mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
|
|
# reference: https://github.com/lifeiteng/vall-e
|
|
import math
|
|
|
|
import torch
|
|
from matplotlib import pyplot as plt
|
|
from torch import nn
|
|
from torch.optim import Adam
|
|
|
|
|
|
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
|
"""
|
|
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
init_lr,
|
|
peak_lr,
|
|
end_lr,
|
|
warmup_steps=10000,
|
|
total_steps=400000,
|
|
current_step=0,
|
|
):
|
|
self.init_lr = init_lr
|
|
self.peak_lr = peak_lr
|
|
self.end_lr = end_lr
|
|
self.optimizer = optimizer
|
|
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
|
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
|
self._current_step = current_step
|
|
self.lr = init_lr
|
|
self.warmup_steps = warmup_steps
|
|
self.total_steps = total_steps
|
|
self._last_lr = [self.lr]
|
|
|
|
def set_lr(self, lr):
|
|
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
|
for g in self.optimizer.param_groups:
|
|
# g['lr'] = lr
|
|
g["lr"] = self.end_lr ###锁定用线性
|
|
|
|
def step(self):
|
|
if self._current_step < self.warmup_steps:
|
|
lr = self.init_lr + self._warmup_rate * self._current_step
|
|
|
|
elif self._current_step > self.total_steps:
|
|
lr = self.end_lr
|
|
|
|
else:
|
|
decay_ratio = (self._current_step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
|
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
|
raise RuntimeError("Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings.")
|
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
|
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
|
|
|
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
|
self.set_lr(lr)
|
|
self.lr = lr
|
|
self._current_step += 1
|
|
return self.lr
|
|
|
|
|
|
if __name__ == "__main__":
|
|
m = nn.Linear(10, 10)
|
|
opt = Adam(m.parameters(), lr=1e-4)
|
|
s = WarmupCosineLRSchedule(
|
|
opt,
|
|
1e-6,
|
|
2e-4,
|
|
1e-6,
|
|
warmup_steps=2000,
|
|
total_steps=20000,
|
|
current_step=0,
|
|
)
|
|
lrs = []
|
|
for i in range(25000):
|
|
s.step()
|
|
lrs.append(s.lr)
|
|
print(s.lr)
|
|
|
|
plt.plot(lrs)
|
|
plt.plot(range(0, 25000), lrs)
|
|
plt.show()
|