mirror of
https://github.com/kkroening/ffmpeg-python.git
synced 2025-04-05 04:22:51 +08:00
Add numpy_stream example
This commit is contained in:
parent
b6f150c4c3
commit
848f87da4e
BIN
examples/graphs/tensorflow-stream.png
Normal file
BIN
examples/graphs/tensorflow-stream.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 5.9 KiB |
248
examples/tensorflow_stream.py
Normal file
248
examples/tensorflow_stream.py
Normal file
@ -0,0 +1,248 @@
|
||||
'''Example streaming ffmpeg numpy processing.
|
||||
|
||||
Demonstrates using ffmpeg to decode video input, process the frames in
|
||||
python, and then encode video output using ffmpeg.
|
||||
|
||||
This example uses two ffmpeg processes - one to decode the input video
|
||||
and one to encode an output video - while the raw frame processing is
|
||||
done in python with numpy.
|
||||
|
||||
At a high level, the signal graph looks like this:
|
||||
|
||||
(input video) -> [ffmpeg process 1] -> [python] -> [ffmpeg process 2] -> (output video)
|
||||
|
||||
This example reads/writes video files on the local filesystem, but the
|
||||
same pattern can be used for other kinds of input/output (e.g. webcam,
|
||||
rtmp, etc.).
|
||||
|
||||
The simplest processing example simply darkens each frame by
|
||||
multiplying the frame's numpy array by a constant value; see
|
||||
``process_frame_simple``.
|
||||
|
||||
A more sophisticated example processes each frame with tensorflow using
|
||||
the "deep dream" tensorflow tutorial; activate this mode by calling
|
||||
the script with the optional `--dream` argument. (Make sure tensorflow
|
||||
is installed before running)
|
||||
'''
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
import ffmpeg
|
||||
import logging
|
||||
import numpy as np
|
||||
import os
|
||||
import subprocess
|
||||
import zipfile
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Example streaming ffmpeg numpy processing')
|
||||
parser.add_argument('in_filename', help='Input filename')
|
||||
parser.add_argument('out_filename', help='Output filename')
|
||||
parser.add_argument(
|
||||
'--dream', action='store_true', help='Use DeepDream frame processing (requires tensorflow)')
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
def get_video_size(filename):
|
||||
logger.info('Getting video size for {!r}'.format(filename))
|
||||
probe = ffmpeg.probe(filename)
|
||||
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
|
||||
width = int(video_info['width'])
|
||||
height = int(video_info['height'])
|
||||
return width, height
|
||||
|
||||
|
||||
def start_ffmpeg_process1(in_filename):
|
||||
logger.info('Starting ffmpeg process1')
|
||||
args = (
|
||||
ffmpeg
|
||||
.input(in_filename)
|
||||
.output('pipe:', format='rawvideo', pix_fmt='rgb24', vframes=8)
|
||||
.compile()
|
||||
)
|
||||
return subprocess.Popen(args, stdout=subprocess.PIPE)
|
||||
|
||||
|
||||
def start_ffmpeg_process2(out_filename, width, height):
|
||||
logger.info('Starting ffmpeg process2')
|
||||
args = (
|
||||
ffmpeg
|
||||
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height))
|
||||
.output(out_filename, pix_fmt='yuv420p')
|
||||
.overwrite_output()
|
||||
.compile()
|
||||
)
|
||||
return subprocess.Popen(args, stdin=subprocess.PIPE)
|
||||
|
||||
|
||||
def read_frame(process1, width, height):
|
||||
logger.debug('Reading frame')
|
||||
|
||||
# Note: RGB24 == 3 bytes per pixel.
|
||||
frame_size = width * height * 3
|
||||
in_bytes = process1.stdout.read(frame_size)
|
||||
if len(in_bytes) == 0:
|
||||
frame = None
|
||||
else:
|
||||
assert len(in_bytes) == frame_size
|
||||
frame = (
|
||||
np
|
||||
.frombuffer(in_bytes, np.uint8)
|
||||
.reshape([height, width, 3])
|
||||
)
|
||||
return frame
|
||||
|
||||
|
||||
def process_frame_simple(frame):
|
||||
'''Simple processing example: darken frame.'''
|
||||
return frame * 0.3
|
||||
|
||||
|
||||
def write_frame(process2, frame):
|
||||
logger.debug('Writing frame')
|
||||
process2.stdin.write(
|
||||
frame
|
||||
.astype(np.uint8)
|
||||
.tobytes()
|
||||
)
|
||||
|
||||
|
||||
def run(in_filename, out_filename, process_frame):
|
||||
width, height = get_video_size(in_filename)
|
||||
process1 = start_ffmpeg_process1(in_filename)
|
||||
process2 = start_ffmpeg_process2(out_filename, width, height)
|
||||
while True:
|
||||
frame = read_frame(process1, width, height)
|
||||
if frame is None:
|
||||
logger.info('End of input stream')
|
||||
break
|
||||
|
||||
logger.debug('Processing frame')
|
||||
frame = process_frame(frame)
|
||||
write_frame(process2, frame)
|
||||
|
||||
logger.info('Waiting for ffmpeg process1')
|
||||
process1.wait()
|
||||
|
||||
logger.info('Waiting for ffmpeg process2')
|
||||
process2.stdin.close()
|
||||
process2.wait()
|
||||
|
||||
logger.info('Done')
|
||||
|
||||
|
||||
class DeepDream(object):
|
||||
'''DeepDream implementation, adapted from official tensorflow deepdream tutorial:
|
||||
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream
|
||||
|
||||
Credit: Alexander Mordvintsev
|
||||
'''
|
||||
|
||||
_DOWNLOAD_URL = 'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip'
|
||||
_ZIP_FILENAME = 'deepdream_model.zip'
|
||||
_MODEL_FILENAME = 'tensorflow_inception_graph.pb'
|
||||
|
||||
@staticmethod
|
||||
def _download_model():
|
||||
logger.info('Downloading deepdream model...')
|
||||
try:
|
||||
from urllib.request import urlretrieve # python 3
|
||||
except ImportError:
|
||||
from urllib import urlretrieve # python 2
|
||||
urlretrieve(DeepDream._DOWNLOAD_URL, DeepDream._ZIP_FILENAME)
|
||||
|
||||
logger.info('Extracting deepdream model...')
|
||||
zipfile.ZipFile(DeepDream._ZIP_FILENAME, 'r').extractall('.')
|
||||
|
||||
@staticmethod
|
||||
def _tffunc(*argtypes):
|
||||
'''Helper that transforms TF-graph generating function into a regular one.
|
||||
See `_resize` function below.
|
||||
'''
|
||||
placeholders = list(map(tf.placeholder, argtypes))
|
||||
def wrap(f):
|
||||
out = f(*placeholders)
|
||||
def wrapper(*args, **kw):
|
||||
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
|
||||
return wrapper
|
||||
return wrap
|
||||
|
||||
@staticmethod
|
||||
def _base_resize(img, size):
|
||||
'''Helper function that uses TF to resize an image'''
|
||||
img = tf.expand_dims(img, 0)
|
||||
return tf.image.resize_bilinear(img, size)[0,:,:,:]
|
||||
|
||||
def __init__(self):
|
||||
if not os.path.exists(DeepDream._MODEL_FILENAME):
|
||||
self._download_model()
|
||||
|
||||
self._graph = tf.Graph()
|
||||
self._session = tf.InteractiveSession(graph=self._graph)
|
||||
self._resize = self._tffunc(np.float32, np.int32)(self._base_resize)
|
||||
with tf.gfile.FastGFile(DeepDream._MODEL_FILENAME, 'rb') as f:
|
||||
graph_def = tf.GraphDef()
|
||||
graph_def.ParseFromString(f.read())
|
||||
self._t_input = tf.placeholder(np.float32, name='input') # define the input tensor
|
||||
imagenet_mean = 117.0
|
||||
t_preprocessed = tf.expand_dims(self._t_input-imagenet_mean, 0)
|
||||
tf.import_graph_def(graph_def, {'input':t_preprocessed})
|
||||
|
||||
self.t_obj = self.T('mixed4d_3x3_bottleneck_pre_relu')[:,:,:,139]
|
||||
#self.t_obj = tf.square(self.T('mixed4c'))
|
||||
|
||||
def T(self, layer_name):
|
||||
'''Helper for getting layer output tensor'''
|
||||
return self._graph.get_tensor_by_name('import/%s:0'%layer_name)
|
||||
|
||||
def _calc_grad_tiled(self, img, t_grad, tile_size=512):
|
||||
'''Compute the value of tensor t_grad over the image in a tiled way.
|
||||
Random shifts are applied to the image to blur tile boundaries over
|
||||
multiple iterations.'''
|
||||
sz = tile_size
|
||||
h, w = img.shape[:2]
|
||||
sx, sy = np.random.randint(sz, size=2)
|
||||
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
|
||||
grad = np.zeros_like(img)
|
||||
for y in range(0, max(h-sz//2, sz),sz):
|
||||
for x in range(0, max(w-sz//2, sz),sz):
|
||||
sub = img_shift[y:y+sz,x:x+sz]
|
||||
g = self._session.run(t_grad, {self._t_input:sub})
|
||||
grad[y:y+sz,x:x+sz] = g
|
||||
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
|
||||
|
||||
def process_frame(self, frame, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
|
||||
t_score = tf.reduce_mean(self.t_obj) # defining the optimization objective
|
||||
t_grad = tf.gradients(t_score, self._t_input)[0] # behold the power of automatic differentiation!
|
||||
|
||||
# split the image into a number of octaves
|
||||
img = frame
|
||||
octaves = []
|
||||
for i in range(octave_n-1):
|
||||
hw = img.shape[:2]
|
||||
lo = self._resize(img, np.int32(np.float32(hw)/octave_scale))
|
||||
hi = img-self._resize(lo, hw)
|
||||
img = lo
|
||||
octaves.append(hi)
|
||||
|
||||
# generate details octave by octave
|
||||
for octave in range(octave_n):
|
||||
if octave>0:
|
||||
hi = octaves[-octave]
|
||||
img = self._resize(img, hi.shape[:2])+hi
|
||||
for i in range(iter_n):
|
||||
g = self._calc_grad_tiled(img, t_grad)
|
||||
img += g*(step / (np.abs(g).mean()+1e-7))
|
||||
#print('.',end = ' ')
|
||||
return img
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parser.parse_args()
|
||||
if args.dream:
|
||||
import tensorflow as tf
|
||||
process_frame = DeepDream().process_frame
|
||||
else:
|
||||
process_frame = process_frame_simple
|
||||
run(args.in_filename, args.out_filename, process_frame)
|
Loading…
x
Reference in New Issue
Block a user