)) logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
return save_tokens logging.debug("moving stage 1 model to cpu")
self.model_stage1 = self.model_stage1.cpu()
torch.cuda.empty_cache()
def process_stage2(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1): if not self.args.both_stages:
stage2_starttime = time.time() logging.info("only stage 1 selected, exiting")
args = self.args return
use_guidance = args.use_guidance_stage2
if args.both_stages: gpu_rank=0
move_start_time = time.time() gpu_parallel_size=1
logging.debug("moving stage-2 model to cuda") video_raw_text=self.prompt+" 视频"
model = model.cuda() duration=2.0
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time)) video_guidance_text="视频"
outputdir=f'{workdir}/output/stage2'
parent_given_tokens = save_tokens
stage2_starttime = time.time()
use_guidance = args.use_guidance_stage2
move_start_time = time.time()
logging.debug("moving stage-2 model to cuda")
self.model_stage2 = self.model_stage2.cuda()
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
try: try:
if parent_given_tokens is None:
assert conddir is not None
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
sample_num_allgpu = parent_given_tokens.shape[0] sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu assert sample_num * gpu_parallel_size == sample_num_allgpu
@ -704,12 +707,12 @@ class Predictor(BasePredictor):
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append( output_list.append(
my_filling_sequence(model, args, input_seq, my_filling_sequence(self.model_stage2, args, input_seq,
batch_size=min(generate_batchsize_total, mbz), batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage2, get_masks_and_position_ids=get_masks_and_position_ids_stage2,
text_len=text_len, frame_len=frame_len, text_len=text_len, frame_len=frame_len,
strategy=self.strategy_cogview2, strategy=strategy_cogview2,
strategy2=self.strategy_cogvideo, strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights, log_text_attention_weights=video_log_text_attention_weights,
mode_stage1=False, mode_stage1=False,
guider_seq=guider_seq2, guider_seq=guider_seq2,
@ -735,10 +738,10 @@ class Predictor(BasePredictor):
enc_text = tokenizer.encode(seq_text) enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1] frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
logging.debug("moving stage 2 model to cpu") logging.debug("moving stage 2 model to cpu")
self.model_stage2 = self.model_stage2.cpu() self.model_stage2 = self.model_stage2.cpu()
torch.cuda.empty_cache() torch.cuda.empty_cache()
# use dsr if loaded # use dsr if loaded
@ -759,21 +762,30 @@ class Predictor(BasePredictor):
for sample_i in range(sample_num): for sample_i in range(sample_num):
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False) my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125") output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif'
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125")
yield output_file
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime)) logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
else: else:
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:] #imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
#os.makedirs(outputdir, exist_ok=True)
#my_save_multiple_images(imgs, outputdir,subdir="frames", debug=False)
#os.system(f"gifmaker -i '{outputdir}'/frames/0*.jpg -o '{outputdir}/{str(float(duration))}_concat.gif' -d 0.2")
imgs, sred_imgs, txts = [], [], [] output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
for seq in output_tokens: decoded_videos = []
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
imgs.append(decoded_imgs) # only the last image (target)
if outputdir is not None:
for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
for sample_i in range(sample_num):
decoded_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_img = tokenizer.decode(image_ids=parent_given_tokens_2d[frame_i+sample_i*frame_num_per_sample][-3600:])
decoded_imgs.append(torch.nn.functional.interpolate(decoded_img, size=(480, 480)))
decoded_videos.append(decoded_imgs)
for sample_i in range(sample_num):
my_save_multiple_images(decoded_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif'
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125")
yield output_file