Add numpy_stream example

This commit is contained in:
Karl Kroening 2018-11-25 03:47:49 -06:00
parent b6f150c4c3
commit 848f87da4e
2 changed files with 248 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

View File

@ -0,0 +1,248 @@
'''Example streaming ffmpeg numpy processing.
Demonstrates using ffmpeg to decode video input, process the frames in
python, and then encode video output using ffmpeg.
This example uses two ffmpeg processes - one to decode the input video
and one to encode an output video - while the raw frame processing is
done in python with numpy.
At a high level, the signal graph looks like this:
(input video) -> [ffmpeg process 1] -> [python] -> [ffmpeg process 2] -> (output video)
This example reads/writes video files on the local filesystem, but the
same pattern can be used for other kinds of input/output (e.g. webcam,
rtmp, etc.).
The simplest processing example simply darkens each frame by
multiplying the frame's numpy array by a constant value; see
``process_frame_simple``.
A more sophisticated example processes each frame with tensorflow using
the "deep dream" tensorflow tutorial; activate this mode by calling
the script with the optional `--dream` argument. (Make sure tensorflow
is installed before running)
'''
from __future__ import print_function
import argparse
import ffmpeg
import logging
import numpy as np
import os
import subprocess
import zipfile
parser = argparse.ArgumentParser(description='Example streaming ffmpeg numpy processing')
parser.add_argument('in_filename', help='Input filename')
parser.add_argument('out_filename', help='Output filename')
parser.add_argument(
'--dream', action='store_true', help='Use DeepDream frame processing (requires tensorflow)')
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def get_video_size(filename):
logger.info('Getting video size for {!r}'.format(filename))
probe = ffmpeg.probe(filename)
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
return width, height
def start_ffmpeg_process1(in_filename):
logger.info('Starting ffmpeg process1')
args = (
ffmpeg
.input(in_filename)
.output('pipe:', format='rawvideo', pix_fmt='rgb24', vframes=8)
.compile()
)
return subprocess.Popen(args, stdout=subprocess.PIPE)
def start_ffmpeg_process2(out_filename, width, height):
logger.info('Starting ffmpeg process2')
args = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height))
.output(out_filename, pix_fmt='yuv420p')
.overwrite_output()
.compile()
)
return subprocess.Popen(args, stdin=subprocess.PIPE)
def read_frame(process1, width, height):
logger.debug('Reading frame')
# Note: RGB24 == 3 bytes per pixel.
frame_size = width * height * 3
in_bytes = process1.stdout.read(frame_size)
if len(in_bytes) == 0:
frame = None
else:
assert len(in_bytes) == frame_size
frame = (
np
.frombuffer(in_bytes, np.uint8)
.reshape([height, width, 3])
)
return frame
def process_frame_simple(frame):
'''Simple processing example: darken frame.'''
return frame * 0.3
def write_frame(process2, frame):
logger.debug('Writing frame')
process2.stdin.write(
frame
.astype(np.uint8)
.tobytes()
)
def run(in_filename, out_filename, process_frame):
width, height = get_video_size(in_filename)
process1 = start_ffmpeg_process1(in_filename)
process2 = start_ffmpeg_process2(out_filename, width, height)
while True:
frame = read_frame(process1, width, height)
if frame is None:
logger.info('End of input stream')
break
logger.debug('Processing frame')
frame = process_frame(frame)
write_frame(process2, frame)
logger.info('Waiting for ffmpeg process1')
process1.wait()
logger.info('Waiting for ffmpeg process2')
process2.stdin.close()
process2.wait()
logger.info('Done')
class DeepDream(object):
'''DeepDream implementation, adapted from official tensorflow deepdream tutorial:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream
Credit: Alexander Mordvintsev
'''
_DOWNLOAD_URL = 'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip'
_ZIP_FILENAME = 'deepdream_model.zip'
_MODEL_FILENAME = 'tensorflow_inception_graph.pb'
@staticmethod
def _download_model():
logger.info('Downloading deepdream model...')
try:
from urllib.request import urlretrieve # python 3
except ImportError:
from urllib import urlretrieve # python 2
urlretrieve(DeepDream._DOWNLOAD_URL, DeepDream._ZIP_FILENAME)
logger.info('Extracting deepdream model...')
zipfile.ZipFile(DeepDream._ZIP_FILENAME, 'r').extractall('.')
@staticmethod
def _tffunc(*argtypes):
'''Helper that transforms TF-graph generating function into a regular one.
See `_resize` function below.
'''
placeholders = list(map(tf.placeholder, argtypes))
def wrap(f):
out = f(*placeholders)
def wrapper(*args, **kw):
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
return wrapper
return wrap
@staticmethod
def _base_resize(img, size):
'''Helper function that uses TF to resize an image'''
img = tf.expand_dims(img, 0)
return tf.image.resize_bilinear(img, size)[0,:,:,:]
def __init__(self):
if not os.path.exists(DeepDream._MODEL_FILENAME):
self._download_model()
self._graph = tf.Graph()
self._session = tf.InteractiveSession(graph=self._graph)
self._resize = self._tffunc(np.float32, np.int32)(self._base_resize)
with tf.gfile.FastGFile(DeepDream._MODEL_FILENAME, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
self._t_input = tf.placeholder(np.float32, name='input') # define the input tensor
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(self._t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})
self.t_obj = self.T('mixed4d_3x3_bottleneck_pre_relu')[:,:,:,139]
#self.t_obj = tf.square(self.T('mixed4c'))
def T(self, layer_name):
'''Helper for getting layer output tensor'''
return self._graph.get_tensor_by_name('import/%s:0'%layer_name)
def _calc_grad_tiled(self, img, t_grad, tile_size=512):
'''Compute the value of tensor t_grad over the image in a tiled way.
Random shifts are applied to the image to blur tile boundaries over
multiple iterations.'''
sz = tile_size
h, w = img.shape[:2]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
grad = np.zeros_like(img)
for y in range(0, max(h-sz//2, sz),sz):
for x in range(0, max(w-sz//2, sz),sz):
sub = img_shift[y:y+sz,x:x+sz]
g = self._session.run(t_grad, {self._t_input:sub})
grad[y:y+sz,x:x+sz] = g
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
def process_frame(self, frame, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
t_score = tf.reduce_mean(self.t_obj) # defining the optimization objective
t_grad = tf.gradients(t_score, self._t_input)[0] # behold the power of automatic differentiation!
# split the image into a number of octaves
img = frame
octaves = []
for i in range(octave_n-1):
hw = img.shape[:2]
lo = self._resize(img, np.int32(np.float32(hw)/octave_scale))
hi = img-self._resize(lo, hw)
img = lo
octaves.append(hi)
# generate details octave by octave
for octave in range(octave_n):
if octave>0:
hi = octaves[-octave]
img = self._resize(img, hi.shape[:2])+hi
for i in range(iter_n):
g = self._calc_grad_tiled(img, t_grad)
img += g*(step / (np.abs(g).mean()+1e-7))
#print('.',end = ' ')
return img
if __name__ == '__main__':
args = parser.parse_args()
if args.dream:
import tensorflow as tf
process_frame = DeepDream().process_frame
else:
process_frame = process_frame_simple
run(args.in_filename, args.out_filename, process_frame)