#!/usr/bin/env python from __future__ import unicode_literals from google.protobuf.json_format import MessageToJson from google.cloud import speech from google.cloud.speech import enums from google.cloud.speech import types import argparse import ffmpeg import logging import subprocess import sys import IPython logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger(__file__) logger.setLevel(logging.INFO) parser = argparse.ArgumentParser(description='Convert speech audio to text using Google Speech API') parser.add_argument('in_filename', help='Input filename (`-` for stdin)') parser.add_argument('--timing', action='store_true', help='Include timing info') def decode_audio(in_filename, **input_kwargs): p = subprocess.Popen( (ffmpeg .input(in_filename, **input_kwargs) .output('-', format='s16le', acodec='pcm_s16le', ac=1, ar='16k') .overwrite_output() .compile() ), stdout=subprocess.PIPE, stderr=subprocess.PIPE ) out = p.communicate() if p.returncode != 0: sys.stderr.write(out[1]) sys.exit(1) return out[0] def get_transcripts(audio_data, include_timing_info=False): client = speech.SpeechClient() audio = types.RecognitionAudio(content=audio_data) config = types.RecognitionConfig( encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=16000, language_code='en-US', enable_word_time_offsets=include_timing_info, ) return client.recognize(config, audio) def transcribe(in_filename, include_timing_info=False): audio_data = decode_audio(in_filename) response = get_transcripts(audio_data, include_timing_info) print(MessageToJson(response, sort_keys=True)) if __name__ == '__main__': args = parser.parse_args() transcribe(args.in_filename, args.timing)