'''Example streaming ffmpeg numpy processing. Demonstrates using ffmpeg to decode video input, process the frames in python, and then encode video output using ffmpeg. This example uses two ffmpeg processes - one to decode the input video and one to encode an output video - while the raw frame processing is done in python with numpy. At a high level, the signal graph looks like this: (input video) -> [ffmpeg process 1] -> [python] -> [ffmpeg process 2] -> (output video) This example reads/writes video files on the local filesystem, but the same pattern can be used for other kinds of input/output (e.g. webcam, rtmp, etc.). The simplest processing example simply darkens each frame by multiplying the frame's numpy array by a constant value; see ``process_frame_simple``. A more sophisticated example processes each frame with tensorflow using the "deep dream" tensorflow tutorial; activate this mode by calling the script with the optional `--dream` argument. (Make sure tensorflow is installed before running) ''' from __future__ import print_function import argparse import ffmpeg import logging import numpy as np import os import subprocess import zipfile parser = argparse.ArgumentParser(description='Example streaming ffmpeg numpy processing') parser.add_argument('in_filename', help='Input filename') parser.add_argument('out_filename', help='Output filename') parser.add_argument( '--dream', action='store_true', help='Use DeepDream frame processing (requires tensorflow)') logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def get_video_size(filename): logger.info('Getting video size for {!r}'.format(filename)) probe = ffmpeg.probe(filename) video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video') width = int(video_info['width']) height = int(video_info['height']) return width, height def start_ffmpeg_process1(in_filename): logger.info('Starting ffmpeg process1') args = ( ffmpeg .input(in_filename) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .compile() ) return subprocess.Popen(args, stdout=subprocess.PIPE) def start_ffmpeg_process2(out_filename, width, height): logger.info('Starting ffmpeg process2') args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height)) .output(out_filename, pix_fmt='yuv420p') .overwrite_output() .compile() ) return subprocess.Popen(args, stdin=subprocess.PIPE) def read_frame(process1, width, height): logger.debug('Reading frame') # Note: RGB24 == 3 bytes per pixel. frame_size = width * height * 3 in_bytes = process1.stdout.read(frame_size) if len(in_bytes) == 0: frame = None else: assert len(in_bytes) == frame_size frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) return frame def process_frame_simple(frame): '''Simple processing example: darken frame.''' return frame * 0.3 def write_frame(process2, frame): logger.debug('Writing frame') process2.stdin.write( frame .astype(np.uint8) .tobytes() ) def run(in_filename, out_filename, process_frame): width, height = get_video_size(in_filename) process1 = start_ffmpeg_process1(in_filename) process2 = start_ffmpeg_process2(out_filename, width, height) while True: in_frame = read_frame(process1, width, height) if in_frame is None: logger.info('End of input stream') break logger.debug('Processing frame') out_frame = process_frame(in_frame) write_frame(process2, out_frame) logger.info('Waiting for ffmpeg process1') process1.wait() logger.info('Waiting for ffmpeg process2') process2.stdin.close() process2.wait() logger.info('Done') class DeepDream(object): '''DeepDream implementation, adapted from official tensorflow deepdream tutorial: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream Credit: Alexander Mordvintsev ''' _DOWNLOAD_URL = 'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip' _ZIP_FILENAME = 'deepdream_model.zip' _MODEL_FILENAME = 'tensorflow_inception_graph.pb' @staticmethod def _download_model(): logger.info('Downloading deepdream model...') try: from urllib.request import urlretrieve # python 3 except ImportError: from urllib import urlretrieve # python 2 urlretrieve(DeepDream._DOWNLOAD_URL, DeepDream._ZIP_FILENAME) logger.info('Extracting deepdream model...') zipfile.ZipFile(DeepDream._ZIP_FILENAME, 'r').extractall('.') @staticmethod def _tffunc(*argtypes): '''Helper that transforms TF-graph generating function into a regular one. See `_resize` function below. ''' placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap @staticmethod def _base_resize(img, size): '''Helper function that uses TF to resize an image''' img = tf.expand_dims(img, 0) return tf.image.resize_bilinear(img, size)[0,:,:,:] def __init__(self): if not os.path.exists(DeepDream._MODEL_FILENAME): self._download_model() self._graph = tf.Graph() self._session = tf.InteractiveSession(graph=self._graph) self._resize = self._tffunc(np.float32, np.int32)(self._base_resize) with tf.gfile.FastGFile(DeepDream._MODEL_FILENAME, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) self._t_input = tf.placeholder(np.float32, name='input') # define the input tensor imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(self._t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {'input':t_preprocessed}) self.t_obj = self.T('mixed4d_3x3_bottleneck_pre_relu')[:,:,:,139] #self.t_obj = tf.square(self.T('mixed4c')) def T(self, layer_name): '''Helper for getting layer output tensor''' return self._graph.get_tensor_by_name('import/%s:0'%layer_name) def _calc_grad_tiled(self, img, t_grad, tile_size=512): '''Compute the value of tensor t_grad over the image in a tiled way. Random shifts are applied to the image to blur tile boundaries over multiple iterations.''' sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) grad = np.zeros_like(img) for y in range(0, max(h-sz//2, sz),sz): for x in range(0, max(w-sz//2, sz),sz): sub = img_shift[y:y+sz,x:x+sz] g = self._session.run(t_grad, {self._t_input:sub}) grad[y:y+sz,x:x+sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) def process_frame(self, frame, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): t_score = tf.reduce_mean(self.t_obj) # defining the optimization objective t_grad = tf.gradients(t_score, self._t_input)[0] # behold the power of automatic differentiation! # split the image into a number of octaves img = frame octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = self._resize(img, np.int32(np.float32(hw)/octave_scale)) hi = img-self._resize(lo, hw) img = lo octaves.append(hi) # generate details octave by octave for octave in range(octave_n): if octave>0: hi = octaves[-octave] img = self._resize(img, hi.shape[:2])+hi for i in range(iter_n): g = self._calc_grad_tiled(img, t_grad) img += g*(step / (np.abs(g).mean()+1e-7)) #print('.',end = ' ') return img if __name__ == '__main__': args = parser.parse_args() if args.dream: import tensorflow as tf process_frame = DeepDream().process_frame else: process_frame = process_frame_simple run(args.in_filename, args.out_filename, process_frame)