From 4d94efa6d4a03f40ed8a327c4a1ee14d47e24798 Mon Sep 17 00:00:00 2001 From: Stephan Auerhahn Date: Mon, 25 Jul 2022 07:46:49 +0000 Subject: [PATCH] rewrite predictor --- cog.yaml | 4 +- predict.py | 186 ++++++++++++++++++++++++++++------------------------- 2 files changed, 101 insertions(+), 89 deletions(-) diff --git a/cog.yaml b/cog.yaml index c2af953..54e243f 100644 --- a/cog.yaml +++ b/cog.yaml @@ -22,10 +22,10 @@ build: run: - "mkdir -p /sharefs/cogview-new; cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage1.tar.gz -O - | tar xz" - - "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage2.tar.gz -O - | tar xz" - #- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz" + - "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage2.tar.gz -O - | tar xz" - "mkdir -p /root/.icetk_models; wget -O /root/.icetk_models/ice_text.model https://models.nmb.ai/cogvideo/ice_text.model" - "mkdir -p /root/.tcetk_models; wget -O /root/.icetk_models/ice_image.pt https://models.nmb.ai/cogvideo/ice_image.pt" + #- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz" predict: "predict.py:Predictor" image: "r8.im/nightmareai/cogvideo" diff --git a/predict.py b/predict.py index 3901597..6f94e8a 100644 --- a/predict.py +++ b/predict.py @@ -2,7 +2,7 @@ import os from random import randint import subprocess import tempfile -import glob +import random import typing from typing_extensions import Self from deep_translator import GoogleTranslator @@ -468,18 +468,12 @@ class Predictor(BasePredictor): self.generate_frame_num = 5 - invalid_slices = [slice(tokenizer.num_image_tokens, None)] - self.strategy_cogview2 = CoglmStrategy(invalid_slices, - temperature=1.0, top_k=16) - self.strategy_cogvideo = CoglmStrategy(invalid_slices, - temperature=args.temperature, top_k=args.top_k, - temperature2=args.coglm_temperature2) - + @torch.no_grad() def predict( self, prompt: str = Input(description="Prompt"), - seed: int = Input(description="Seed (leave empty to use a random seed)", default=None, le=(2**32 - 1), ge=0), + seed: int = Input(description="Seed (-1 to use a random seed)", default=-1, le=(2**32 - 1), ge=-1), translate: bool = Input( description="Translate prompt from English to Simplified Chinese (required if not entering Chinese text)", default=True, @@ -491,53 +485,52 @@ class Predictor(BasePredictor): ) -> typing.Iterator[Path]: if translate: prompt = self.translator.translate(prompt.strip()) + + if seed == -1: + seed = randint(0, 2**32) + + self.args.seed = seed + self.args.use_guidance_stage1 = use_guidance + self.prompt = prompt + self.args.both_stages = both_stages + + yield [Path(file) for file in self.run()] + + logging.debug("complete, exiting") + return + + def run(self): + invalid_slices = [slice(tokenizer.num_image_tokens, None)] + strategy_cogview2 = CoglmStrategy(invalid_slices, + temperature=1.0, top_k=16) + strategy_cogvideo = CoglmStrategy(invalid_slices, + temperature=self.args.temperature, top_k=self.args.top_k, + temperature2=self.args.coglm_temperature2) + + torch.manual_seed(self.args.seed) + random.seed(self.args.seed) workdir = tempfile.mkdtemp() os.makedirs(f"{workdir}/output/stage1", exist_ok=True) os.makedirs(f"{workdir}/output/stage2", exist_ok=True) - if seed is None: - seed = randint(0, 2**32) - - self.args.seed = seed - self.args.use_guidance_stage1 = use_guidance - with torch.no_grad(): - move_start_time = time.time() - logging.debug("moving stage 2 model to cpu") - self.model_stage2 = self.model_stage2.cpu() - torch.cuda.empty_cache() - logging.debug("moving stage 1 model to cuda") - self.model_stage1 = self.model_stage1.cuda() - logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time)) - - parent_given_tokens = self.process_stage1(self.model_stage1, prompt, duration=4.0, video_raw_text=prompt, video_guidance_text="视频", - image_text_suffix=" 高清摄影", - outputdir=f'{workdir}/output/stage1', batch_size=1) - - logging.debug("moving stage 1 model to cpu") - self.model_stage1 = self.model_stage1.cpu() - torch.cuda.empty_cache() - - yield Path(f"{workdir}/output/stage1/0.gif") - - if both_stages: - move_start_time = time.time() - logging.debug("moving stage 2 model to cuda") - self.model_stage2 = self.model_stage2.cuda() - logging.debug("moving in model2 takes time: {:.2f}".format(time.time()-move_start_time)) - self.process_stage2(self.model_stage2, prompt, duration=2.0, video_raw_text=prompt+" 视频", - video_guidance_text="视频", parent_given_tokens=parent_given_tokens, - outputdir=f'{workdir}/output/stage2', - gpu_rank=0, gpu_parallel_size=1) - yield Path(f"{workdir}/output/stage2/0.gif") - return - - def process_stage1(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1): + move_start_time = time.time() + logging.debug("moving stage 2 model to cpu") + self.model_stage2 = self.model_stage2.cpu() + torch.cuda.empty_cache() + logging.debug("moving stage 1 model to cuda") + self.model_stage1 = self.model_stage1.cuda() + logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time)) + process_start_time = time.time() args = self.args use_guide = args.use_guidance_stage1 - - if video_raw_text is None: - video_raw_text = seq_text + batch_size = 1 + seq_text = self.prompt + video_raw_text = self.prompt + duration=4.0 + video_guidance_text="视频" + image_text_suffix=" 高清摄影" + outputdir=f'{workdir}/output/stage1' mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size assert batch_size < mbz or batch_size % mbz == 0 frame_len = 400 @@ -553,13 +546,13 @@ class Predictor(BasePredictor): for tim in range(max(batch_size // mbz, 1)): start_time = time.time() output_list_1st.append( - my_filling_sequence(model, args,seq_1st.clone(), + my_filling_sequence(self.model_stage1, args,seq_1st.clone(), batch_size=min(batch_size, mbz), get_masks_and_position_ids=get_masks_and_position_ids_stage1, text_len=text_len_1st, frame_len=frame_len, - strategy=self.strategy_cogview2, - strategy2=self.strategy_cogvideo, + strategy=strategy_cogview2, + strategy2=strategy_cogvideo, log_text_attention_weights=1.4, enforce_no_swin=True, mode_stage1=True, @@ -600,12 +593,12 @@ class Predictor(BasePredictor): input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None output_list.append( - my_filling_sequence(model, args,input_seq, + my_filling_sequence(self.model_stage1, args,input_seq, batch_size=min(batch_size, mbz), get_masks_and_position_ids=get_masks_and_position_ids_stage1, text_len=text_len, frame_len=frame_len, - strategy=self.strategy_cogview2, - strategy2=self.strategy_cogvideo, + strategy=strategy_cogview2, + strategy2=strategy_cogvideo, log_text_attention_weights=video_log_text_attention_weights, guider_seq=guider_seq2, guider_text_len=guider_text_len, @@ -629,27 +622,37 @@ class Predictor(BasePredictor): for clip_i in range(len(imgs)): # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) - os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") + out_filename = f'{outputdir}/{clip_i}.gif' + os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{out_filename}' -d 0.25") + yield out_filename torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt')) logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time)) - - return save_tokens + + logging.debug("moving stage 1 model to cpu") + self.model_stage1 = self.model_stage1.cpu() + torch.cuda.empty_cache() - def process_stage2(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1): - stage2_starttime = time.time() - args = self.args - use_guidance = args.use_guidance_stage2 - if args.both_stages: - move_start_time = time.time() - logging.debug("moving stage-2 model to cuda") - model = model.cuda() - logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time)) + if not self.args.both_stages: + logging.info("only stage 1 selected, exiting") + return + + gpu_rank=0 + gpu_parallel_size=1 + video_raw_text=self.prompt+" 视频" + duration=2.0 + video_guidance_text="视频" + outputdir=f'{workdir}/output/stage2' + parent_given_tokens = save_tokens + stage2_starttime = time.time() + use_guidance = args.use_guidance_stage2 + + move_start_time = time.time() + logging.debug("moving stage-2 model to cuda") + self.model_stage2 = self.model_stage2.cuda() + logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time)) try: - if parent_given_tokens is None: - assert conddir is not None - parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu') sample_num_allgpu = parent_given_tokens.shape[0] sample_num = sample_num_allgpu // gpu_parallel_size assert sample_num * gpu_parallel_size == sample_num_allgpu @@ -704,12 +707,12 @@ class Predictor(BasePredictor): input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None output_list.append( - my_filling_sequence(model, args, input_seq, + my_filling_sequence(self.model_stage2, args, input_seq, batch_size=min(generate_batchsize_total, mbz), get_masks_and_position_ids=get_masks_and_position_ids_stage2, text_len=text_len, frame_len=frame_len, - strategy=self.strategy_cogview2, - strategy2=self.strategy_cogvideo, + strategy=strategy_cogview2, + strategy2=strategy_cogvideo, log_text_attention_weights=video_log_text_attention_weights, mode_stage1=False, guider_seq=guider_seq2, @@ -735,10 +738,10 @@ class Predictor(BasePredictor): enc_text = tokenizer.encode(seq_text) frame_num_per_sample = parent_given_tokens.shape[1] - parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) + parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) logging.debug("moving stage 2 model to cpu") - self.model_stage2 = self.model_stage2.cpu() + self.model_stage2 = self.model_stage2.cpu() torch.cuda.empty_cache() # use dsr if loaded @@ -759,21 +762,30 @@ class Predictor(BasePredictor): for sample_i in range(sample_num): my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False) - os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125") + output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif' + os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125") + yield output_file logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime)) else: - output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:] + #imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge] + #os.makedirs(outputdir, exist_ok=True) + #my_save_multiple_images(imgs, outputdir,subdir="frames", debug=False) + #os.system(f"gifmaker -i '{outputdir}'/frames/0*.jpg -o '{outputdir}/{str(float(duration))}_concat.gif' -d 0.2") + - imgs, sred_imgs, txts = [], [], [] - for seq in output_tokens: - decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)] - imgs.append(decoded_imgs) # only the last image (target) - - if outputdir is not None: - for clip_i in range(len(imgs)): - # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) - my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) - os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") + output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:] + decoded_videos = [] + for sample_i in range(sample_num): + decoded_imgs = [] + for frame_i in range(frame_num_per_sample): + decoded_img = tokenizer.decode(image_ids=parent_given_tokens_2d[frame_i+sample_i*frame_num_per_sample][-3600:]) + decoded_imgs.append(torch.nn.functional.interpolate(decoded_img, size=(480, 480))) + decoded_videos.append(decoded_imgs) + for sample_i in range(sample_num): + my_save_multiple_images(decoded_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False) + output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif' + os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125") + yield output_file \ No newline at end of file