mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
193 lines
6.0 KiB
Python
193 lines
6.0 KiB
Python
# This is Multi-reference timbre encoder
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn.utils import remove_weight_norm, weight_norm
|
|
from module.attentions import MultiHeadAttention
|
|
|
|
|
|
class MRTE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
content_enc_channels=192,
|
|
hidden_size=512,
|
|
out_channels=192,
|
|
kernel_size=5,
|
|
n_heads=4,
|
|
ge_layer=2,
|
|
):
|
|
super(MRTE, self).__init__()
|
|
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
|
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
|
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
|
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
|
|
|
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
|
if ge == None:
|
|
ge = 0
|
|
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
|
|
|
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
|
text_enc = self.text_pre(text * text_mask)
|
|
if test != None:
|
|
if test == 0:
|
|
x = (
|
|
self.cross_attention(
|
|
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
|
)
|
|
+ ssl_enc
|
|
+ ge
|
|
)
|
|
elif test == 1:
|
|
x = ssl_enc + ge
|
|
elif test == 2:
|
|
x = (
|
|
self.cross_attention(
|
|
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
|
|
)
|
|
+ ge
|
|
)
|
|
else:
|
|
raise ValueError("test should be 0,1,2")
|
|
else:
|
|
x = (
|
|
self.cross_attention(
|
|
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
|
)
|
|
+ ssl_enc
|
|
+ ge
|
|
)
|
|
x = self.c_post(x * ssl_mask)
|
|
return x
|
|
|
|
|
|
class SpeakerEncoder(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
mel_n_channels=80,
|
|
model_num_layers=2,
|
|
model_hidden_size=256,
|
|
model_embedding_size=256,
|
|
):
|
|
super(SpeakerEncoder, self).__init__()
|
|
self.lstm = nn.LSTM(
|
|
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
|
|
)
|
|
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, mels):
|
|
self.lstm.flatten_parameters()
|
|
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
|
|
embeds_raw = self.relu(self.linear(hidden[-1]))
|
|
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
|
|
|
|
|
class MELEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
|
|
|
def forward(self, x):
|
|
# print(x.shape,x_lengths.shape)
|
|
x = self.pre(x)
|
|
x = self.enc(x)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class WN(torch.nn.Module):
|
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
|
super(WN, self).__init__()
|
|
assert kernel_size % 2 == 1
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
|
|
self.in_layers = torch.nn.ModuleList()
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
|
|
for i in range(n_layers):
|
|
dilation = dilation_rate**i
|
|
padding = int((kernel_size * dilation - dilation) / 2)
|
|
in_layer = nn.Conv1d(
|
|
hidden_channels,
|
|
2 * hidden_channels,
|
|
kernel_size,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
)
|
|
in_layer = weight_norm(in_layer)
|
|
self.in_layers.append(in_layer)
|
|
|
|
# last one is not necessary
|
|
if i < n_layers - 1:
|
|
res_skip_channels = 2 * hidden_channels
|
|
else:
|
|
res_skip_channels = hidden_channels
|
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
|
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
|
self.res_skip_layers.append(res_skip_layer)
|
|
|
|
def forward(self, x):
|
|
output = torch.zeros_like(x)
|
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
|
|
|
for i in range(self.n_layers):
|
|
x_in = self.in_layers[i](x)
|
|
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
|
|
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
if i < self.n_layers - 1:
|
|
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
|
x = x + res_acts
|
|
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
|
else:
|
|
output = output + res_skip_acts
|
|
return output
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.in_layers:
|
|
remove_weight_norm(l)
|
|
for l in self.res_skip_layers:
|
|
remove_weight_norm(l)
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
t_act = torch.tanh(input[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
if __name__ == "__main__":
|
|
content_enc = torch.randn(3, 192, 100)
|
|
content_mask = torch.ones(3, 1, 100)
|
|
ref_mel = torch.randn(3, 128, 30)
|
|
ref_mask = torch.ones(3, 1, 30)
|
|
model = MRTE()
|
|
out = model(content_enc, content_mask, ref_mel, ref_mask)
|
|
print(out.shape)
|