mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
459 lines
17 KiB
Python
459 lines
17 KiB
Python
"""
|
|
# WebAPI文档
|
|
|
|
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
|
|
|
|
## 执行参数:
|
|
`-a` - `绑定地址, 默认"127.0.0.1"`
|
|
`-p` - `绑定端口, 默认9880`
|
|
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
|
|
|
|
## 调用:
|
|
|
|
### 推理
|
|
|
|
endpoint: `/tts`
|
|
GET:
|
|
```
|
|
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
|
```
|
|
|
|
POST:
|
|
```json
|
|
{
|
|
"text": "", # str.(required) text to be synthesized
|
|
"text_lang: "", # str.(required) language of the text to be synthesized
|
|
"ref_audio_path": "", # str.(required) reference audio path
|
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion
|
|
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
|
"top_k": 5, # int. top k sampling
|
|
"top_p": 1, # float. top p sampling
|
|
"temperature": 1, # float. temperature for sampling
|
|
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
|
|
"batch_size": 1, # int. batch size for inference
|
|
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
|
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
|
"streaming_mode": False, # bool. whether to return a streaming response.
|
|
"seed": -1, # int. random seed for reproducibility.
|
|
"parallel_infer": True, # bool. whether to use parallel inference.
|
|
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
|
|
}
|
|
```
|
|
|
|
RESP:
|
|
成功: 直接返回 wav 音频流, http code 200
|
|
失败: 返回包含错误信息的 json, http code 400
|
|
|
|
### 命令控制
|
|
|
|
endpoint: `/control`
|
|
|
|
command:
|
|
"restart": 重新运行
|
|
"exit": 结束运行
|
|
|
|
GET:
|
|
```
|
|
http://127.0.0.1:9880/control?command=restart
|
|
```
|
|
POST:
|
|
```json
|
|
{
|
|
"command": "restart"
|
|
}
|
|
```
|
|
|
|
RESP: 无
|
|
|
|
|
|
### 切换GPT模型
|
|
|
|
endpoint: `/set_gpt_weights`
|
|
|
|
GET:
|
|
```
|
|
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
|
```
|
|
RESP:
|
|
成功: 返回"success", http code 200
|
|
失败: 返回包含错误信息的 json, http code 400
|
|
|
|
|
|
### 切换Sovits模型
|
|
|
|
endpoint: `/set_sovits_weights`
|
|
|
|
GET:
|
|
```
|
|
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
|
|
```
|
|
|
|
RESP:
|
|
成功: 返回"success", http code 200
|
|
失败: 返回包含错误信息的 json, http code 400
|
|
|
|
"""
|
|
import os
|
|
import sys
|
|
import traceback
|
|
from typing import Generator
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
|
|
|
import argparse
|
|
import subprocess
|
|
import wave
|
|
import signal
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from fastapi import FastAPI, Request, HTTPException, Response
|
|
from fastapi.responses import StreamingResponse, JSONResponse
|
|
from fastapi import FastAPI, UploadFile, File
|
|
import uvicorn
|
|
from io import BytesIO
|
|
from tools.i18n.i18n import I18nAuto
|
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
|
from fastapi.responses import StreamingResponse
|
|
from pydantic import BaseModel
|
|
# print(sys.path)
|
|
i18n = I18nAuto()
|
|
cut_method_names = get_cut_method_names()
|
|
|
|
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
|
parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径")
|
|
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
|
|
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
|
|
args = parser.parse_args()
|
|
config_path = args.tts_config
|
|
# device = args.device
|
|
port = args.port
|
|
host = args.bind_addr
|
|
argv = sys.argv
|
|
|
|
if config_path in [None, ""]:
|
|
config_path = "GPT-SoVITS/configs/tts_infer.yaml"
|
|
|
|
tts_config = TTS_Config(config_path)
|
|
print(tts_config)
|
|
tts_pipeline = TTS(tts_config)
|
|
|
|
APP = FastAPI()
|
|
class TTS_Request(BaseModel):
|
|
text: str = None
|
|
text_lang: str = None
|
|
ref_audio_path: str = None
|
|
aux_ref_audio_paths: list = None
|
|
prompt_lang: str = None
|
|
prompt_text: str = ""
|
|
top_k:int = 5
|
|
top_p:float = 1
|
|
temperature:float = 1
|
|
text_split_method:str = "cut5"
|
|
batch_size:int = 1
|
|
batch_threshold:float = 0.75
|
|
split_bucket:bool = True
|
|
speed_factor:float = 1.0
|
|
fragment_interval:float = 0.3
|
|
seed:int = -1
|
|
media_type:str = "wav"
|
|
streaming_mode:bool = False
|
|
parallel_infer:bool = True
|
|
repetition_penalty:float = 1.35
|
|
|
|
### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files
|
|
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
|
audio_file.write(data)
|
|
return io_buffer
|
|
|
|
|
|
def pack_raw(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
io_buffer.write(data.tobytes())
|
|
return io_buffer
|
|
|
|
|
|
def pack_wav(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
io_buffer = BytesIO()
|
|
sf.write(io_buffer, data, rate, format='wav')
|
|
return io_buffer
|
|
|
|
def pack_aac(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
process = subprocess.Popen([
|
|
'ffmpeg',
|
|
'-f', 's16le', # 输入16位有符号小端整数PCM
|
|
'-ar', str(rate), # 设置采样率
|
|
'-ac', '1', # 单声道
|
|
'-i', 'pipe:0', # 从管道读取输入
|
|
'-c:a', 'aac', # 音频编码器为AAC
|
|
'-b:a', '192k', # 比特率
|
|
'-vn', # 不包含视频
|
|
'-f', 'adts', # 输出AAC数据流格式
|
|
'pipe:1' # 将输出写入管道
|
|
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
out, _ = process.communicate(input=data.tobytes())
|
|
io_buffer.write(out)
|
|
return io_buffer
|
|
|
|
def pack_audio(io_buffer:BytesIO, data:np.ndarray, rate:int, media_type:str):
|
|
if media_type == "ogg":
|
|
io_buffer = pack_ogg(io_buffer, data, rate)
|
|
elif media_type == "aac":
|
|
io_buffer = pack_aac(io_buffer, data, rate)
|
|
elif media_type == "wav":
|
|
io_buffer = pack_wav(io_buffer, data, rate)
|
|
else:
|
|
io_buffer = pack_raw(io_buffer, data, rate)
|
|
io_buffer.seek(0)
|
|
return io_buffer
|
|
|
|
|
|
|
|
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
|
|
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
|
|
# This will create a wave header then append the frame input
|
|
# It should be first on a streaming wav file
|
|
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
|
wav_buf = BytesIO()
|
|
with wave.open(wav_buf, "wb") as vfout:
|
|
vfout.setnchannels(channels)
|
|
vfout.setsampwidth(sample_width)
|
|
vfout.setframerate(sample_rate)
|
|
vfout.writeframes(frame_input)
|
|
|
|
wav_buf.seek(0)
|
|
return wav_buf.read()
|
|
|
|
|
|
def handle_control(command:str):
|
|
if command == "restart":
|
|
os.execl(sys.executable, sys.executable, *argv)
|
|
elif command == "exit":
|
|
os.kill(os.getpid(), signal.SIGTERM)
|
|
exit(0)
|
|
|
|
|
|
def check_params(req:dict):
|
|
text:str = req.get("text", "")
|
|
text_lang:str = req.get("text_lang", "")
|
|
ref_audio_path:str = req.get("ref_audio_path", "")
|
|
streaming_mode:bool = req.get("streaming_mode", False)
|
|
media_type:str = req.get("media_type", "wav")
|
|
prompt_lang:str = req.get("prompt_lang", "")
|
|
text_split_method:str = req.get("text_split_method", "cut5")
|
|
|
|
if ref_audio_path in [None, ""]:
|
|
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
|
|
if text in [None, ""]:
|
|
return JSONResponse(status_code=400, content={"message": "text is required"})
|
|
if (text_lang in [None, ""]) :
|
|
return JSONResponse(status_code=400, content={"message": "text_lang is required"})
|
|
elif text_lang.lower() not in tts_config.languages:
|
|
return JSONResponse(status_code=400, content={"message": f"text_lang: {text_lang} is not supported in version {tts_config.version}"})
|
|
if (prompt_lang in [None, ""]) :
|
|
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"})
|
|
elif prompt_lang.lower() not in tts_config.languages:
|
|
return JSONResponse(status_code=400, content={"message": f"prompt_lang: {prompt_lang} is not supported in version {tts_config.version}"})
|
|
if media_type not in ["wav", "raw", "ogg", "aac"]:
|
|
return JSONResponse(status_code=400, content={"message": f"media_type: {media_type} is not supported"})
|
|
elif media_type == "ogg" and not streaming_mode:
|
|
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"})
|
|
|
|
if text_split_method not in cut_method_names:
|
|
return JSONResponse(status_code=400, content={"message": f"text_split_method:{text_split_method} is not supported"})
|
|
|
|
return None
|
|
|
|
async def tts_handle(req:dict):
|
|
"""
|
|
Text to speech handler.
|
|
|
|
Args:
|
|
req (dict):
|
|
{
|
|
"text": "", # str.(required) text to be synthesized
|
|
"text_lang: "", # str.(required) language of the text to be synthesized
|
|
"ref_audio_path": "", # str.(required) reference audio path
|
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker synthesis
|
|
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
|
"top_k": 5, # int. top k sampling
|
|
"top_p": 1, # float. top p sampling
|
|
"temperature": 1, # float. temperature for sampling
|
|
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
|
"batch_size": 1, # int. batch size for inference
|
|
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
|
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
|
"seed": -1, # int. random seed for reproducibility.
|
|
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
|
"streaming_mode": False, # bool. whether to return a streaming response.
|
|
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
|
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
|
|
}
|
|
returns:
|
|
StreamingResponse: audio stream response.
|
|
"""
|
|
|
|
streaming_mode = req.get("streaming_mode", False)
|
|
return_fragment = req.get("return_fragment", False)
|
|
media_type = req.get("media_type", "wav")
|
|
|
|
check_res = check_params(req)
|
|
if check_res is not None:
|
|
return check_res
|
|
|
|
if streaming_mode or return_fragment:
|
|
req["return_fragment"] = True
|
|
|
|
try:
|
|
tts_generator=tts_pipeline.run(req)
|
|
|
|
if streaming_mode:
|
|
def streaming_generator(tts_generator:Generator, media_type:str):
|
|
if media_type == "wav":
|
|
yield wave_header_chunk()
|
|
media_type = "raw"
|
|
for sr, chunk in tts_generator:
|
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
|
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
|
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
|
|
|
else:
|
|
sr, audio_data = next(tts_generator)
|
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
|
return Response(audio_data, media_type=f"audio/{media_type}")
|
|
except Exception as e:
|
|
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@APP.get("/control")
|
|
async def control(command: str = None):
|
|
if command is None:
|
|
return JSONResponse(status_code=400, content={"message": "command is required"})
|
|
handle_control(command)
|
|
|
|
|
|
|
|
@APP.get("/tts")
|
|
async def tts_get_endpoint(
|
|
text: str = None,
|
|
text_lang: str = None,
|
|
ref_audio_path: str = None,
|
|
aux_ref_audio_paths:list = None,
|
|
prompt_lang: str = None,
|
|
prompt_text: str = "",
|
|
top_k:int = 5,
|
|
top_p:float = 1,
|
|
temperature:float = 1,
|
|
text_split_method:str = "cut0",
|
|
batch_size:int = 1,
|
|
batch_threshold:float = 0.75,
|
|
split_bucket:bool = True,
|
|
speed_factor:float = 1.0,
|
|
fragment_interval:float = 0.3,
|
|
seed:int = -1,
|
|
media_type:str = "wav",
|
|
streaming_mode:bool = False,
|
|
parallel_infer:bool = True,
|
|
repetition_penalty:float = 1.35
|
|
):
|
|
req = {
|
|
"text": text,
|
|
"text_lang": text_lang.lower(),
|
|
"ref_audio_path": ref_audio_path,
|
|
"aux_ref_audio_paths": aux_ref_audio_paths,
|
|
"prompt_text": prompt_text,
|
|
"prompt_lang": prompt_lang.lower(),
|
|
"top_k": top_k,
|
|
"top_p": top_p,
|
|
"temperature": temperature,
|
|
"text_split_method": text_split_method,
|
|
"batch_size":int(batch_size),
|
|
"batch_threshold":float(batch_threshold),
|
|
"speed_factor":float(speed_factor),
|
|
"split_bucket":split_bucket,
|
|
"fragment_interval":fragment_interval,
|
|
"seed":seed,
|
|
"media_type":media_type,
|
|
"streaming_mode":streaming_mode,
|
|
"parallel_infer":parallel_infer,
|
|
"repetition_penalty":float(repetition_penalty)
|
|
}
|
|
return await tts_handle(req)
|
|
|
|
|
|
@APP.post("/tts")
|
|
async def tts_post_endpoint(request: TTS_Request):
|
|
req = request.dict()
|
|
return await tts_handle(req)
|
|
|
|
|
|
@APP.get("/set_refer_audio")
|
|
async def set_refer_aduio(refer_audio_path: str = None):
|
|
try:
|
|
tts_pipeline.set_ref_audio(refer_audio_path)
|
|
except Exception as e:
|
|
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
|
return JSONResponse(status_code=200, content={"message": "success"})
|
|
|
|
|
|
# @APP.post("/set_refer_audio")
|
|
# async def set_refer_aduio_post(audio_file: UploadFile = File(...)):
|
|
# try:
|
|
# # 检查文件类型,确保是音频文件
|
|
# if not audio_file.content_type.startswith("audio/"):
|
|
# return JSONResponse(status_code=400, content={"message": "file type is not supported"})
|
|
|
|
# os.makedirs("uploaded_audio", exist_ok=True)
|
|
# save_path = os.path.join("uploaded_audio", audio_file.filename)
|
|
# # 保存音频文件到服务器上的一个目录
|
|
# with open(save_path , "wb") as buffer:
|
|
# buffer.write(await audio_file.read())
|
|
|
|
# tts_pipeline.set_ref_audio(save_path)
|
|
# except Exception as e:
|
|
# return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
|
# return JSONResponse(status_code=200, content={"message": "success"})
|
|
|
|
@APP.get("/set_gpt_weights")
|
|
async def set_gpt_weights(weights_path: str = None):
|
|
try:
|
|
if weights_path in ["", None]:
|
|
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
|
tts_pipeline.init_t2s_weights(weights_path)
|
|
except Exception as e:
|
|
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
|
|
|
return JSONResponse(status_code=200, content={"message": "success"})
|
|
|
|
|
|
@APP.get("/set_sovits_weights")
|
|
async def set_sovits_weights(weights_path: str = None):
|
|
try:
|
|
if weights_path in ["", None]:
|
|
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
|
tts_pipeline.init_vits_weights(weights_path)
|
|
except Exception as e:
|
|
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
|
return JSONResponse(status_code=200, content={"message": "success"})
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
uvicorn.run(app=APP, host=host, port=port, workers=1)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
os.kill(os.getpid(), signal.SIGTERM)
|
|
exit(0)
|