diff --git a/examples/README.md b/examples/README.md index 92feaec..5d919f7 100644 --- a/examples/README.md +++ b/examples/README.md @@ -123,3 +123,59 @@ out.run() jupyter demo +## [Tensorflow Streaming](https://github.com/kkroening/ffmpeg-python/blob/master/examples/tensorflow_stream.py) + +tensorflow streaming; challenge mode: combine this with the webcam example below + +- Decode input video with ffmpeg +- Process video with tensorflow using "deep dream" example +- Encode output video with ffmpeg + +```python +args1 = ( + ffmpeg + .input(in_filename) + .output('pipe:', format='rawvideo', pix_fmt='rgb24', vframes=8) + .compile() +) +process1 = subprocess.Popen(args1, stdout=subprocess.PIPE) + +args2 = ( + ffmpeg + .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height)) + .output(out_filename, pix_fmt='yuv420p') + .overwrite_output() + .compile() +) +process2 = subprocess.Popen(args2, stdin=subprocess.PIPE) + +while True: + in_bytes = process1.stdout.read(width * height * 3) + in_frame ( + np + .frombuffer(in_bytes, np.uint8) + .reshape([height, width, 3]) + ) + + # See examples/tensorflow_stream.py: + frame = deep_dream.process_frame(frame) + + process2.stdin.write( + frame + .astype(np.uint8) + .tobytes() + ) +``` + +deep dream streaming + +## [FaceTime webcam input](https://github.com/kkroening/ffmpeg-python/blob/master/examples/facetime.py) + +```python +( + ffmpeg + .input('FaceTime', format='avfoundation', pix_fmt='uyvy422', framerate=30) + .output('out.mp4', pix_fmt='yuv420p', vframes=100) + .run() +) +``` diff --git a/examples/facetime.py b/examples/facetime.py new file mode 100644 index 0000000..58d083e --- /dev/null +++ b/examples/facetime.py @@ -0,0 +1,8 @@ +import ffmpeg + +( + ffmpeg + .input('FaceTime', format='avfoundation', pix_fmt='uyvy422', framerate=30) + .output('out.mp4', pix_fmt='yuv420p', vframes=100) + .run() +) diff --git a/examples/graphs/dream.png b/examples/graphs/dream.png new file mode 100644 index 0000000..090b530 Binary files /dev/null and b/examples/graphs/dream.png differ diff --git a/examples/graphs/tensorflow-stream.png b/examples/graphs/tensorflow-stream.png new file mode 100644 index 0000000..e5047a1 Binary files /dev/null and b/examples/graphs/tensorflow-stream.png differ diff --git a/examples/tensorflow_stream.py b/examples/tensorflow_stream.py new file mode 100644 index 0000000..066c765 --- /dev/null +++ b/examples/tensorflow_stream.py @@ -0,0 +1,248 @@ +'''Example streaming ffmpeg numpy processing. + +Demonstrates using ffmpeg to decode video input, process the frames in +python, and then encode video output using ffmpeg. + +This example uses two ffmpeg processes - one to decode the input video +and one to encode an output video - while the raw frame processing is +done in python with numpy. + +At a high level, the signal graph looks like this: + + (input video) -> [ffmpeg process 1] -> [python] -> [ffmpeg process 2] -> (output video) + +This example reads/writes video files on the local filesystem, but the +same pattern can be used for other kinds of input/output (e.g. webcam, +rtmp, etc.). + +The simplest processing example simply darkens each frame by +multiplying the frame's numpy array by a constant value; see +``process_frame_simple``. + +A more sophisticated example processes each frame with tensorflow using +the "deep dream" tensorflow tutorial; activate this mode by calling +the script with the optional `--dream` argument. (Make sure tensorflow +is installed before running) +''' +from __future__ import print_function +import argparse +import ffmpeg +import logging +import numpy as np +import os +import subprocess +import zipfile + + +parser = argparse.ArgumentParser(description='Example streaming ffmpeg numpy processing') +parser.add_argument('in_filename', help='Input filename') +parser.add_argument('out_filename', help='Output filename') +parser.add_argument( + '--dream', action='store_true', help='Use DeepDream frame processing (requires tensorflow)') + +logger = logging.getLogger(__name__) +logging.basicConfig(level=logging.INFO) + + +def get_video_size(filename): + logger.info('Getting video size for {!r}'.format(filename)) + probe = ffmpeg.probe(filename) + video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video') + width = int(video_info['width']) + height = int(video_info['height']) + return width, height + + +def start_ffmpeg_process1(in_filename): + logger.info('Starting ffmpeg process1') + args = ( + ffmpeg + .input(in_filename) + .output('pipe:', format='rawvideo', pix_fmt='rgb24', vframes=8) + .compile() + ) + return subprocess.Popen(args, stdout=subprocess.PIPE) + + +def start_ffmpeg_process2(out_filename, width, height): + logger.info('Starting ffmpeg process2') + args = ( + ffmpeg + .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height)) + .output(out_filename, pix_fmt='yuv420p') + .overwrite_output() + .compile() + ) + return subprocess.Popen(args, stdin=subprocess.PIPE) + + +def read_frame(process1, width, height): + logger.debug('Reading frame') + + # Note: RGB24 == 3 bytes per pixel. + frame_size = width * height * 3 + in_bytes = process1.stdout.read(frame_size) + if len(in_bytes) == 0: + frame = None + else: + assert len(in_bytes) == frame_size + frame = ( + np + .frombuffer(in_bytes, np.uint8) + .reshape([height, width, 3]) + ) + return frame + + +def process_frame_simple(frame): + '''Simple processing example: darken frame.''' + return frame * 0.3 + + +def write_frame(process2, frame): + logger.debug('Writing frame') + process2.stdin.write( + frame + .astype(np.uint8) + .tobytes() + ) + + +def run(in_filename, out_filename, process_frame): + width, height = get_video_size(in_filename) + process1 = start_ffmpeg_process1(in_filename) + process2 = start_ffmpeg_process2(out_filename, width, height) + while True: + frame = read_frame(process1, width, height) + if frame is None: + logger.info('End of input stream') + break + + logger.debug('Processing frame') + frame = process_frame(frame) + write_frame(process2, frame) + + logger.info('Waiting for ffmpeg process1') + process1.wait() + + logger.info('Waiting for ffmpeg process2') + process2.stdin.close() + process2.wait() + + logger.info('Done') + + +class DeepDream(object): + '''DeepDream implementation, adapted from official tensorflow deepdream tutorial: + https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream + + Credit: Alexander Mordvintsev + ''' + + _DOWNLOAD_URL = 'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip' + _ZIP_FILENAME = 'deepdream_model.zip' + _MODEL_FILENAME = 'tensorflow_inception_graph.pb' + + @staticmethod + def _download_model(): + logger.info('Downloading deepdream model...') + try: + from urllib.request import urlretrieve # python 3 + except ImportError: + from urllib import urlretrieve # python 2 + urlretrieve(DeepDream._DOWNLOAD_URL, DeepDream._ZIP_FILENAME) + + logger.info('Extracting deepdream model...') + zipfile.ZipFile(DeepDream._ZIP_FILENAME, 'r').extractall('.') + + @staticmethod + def _tffunc(*argtypes): + '''Helper that transforms TF-graph generating function into a regular one. + See `_resize` function below. + ''' + placeholders = list(map(tf.placeholder, argtypes)) + def wrap(f): + out = f(*placeholders) + def wrapper(*args, **kw): + return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) + return wrapper + return wrap + + @staticmethod + def _base_resize(img, size): + '''Helper function that uses TF to resize an image''' + img = tf.expand_dims(img, 0) + return tf.image.resize_bilinear(img, size)[0,:,:,:] + + def __init__(self): + if not os.path.exists(DeepDream._MODEL_FILENAME): + self._download_model() + + self._graph = tf.Graph() + self._session = tf.InteractiveSession(graph=self._graph) + self._resize = self._tffunc(np.float32, np.int32)(self._base_resize) + with tf.gfile.FastGFile(DeepDream._MODEL_FILENAME, 'rb') as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + self._t_input = tf.placeholder(np.float32, name='input') # define the input tensor + imagenet_mean = 117.0 + t_preprocessed = tf.expand_dims(self._t_input-imagenet_mean, 0) + tf.import_graph_def(graph_def, {'input':t_preprocessed}) + + self.t_obj = self.T('mixed4d_3x3_bottleneck_pre_relu')[:,:,:,139] + #self.t_obj = tf.square(self.T('mixed4c')) + + def T(self, layer_name): + '''Helper for getting layer output tensor''' + return self._graph.get_tensor_by_name('import/%s:0'%layer_name) + + def _calc_grad_tiled(self, img, t_grad, tile_size=512): + '''Compute the value of tensor t_grad over the image in a tiled way. + Random shifts are applied to the image to blur tile boundaries over + multiple iterations.''' + sz = tile_size + h, w = img.shape[:2] + sx, sy = np.random.randint(sz, size=2) + img_shift = np.roll(np.roll(img, sx, 1), sy, 0) + grad = np.zeros_like(img) + for y in range(0, max(h-sz//2, sz),sz): + for x in range(0, max(w-sz//2, sz),sz): + sub = img_shift[y:y+sz,x:x+sz] + g = self._session.run(t_grad, {self._t_input:sub}) + grad[y:y+sz,x:x+sz] = g + return np.roll(np.roll(grad, -sx, 1), -sy, 0) + + def process_frame(self, frame, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): + t_score = tf.reduce_mean(self.t_obj) # defining the optimization objective + t_grad = tf.gradients(t_score, self._t_input)[0] # behold the power of automatic differentiation! + + # split the image into a number of octaves + img = frame + octaves = [] + for i in range(octave_n-1): + hw = img.shape[:2] + lo = self._resize(img, np.int32(np.float32(hw)/octave_scale)) + hi = img-self._resize(lo, hw) + img = lo + octaves.append(hi) + + # generate details octave by octave + for octave in range(octave_n): + if octave>0: + hi = octaves[-octave] + img = self._resize(img, hi.shape[:2])+hi + for i in range(iter_n): + g = self._calc_grad_tiled(img, t_grad) + img += g*(step / (np.abs(g).mean()+1e-7)) + #print('.',end = ' ') + return img + + +if __name__ == '__main__': + args = parser.parse_args() + if args.dream: + import tensorflow as tf + process_frame = DeepDream().process_frame + else: + process_frame = process_frame_simple + run(args.in_filename, args.out_filename, process_frame)