{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from ipywidgets import interact\n", "from matplotlib import pyplot as plt\n", "import ffmpeg\n", "import ipywidgets as widgets\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "probe = ffmpeg.probe('in.mp4')\n", "video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')\n", "width = int(video_info['width'])\n", "height = int(video_info['height'])\n", "num_frames = int(video_info['nb_frames'])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5f63dc164956464c994ec58d86ee7cd9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=0, description='frame', max=209), Output()), _dom_classes=('widget-inter…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "out, err = (\n", " ffmpeg\n", " .input('in.mp4')\n", " .output('pipe:', format='rawvideo', pix_fmt='rgb24')\n", " .run(capture_stdout=True)\n", ")\n", "video = (\n", " np\n", " .frombuffer(out, np.uint8)\n", " .reshape([-1, height, width, 3])\n", ")\n", "\n", "@interact(frame=(0, num_frames))\n", "def show_frame(frame=0):\n", " plt.imshow(video[frame,:,:,:])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "84bcac52195f47f8854f09acd7666b84", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(Checkbox(value=True, description='enable_overlay'), Checkbox(value=True, description='en…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from io import BytesIO\n", "from PIL import Image\n", "\n", "\n", "def extract_frame(stream, frame_num):\n", " while isinstance(stream, ffmpeg.nodes.OutputStream):\n", " stream = stream.node.incoming_edges[0].upstream_node.stream()\n", " out, _ = (\n", " stream\n", " .filter_('select', 'gte(n,{})'.format(frame_num))\n", " .output('pipe:', format='rawvideo', pix_fmt='rgb24', vframes=1)\n", " .run(capture_stdout=True, capture_stderr=True)\n", " )\n", " return np.frombuffer(out, np.uint8).reshape([height, width, 3])\n", "\n", "\n", "def png_to_np(png_bytes):\n", " buffer = BytesIO(png_bytes)\n", " pil_image = Image.open(buffer)\n", " return np.array(pil_image)\n", " \n", "\n", "def build_graph(\n", " enable_overlay, flip_overlay, enable_box, box_x, box_y,\n", " thickness, color):\n", "\n", " stream = ffmpeg.input('in.mp4')\n", "\n", " if enable_overlay:\n", " overlay = ffmpeg.input('overlay.png')\n", " if flip_overlay:\n", " overlay = overlay.hflip()\n", " stream = stream.overlay(overlay)\n", "\n", " if enable_box:\n", " stream = stream.drawbox(\n", " box_x, box_y, 120, 120, color=color, t=thickness)\n", "\n", " return stream.output('out.mp4')\n", "\n", "\n", "def show_image(ax, stream, frame_num):\n", " try:\n", " image = extract_frame(stream, frame_num)\n", " ax.imshow(image)\n", " ax.axis('off')\n", " except ffmpeg.Error as e:\n", " print(e.stderr.decode())\n", "\n", "\n", "def show_graph(ax, stream, detail):\n", " data = ffmpeg.view(stream, detail=detail, pipe=True)\n", " image = png_to_np(data)\n", " ax.imshow(image, aspect='equal', interpolation='hanning')\n", " ax.set_xlim(0, 1100)\n", " ax.axis('off')\n", "\n", "\n", "@interact(\n", " frame_num=(0, num_frames),\n", " box_x=(0, 200),\n", " box_y=(0, 200),\n", " thickness=(1, 40),\n", " color=['red', 'green', 'magenta', 'blue'],\n", ")\n", "def f(\n", " enable_overlay=True,\n", " enable_box=True,\n", " flip_overlay=True,\n", " graph_detail=False,\n", " frame_num=0,\n", " box_x=50,\n", " box_y=50,\n", " thickness=5,\n", " color='red'):\n", "\n", " stream = build_graph(\n", " enable_overlay,\n", " flip_overlay,\n", " enable_box,\n", " box_x,\n", " box_y,\n", " thickness,\n", " color\n", " )\n", "\n", " fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(15,4))\n", " plt.tight_layout()\n", " show_image(ax0, stream, frame_num)\n", " show_graph(ax1, stream, graph_detail)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }