mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
541 lines
21 KiB
Python
541 lines
21 KiB
Python
"""
|
||
按中英混合识别
|
||
按日英混合识别
|
||
多语种启动切分识别语种
|
||
全部按中文识别
|
||
全部按英文识别
|
||
全部按日文识别
|
||
"""
|
||
|
||
import json
|
||
import logging
|
||
import os
|
||
import random
|
||
import re
|
||
import sys
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||
|
||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||
import torch
|
||
|
||
try:
|
||
import gradio.analytics as analytics
|
||
|
||
analytics.version_check = lambda: None
|
||
except:
|
||
...
|
||
|
||
|
||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||
infer_ttswebui = int(infer_ttswebui)
|
||
is_share = os.environ.get("is_share", "False")
|
||
is_share = eval(is_share)
|
||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||
|
||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||
gpt_path = os.environ.get("gpt_path", None)
|
||
sovits_path = os.environ.get("sovits_path", None)
|
||
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
|
||
bert_path = os.environ.get("bert_path", None)
|
||
version = model_version = os.environ.get("version", "v2")
|
||
|
||
import gradio as gr
|
||
from TTS_infer_pack.text_segmentation_method import get_method
|
||
from TTS_infer_pack.TTS import NO_PROMPT_ERROR, TTS, TTS_Config
|
||
|
||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||
|
||
language = os.environ.get("language", "Auto")
|
||
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||
i18n = I18nAuto(language=language)
|
||
|
||
|
||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||
|
||
if torch.cuda.is_available():
|
||
device = "cuda"
|
||
# elif torch.backends.mps.is_available():
|
||
# device = "mps"
|
||
else:
|
||
device = "cpu"
|
||
|
||
# is_half = False
|
||
# device = "cpu"
|
||
|
||
dict_language_v1 = {
|
||
i18n("中文"): "all_zh", # 全部按中文识别
|
||
i18n("英文"): "en", # 全部按英文识别#######不变
|
||
i18n("日文"): "all_ja", # 全部按日文识别
|
||
i18n("中英混合"): "zh", # 按中英混合识别####不变
|
||
i18n("日英混合"): "ja", # 按日英混合识别####不变
|
||
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
|
||
}
|
||
dict_language_v2 = {
|
||
i18n("中文"): "all_zh", # 全部按中文识别
|
||
i18n("英文"): "en", # 全部按英文识别#######不变
|
||
i18n("日文"): "all_ja", # 全部按日文识别
|
||
i18n("粤语"): "all_yue", # 全部按中文识别
|
||
i18n("韩文"): "all_ko", # 全部按韩文识别
|
||
i18n("中英混合"): "zh", # 按中英混合识别####不变
|
||
i18n("日英混合"): "ja", # 按日英混合识别####不变
|
||
i18n("粤英混合"): "yue", # 按粤英混合识别####不变
|
||
i18n("韩英混合"): "ko", # 按韩英混合识别####不变
|
||
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
|
||
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种
|
||
}
|
||
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
||
|
||
cut_method = {
|
||
i18n("不切"): "cut0",
|
||
i18n("凑四句一切"): "cut1",
|
||
i18n("凑50字一切"): "cut2",
|
||
i18n("按中文句号。切"): "cut3",
|
||
i18n("按英文句号.切"): "cut4",
|
||
i18n("按标点符号切"): "cut5",
|
||
}
|
||
|
||
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
|
||
tts_config.device = device
|
||
tts_config.is_half = is_half
|
||
tts_config.version = version
|
||
if gpt_path is not None:
|
||
tts_config.t2s_weights_path = gpt_path
|
||
if sovits_path is not None:
|
||
tts_config.vits_weights_path = sovits_path
|
||
if cnhubert_base_path is not None:
|
||
tts_config.cnhuhbert_base_path = cnhubert_base_path
|
||
if bert_path is not None:
|
||
tts_config.bert_base_path = bert_path
|
||
|
||
print(tts_config)
|
||
tts_pipeline = TTS(tts_config)
|
||
gpt_path = tts_config.t2s_weights_path
|
||
sovits_path = tts_config.vits_weights_path
|
||
version = tts_config.version
|
||
|
||
|
||
def inference(
|
||
text,
|
||
text_lang,
|
||
ref_audio_path,
|
||
aux_ref_audio_paths,
|
||
prompt_text,
|
||
prompt_lang,
|
||
top_k,
|
||
top_p,
|
||
temperature,
|
||
text_split_method,
|
||
batch_size,
|
||
speed_factor,
|
||
ref_text_free,
|
||
split_bucket,
|
||
fragment_interval,
|
||
seed,
|
||
keep_random,
|
||
parallel_infer,
|
||
repetition_penalty,
|
||
sample_steps,
|
||
super_sampling,
|
||
):
|
||
seed = -1 if keep_random else seed
|
||
actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1)
|
||
inputs = {
|
||
"text": text,
|
||
"text_lang": dict_language[text_lang],
|
||
"ref_audio_path": ref_audio_path,
|
||
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
|
||
"prompt_text": prompt_text if not ref_text_free else "",
|
||
"prompt_lang": dict_language[prompt_lang],
|
||
"top_k": top_k,
|
||
"top_p": top_p,
|
||
"temperature": temperature,
|
||
"text_split_method": cut_method[text_split_method],
|
||
"batch_size": int(batch_size),
|
||
"speed_factor": float(speed_factor),
|
||
"split_bucket": split_bucket,
|
||
"return_fragment": False,
|
||
"fragment_interval": fragment_interval,
|
||
"seed": actual_seed,
|
||
"parallel_infer": parallel_infer,
|
||
"repetition_penalty": repetition_penalty,
|
||
"sample_steps": int(sample_steps),
|
||
"super_sampling": super_sampling,
|
||
}
|
||
try:
|
||
for item in tts_pipeline.run(inputs):
|
||
yield item, actual_seed
|
||
except NO_PROMPT_ERROR:
|
||
gr.Warning(i18n("V3不支持无参考文本模式,请填写参考文本!"))
|
||
|
||
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split("(\d+)", s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {
|
||
"choices": sorted(GPT_names, key=custom_sort_key),
|
||
"__type__": "update",
|
||
}
|
||
|
||
|
||
path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||
pretrained_sovits_name = [
|
||
"GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||
path_sovits_v3,
|
||
]
|
||
pretrained_gpt_name = [
|
||
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
]
|
||
|
||
_ = [[], []]
|
||
for i in range(3):
|
||
if os.path.exists(pretrained_gpt_name[i]):
|
||
_[0].append(pretrained_gpt_name[i])
|
||
if os.path.exists(pretrained_sovits_name[i]):
|
||
_[-1].append(pretrained_sovits_name[i])
|
||
pretrained_gpt_name, pretrained_sovits_name = _
|
||
|
||
|
||
if os.path.exists("./weight.json"):
|
||
pass
|
||
else:
|
||
with open("./weight.json", "w", encoding="utf-8") as file:
|
||
json.dump({"GPT": {}, "SoVITS": {}}, file)
|
||
|
||
with open("./weight.json", "r", encoding="utf-8") as file:
|
||
weight_data = file.read()
|
||
weight_data = json.loads(weight_data)
|
||
gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name))
|
||
sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name))
|
||
if isinstance(gpt_path, list):
|
||
gpt_path = gpt_path[0]
|
||
if isinstance(sovits_path, list):
|
||
sovits_path = sovits_path[0]
|
||
|
||
|
||
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3"]
|
||
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3"]
|
||
for path in SoVITS_weight_root + GPT_weight_root:
|
||
os.makedirs(path, exist_ok=True)
|
||
|
||
|
||
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
|
||
SoVITS_names = [i for i in pretrained_sovits_name]
|
||
for path in SoVITS_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".pth"):
|
||
SoVITS_names.append("%s/%s" % (path, name))
|
||
GPT_names = [i for i in pretrained_gpt_name]
|
||
for path in GPT_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".ckpt"):
|
||
GPT_names.append("%s/%s" % (path, name))
|
||
return SoVITS_names, GPT_names
|
||
|
||
|
||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||
|
||
|
||
from process_ckpt import get_sovits_version_from_path_fast
|
||
|
||
|
||
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
|
||
global version, model_version, dict_language, if_lora_v3
|
||
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
|
||
# print(sovits_path,version, model_version, if_lora_v3)
|
||
if if_lora_v3 and not os.path.exists(path_sovits_v3):
|
||
info = path_sovits_v3 + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||
gr.Warning(info)
|
||
raise FileExistsError(info)
|
||
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
||
if prompt_language is not None and text_language is not None:
|
||
if prompt_language in list(dict_language.keys()):
|
||
prompt_text_update, prompt_language_update = (
|
||
{"__type__": "update"},
|
||
{"__type__": "update", "value": prompt_language},
|
||
)
|
||
else:
|
||
prompt_text_update = {"__type__": "update", "value": ""}
|
||
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
|
||
if text_language in list(dict_language.keys()):
|
||
text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
|
||
else:
|
||
text_update = {"__type__": "update", "value": ""}
|
||
text_language_update = {"__type__": "update", "value": i18n("中文")}
|
||
if model_version == "v3":
|
||
visible_sample_steps = True
|
||
visible_inp_refs = False
|
||
else:
|
||
visible_sample_steps = False
|
||
visible_inp_refs = True
|
||
# prompt_language,text_language,prompt_text,prompt_language,text,text_language,inp_refs,ref_text_free,
|
||
yield (
|
||
{"__type__": "update", "choices": list(dict_language.keys())},
|
||
{"__type__": "update", "choices": list(dict_language.keys())},
|
||
prompt_text_update,
|
||
prompt_language_update,
|
||
text_update,
|
||
text_language_update,
|
||
{"__type__": "update", "interactive": visible_sample_steps, "value": 32},
|
||
{"__type__": "update", "visible": visible_inp_refs},
|
||
{"__type__": "update", "interactive": True if model_version != "v3" else False},
|
||
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
|
||
)
|
||
|
||
tts_pipeline.init_vits_weights(sovits_path)
|
||
yield (
|
||
{"__type__": "update", "choices": list(dict_language.keys())},
|
||
{"__type__": "update", "choices": list(dict_language.keys())},
|
||
prompt_text_update,
|
||
prompt_language_update,
|
||
text_update,
|
||
text_language_update,
|
||
{"__type__": "update", "interactive": visible_sample_steps, "value": 32},
|
||
{"__type__": "update", "visible": visible_inp_refs},
|
||
{"__type__": "update", "interactive": True if model_version != "v3" else False},
|
||
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
|
||
)
|
||
with open("./weight.json") as f:
|
||
data = f.read()
|
||
data = json.loads(data)
|
||
data["SoVITS"][version] = sovits_path
|
||
with open("./weight.json", "w") as f:
|
||
f.write(json.dumps(data))
|
||
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
gr.Markdown(
|
||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
|
||
+ "<br>"
|
||
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||
)
|
||
|
||
with gr.Column():
|
||
# with gr.Group():
|
||
gr.Markdown(value=i18n("模型切换"))
|
||
with gr.Row():
|
||
GPT_dropdown = gr.Dropdown(
|
||
label=i18n("GPT模型列表"),
|
||
choices=sorted(GPT_names, key=custom_sort_key),
|
||
value=gpt_path,
|
||
interactive=True,
|
||
)
|
||
SoVITS_dropdown = gr.Dropdown(
|
||
label=i18n("SoVITS模型列表"),
|
||
choices=sorted(SoVITS_names, key=custom_sort_key),
|
||
value=sovits_path,
|
||
interactive=True,
|
||
)
|
||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||
|
||
with gr.Row():
|
||
with gr.Column():
|
||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||
with gr.Row():
|
||
inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
|
||
inp_refs = gr.File(
|
||
label=i18n("辅参考音频(可选多个,或不选)"),
|
||
file_count="multiple",
|
||
visible=True if model_version != "v3" else False,
|
||
)
|
||
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
|
||
with gr.Row():
|
||
prompt_language = gr.Dropdown(
|
||
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
|
||
)
|
||
with gr.Column():
|
||
ref_text_free = gr.Checkbox(
|
||
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"),
|
||
value=False,
|
||
interactive=True if model_version != "v3" else False,
|
||
show_label=True,
|
||
)
|
||
gr.Markdown(
|
||
i18n("使用无参考文本模式时建议使用微调的GPT")
|
||
+ "<br>"
|
||
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
|
||
)
|
||
|
||
with gr.Column():
|
||
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20)
|
||
text_language = gr.Dropdown(
|
||
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
|
||
)
|
||
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("推理设置"))
|
||
with gr.Row():
|
||
with gr.Column():
|
||
with gr.Row():
|
||
batch_size = gr.Slider(
|
||
minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True
|
||
)
|
||
sample_steps = gr.Radio(
|
||
label=i18n("采样步数(仅对V3生效)"), value=32, choices=[4, 8, 16, 32], visible=True
|
||
)
|
||
with gr.Row():
|
||
fragment_interval = gr.Slider(
|
||
minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True
|
||
)
|
||
speed_factor = gr.Slider(
|
||
minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True
|
||
)
|
||
with gr.Row():
|
||
top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True)
|
||
top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True)
|
||
with gr.Row():
|
||
temperature = gr.Slider(
|
||
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True
|
||
)
|
||
repetition_penalty = gr.Slider(
|
||
minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True
|
||
)
|
||
|
||
with gr.Column():
|
||
with gr.Row():
|
||
how_to_cut = gr.Dropdown(
|
||
label=i18n("怎么切"),
|
||
choices=[
|
||
i18n("不切"),
|
||
i18n("凑四句一切"),
|
||
i18n("凑50字一切"),
|
||
i18n("按中文句号。切"),
|
||
i18n("按英文句号.切"),
|
||
i18n("按标点符号切"),
|
||
],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True,
|
||
scale=1,
|
||
)
|
||
super_sampling = gr.Checkbox(
|
||
label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True
|
||
)
|
||
|
||
with gr.Row():
|
||
parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True)
|
||
split_bucket = gr.Checkbox(
|
||
label=i18n("数据分桶(并行推理时会降低一点计算量)"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
|
||
with gr.Row():
|
||
seed = gr.Number(label=i18n("随机种子"), value=-1)
|
||
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
|
||
|
||
output = gr.Audio(label=i18n("输出的语音"))
|
||
with gr.Row():
|
||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
|
||
|
||
inference_button.click(
|
||
inference,
|
||
[
|
||
text,
|
||
text_language,
|
||
inp_ref,
|
||
inp_refs,
|
||
prompt_text,
|
||
prompt_language,
|
||
top_k,
|
||
top_p,
|
||
temperature,
|
||
how_to_cut,
|
||
batch_size,
|
||
speed_factor,
|
||
ref_text_free,
|
||
split_bucket,
|
||
fragment_interval,
|
||
seed,
|
||
keep_random,
|
||
parallel_infer,
|
||
repetition_penalty,
|
||
sample_steps,
|
||
super_sampling,
|
||
],
|
||
[output, seed],
|
||
)
|
||
stop_infer.click(tts_pipeline.stop, [], [])
|
||
SoVITS_dropdown.change(
|
||
change_sovits_weights,
|
||
[SoVITS_dropdown, prompt_language, text_language],
|
||
[
|
||
prompt_language,
|
||
text_language,
|
||
prompt_text,
|
||
prompt_language,
|
||
text,
|
||
text_language,
|
||
sample_steps,
|
||
inp_refs,
|
||
ref_text_free,
|
||
inference_button,
|
||
],
|
||
) #
|
||
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])
|
||
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
|
||
)
|
||
)
|
||
with gr.Row():
|
||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
|
||
with gr.Column():
|
||
_how_to_cut = gr.Radio(
|
||
label=i18n("怎么切"),
|
||
choices=[
|
||
i18n("不切"),
|
||
i18n("凑四句一切"),
|
||
i18n("凑50字一切"),
|
||
i18n("按中文句号。切"),
|
||
i18n("按英文句号.切"),
|
||
i18n("按标点符号切"),
|
||
],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True,
|
||
)
|
||
cut_text = gr.Button(i18n("切分"), variant="primary")
|
||
|
||
def to_cut(text_inp, how_to_cut):
|
||
if len(text_inp.strip()) == 0 or text_inp == []:
|
||
return ""
|
||
method = get_method(cut_method[how_to_cut])
|
||
return method(text_inp)
|
||
|
||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
|
||
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
|
||
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||
|
||
if __name__ == "__main__":
|
||
app.queue().launch( # concurrency_count=511, max_size=1022
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=infer_ttswebui,
|
||
quiet=True,
|
||
)
|