mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
1455 lines
63 KiB
Python
1455 lines
63 KiB
Python
from copy import deepcopy
|
||
import math
|
||
import os, sys, gc
|
||
import random
|
||
import traceback
|
||
import time
|
||
import torchaudio
|
||
from tqdm import tqdm
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
import ffmpeg
|
||
import os
|
||
from typing import Generator, List, Tuple, Union
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import yaml
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
from tools.audio_sr import AP_BWE
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from feature_extractor.cnhubert import CNHubert
|
||
from module.models import SynthesizerTrn, SynthesizerTrnV3
|
||
from peft import LoraConfig, get_peft_model
|
||
import librosa
|
||
from time import time as ttime
|
||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||
from tools.my_utils import load_audio
|
||
from module.mel_processing import spectrogram_torch
|
||
from TTS_infer_pack.text_segmentation_method import splits
|
||
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
||
from BigVGAN.bigvgan import BigVGAN
|
||
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
|
||
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
|
||
language=os.environ.get("language","Auto")
|
||
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||
i18n = I18nAuto(language=language)
|
||
|
||
|
||
|
||
spec_min = -12
|
||
spec_max = 2
|
||
def norm_spec(x):
|
||
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||
def denorm_spec(x):
|
||
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||
mel_fn=lambda x: mel_spectrogram_torch(x, **{
|
||
"n_fft": 1024,
|
||
"win_size": 1024,
|
||
"hop_size": 256,
|
||
"num_mels": 100,
|
||
"sampling_rate": 24000,
|
||
"fmin": 0,
|
||
"fmax": None,
|
||
"center": False
|
||
})
|
||
|
||
|
||
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||
# 将 NumPy 数组转换为原始 PCM 流
|
||
raw_audio = input_audio.astype(np.int16).tobytes()
|
||
|
||
# 设置 ffmpeg 输入流
|
||
input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1)
|
||
|
||
# 变速处理
|
||
output_stream = input_stream.filter('atempo', speed)
|
||
|
||
# 输出流到管道
|
||
out, _ = (
|
||
output_stream.output('pipe:', format='s16le', acodec='pcm_s16le')
|
||
.run(input=raw_audio, capture_stdout=True, capture_stderr=True)
|
||
)
|
||
|
||
# 将管道输出解码为 NumPy 数组
|
||
processed_audio = np.frombuffer(out, np.int16)
|
||
|
||
return processed_audio
|
||
|
||
|
||
|
||
resample_transform_dict={}
|
||
def resample(audio_tensor, sr0, device):
|
||
global resample_transform_dict
|
||
if sr0 not in resample_transform_dict:
|
||
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
|
||
sr0, 24000
|
||
).to(device)
|
||
return resample_transform_dict[sr0](audio_tensor)
|
||
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def __delattr__(self, item):
|
||
try:
|
||
del self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
|
||
class NO_PROMPT_ERROR(Exception):
|
||
pass
|
||
|
||
|
||
# configs/tts_infer.yaml
|
||
"""
|
||
custom:
|
||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||
device: cpu
|
||
is_half: false
|
||
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
|
||
version: v2
|
||
default:
|
||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||
device: cpu
|
||
is_half: false
|
||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||
version: v1
|
||
default_v2:
|
||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||
device: cpu
|
||
is_half: false
|
||
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
|
||
version: v2
|
||
default_v3:
|
||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||
device: cpu
|
||
is_half: false
|
||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1v3.ckpt
|
||
vits_weights_path: GPT_SoVITS/pretrained_models/s2Gv3.pth
|
||
version: v3
|
||
"""
|
||
|
||
def set_seed(seed:int):
|
||
seed = int(seed)
|
||
seed = seed if seed != -1 else random.randint(0, 2**32 - 1)
|
||
print(f"Set seed to {seed}")
|
||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||
random.seed(seed)
|
||
np.random.seed(seed)
|
||
torch.manual_seed(seed)
|
||
try:
|
||
if torch.cuda.is_available():
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
# torch.backends.cudnn.deterministic = True
|
||
# torch.backends.cudnn.benchmark = False
|
||
# torch.backends.cudnn.enabled = True
|
||
# 开启后会影响精度
|
||
torch.backends.cuda.matmul.allow_tf32 = False
|
||
torch.backends.cudnn.allow_tf32 = False
|
||
except:
|
||
pass
|
||
return seed
|
||
|
||
class TTS_Config:
|
||
default_configs={
|
||
"v1":{
|
||
"device": "cpu",
|
||
"is_half": False,
|
||
"version": "v1",
|
||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
},
|
||
"v2":{
|
||
"device": "cpu",
|
||
"is_half": False,
|
||
"version": "v2",
|
||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||
"vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
},
|
||
"v3":{
|
||
"device": "cpu",
|
||
"is_half": False,
|
||
"version": "v3",
|
||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2Gv3.pth",
|
||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
},
|
||
}
|
||
configs:dict = None
|
||
v1_languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||
v2_languages:list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"]
|
||
languages:list = v2_languages
|
||
# "all_zh",#全部按中文识别
|
||
# "en",#全部按英文识别#######不变
|
||
# "all_ja",#全部按日文识别
|
||
# "all_yue",#全部按中文识别
|
||
# "all_ko",#全部按韩文识别
|
||
# "zh",#按中英混合识别####不变
|
||
# "ja",#按日英混合识别####不变
|
||
# "yue",#按粤英混合识别####不变
|
||
# "ko",#按韩英混合识别####不变
|
||
# "auto",#多语种启动切分识别语种
|
||
# "auto_yue",#多语种启动切分识别语种
|
||
|
||
def __init__(self, configs: Union[dict, str]=None):
|
||
|
||
# 设置默认配置文件路径
|
||
configs_base_path:str = "GPT_SoVITS/configs/"
|
||
os.makedirs(configs_base_path, exist_ok=True)
|
||
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
|
||
|
||
if configs in ["", None]:
|
||
if not os.path.exists(self.configs_path):
|
||
self.save_configs()
|
||
print(f"Create default config file at {self.configs_path}")
|
||
configs:dict = deepcopy(self.default_configs)
|
||
|
||
if isinstance(configs, str):
|
||
self.configs_path = configs
|
||
configs:dict = self._load_configs(self.configs_path)
|
||
|
||
assert isinstance(configs, dict)
|
||
version = configs.get("version", "v2").lower()
|
||
assert version in ["v1", "v2", "v3"]
|
||
self.default_configs[version] = configs.get(version, self.default_configs[version])
|
||
self.configs:dict = configs.get("custom", deepcopy(self.default_configs[version]))
|
||
|
||
|
||
self.device = self.configs.get("device", torch.device("cpu"))
|
||
if "cuda" in str(self.device) and not torch.cuda.is_available():
|
||
print(f"Warning: CUDA is not available, set device to CPU.")
|
||
self.device = torch.device("cpu")
|
||
|
||
self.is_half = self.configs.get("is_half", False)
|
||
# if str(self.device) == "cpu" and self.is_half:
|
||
# print(f"Warning: Half precision is not supported on CPU, set is_half to False.")
|
||
# self.is_half = False
|
||
|
||
self.version = version
|
||
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
||
self.vits_weights_path = self.configs.get("vits_weights_path", None)
|
||
self.bert_base_path = self.configs.get("bert_base_path", None)
|
||
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
||
self.languages = self.v1_languages if self.version=="v1" else self.v2_languages
|
||
|
||
self.is_v3_synthesizer:bool = False
|
||
|
||
|
||
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
||
self.t2s_weights_path = self.default_configs[version]['t2s_weights_path']
|
||
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
|
||
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)):
|
||
self.vits_weights_path = self.default_configs[version]['vits_weights_path']
|
||
print(f"fall back to default vits_weights_path: {self.vits_weights_path}")
|
||
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)):
|
||
self.bert_base_path = self.default_configs[version]['bert_base_path']
|
||
print(f"fall back to default bert_base_path: {self.bert_base_path}")
|
||
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)):
|
||
self.cnhuhbert_base_path = self.default_configs[version]['cnhuhbert_base_path']
|
||
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
||
self.update_configs()
|
||
|
||
|
||
self.max_sec = None
|
||
self.hz:int = 50
|
||
self.semantic_frame_rate:str = "25hz"
|
||
self.segment_size:int = 20480
|
||
self.filter_length:int = 2048
|
||
self.sampling_rate:int = 32000
|
||
self.hop_length:int = 640
|
||
self.win_length:int = 2048
|
||
self.n_speakers:int = 300
|
||
|
||
|
||
|
||
def _load_configs(self, configs_path: str)->dict:
|
||
if os.path.exists(configs_path):
|
||
...
|
||
else:
|
||
print(i18n("路径不存在,使用默认配置"))
|
||
self.save_configs(configs_path)
|
||
with open(configs_path, 'r', encoding='utf-8') as f:
|
||
configs = yaml.load(f, Loader=yaml.FullLoader)
|
||
|
||
return configs
|
||
|
||
def save_configs(self, configs_path:str=None)->None:
|
||
configs=deepcopy(self.default_configs)
|
||
if self.configs is not None:
|
||
configs["custom"] = self.update_configs()
|
||
|
||
if configs_path is None:
|
||
configs_path = self.configs_path
|
||
with open(configs_path, 'w') as f:
|
||
yaml.dump(configs, f)
|
||
|
||
def update_configs(self):
|
||
self.config = {
|
||
"device" : str(self.device),
|
||
"is_half" : self.is_half,
|
||
"version" : self.version,
|
||
"t2s_weights_path" : self.t2s_weights_path,
|
||
"vits_weights_path" : self.vits_weights_path,
|
||
"bert_base_path" : self.bert_base_path,
|
||
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||
}
|
||
return self.config
|
||
|
||
def update_version(self, version:str)->None:
|
||
self.version = version
|
||
self.languages = self.v1_languages if self.version=="v1" else self.v2_languages
|
||
|
||
def __str__(self):
|
||
self.configs = self.update_configs()
|
||
string = "TTS Config".center(100, '-') + '\n'
|
||
for k, v in self.configs.items():
|
||
string += f"{str(k).ljust(20)}: {str(v)}\n"
|
||
string += "-" * 100 + '\n'
|
||
return string
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
def __hash__(self):
|
||
return hash(self.configs_path)
|
||
|
||
def __eq__(self, other):
|
||
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
|
||
|
||
|
||
class TTS:
|
||
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||
if isinstance(configs, TTS_Config):
|
||
self.configs = configs
|
||
else:
|
||
self.configs:TTS_Config = TTS_Config(configs)
|
||
|
||
self.t2s_model:Text2SemanticLightningModule = None
|
||
self.vits_model:Union[SynthesizerTrn, SynthesizerTrnV3] = None
|
||
self.bert_tokenizer:AutoTokenizer = None
|
||
self.bert_model:AutoModelForMaskedLM = None
|
||
self.cnhuhbert_model:CNHubert = None
|
||
self.bigvgan_model:BigVGAN = None
|
||
self.sr_model:AP_BWE = None
|
||
self.sr_model_not_exist:bool = False
|
||
|
||
self._init_models()
|
||
|
||
self.text_preprocessor:TextPreprocessor = \
|
||
TextPreprocessor(self.bert_model,
|
||
self.bert_tokenizer,
|
||
self.configs.device)
|
||
|
||
|
||
self.prompt_cache:dict = {
|
||
"ref_audio_path" : None,
|
||
"prompt_semantic": None,
|
||
"refer_spec" : [],
|
||
"prompt_text" : None,
|
||
"prompt_lang" : None,
|
||
"phones" : None,
|
||
"bert_features" : None,
|
||
"norm_text" : None,
|
||
"aux_ref_audio_paths": [],
|
||
}
|
||
|
||
|
||
self.stop_flag:bool = False
|
||
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||
|
||
def _init_models(self,):
|
||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||
self.init_vits_weights(self.configs.vits_weights_path)
|
||
self.init_bert_weights(self.configs.bert_base_path)
|
||
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
||
# self.enable_half_precision(self.configs.is_half)
|
||
|
||
|
||
|
||
def init_cnhuhbert_weights(self, base_path: str):
|
||
print(f"Loading CNHuBERT weights from {base_path}")
|
||
self.cnhuhbert_model = CNHubert(base_path)
|
||
self.cnhuhbert_model=self.cnhuhbert_model.eval()
|
||
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||
|
||
|
||
|
||
def init_bert_weights(self, base_path: str):
|
||
print(f"Loading BERT weights from {base_path}")
|
||
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
||
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
|
||
self.bert_model=self.bert_model.eval()
|
||
self.bert_model = self.bert_model.to(self.configs.device)
|
||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||
self.bert_model = self.bert_model.half()
|
||
|
||
def init_vits_weights(self, weights_path: str):
|
||
|
||
self.configs.vits_weights_path = weights_path
|
||
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(weights_path)
|
||
path_sovits_v3=self.configs.default_configs["v3"]["vits_weights_path"]
|
||
|
||
if if_lora_v3==True and os.path.exists(path_sovits_v3)==False:
|
||
info= path_sovits_v3 + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||
raise FileExistsError(info)
|
||
|
||
# dict_s2 = torch.load(weights_path, map_location=self.configs.device,weights_only=False)
|
||
dict_s2 = load_sovits_new(weights_path)
|
||
hps = dict_s2["config"]
|
||
|
||
hps["model"]["semantic_frame_rate"] = "25hz"
|
||
if 'enc_p.text_embedding.weight'not in dict_s2['weight']:
|
||
hps["model"]["version"] = "v2"#v3model,v2sybomls
|
||
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||
hps["model"]["version"] = "v1"
|
||
else:
|
||
hps["model"]["version"] = "v2"
|
||
# version = hps["model"]["version"]
|
||
|
||
self.configs.filter_length = hps["data"]["filter_length"]
|
||
self.configs.segment_size = hps["train"]["segment_size"]
|
||
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
||
self.configs.hop_length = hps["data"]["hop_length"]
|
||
self.configs.win_length = hps["data"]["win_length"]
|
||
self.configs.n_speakers = hps["data"]["n_speakers"]
|
||
self.configs.semantic_frame_rate = hps["model"]["semantic_frame_rate"]
|
||
kwargs = hps["model"]
|
||
# print(f"self.configs.sampling_rate:{self.configs.sampling_rate}")
|
||
|
||
self.configs.update_version(model_version)
|
||
|
||
# print(f"model_version:{model_version}")
|
||
# print(f'hps["model"]["version"]:{hps["model"]["version"]}')
|
||
if model_version!="v3":
|
||
vits_model = SynthesizerTrn(
|
||
self.configs.filter_length // 2 + 1,
|
||
self.configs.segment_size // self.configs.hop_length,
|
||
n_speakers=self.configs.n_speakers,
|
||
**kwargs
|
||
)
|
||
self.configs.is_v3_synthesizer = False
|
||
else:
|
||
vits_model = SynthesizerTrnV3(
|
||
self.configs.filter_length // 2 + 1,
|
||
self.configs.segment_size // self.configs.hop_length,
|
||
n_speakers=self.configs.n_speakers,
|
||
**kwargs
|
||
)
|
||
self.configs.is_v3_synthesizer = True
|
||
self.init_bigvgan()
|
||
if "pretrained" not in weights_path and hasattr(vits_model, "enc_q"):
|
||
del vits_model.enc_q
|
||
|
||
if if_lora_v3==False:
|
||
print(f"Loading VITS weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}")
|
||
else:
|
||
print(f"Loading VITS pretrained weights from {weights_path}. {vits_model.load_state_dict(load_sovits_new(path_sovits_v3)['weight'], strict=False)}")
|
||
lora_rank=dict_s2["lora_rank"]
|
||
lora_config = LoraConfig(
|
||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||
r=lora_rank,
|
||
lora_alpha=lora_rank,
|
||
init_lora_weights=True,
|
||
)
|
||
vits_model.cfm = get_peft_model(vits_model.cfm, lora_config)
|
||
print(f"Loading LoRA weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}")
|
||
|
||
vits_model.cfm = vits_model.cfm.merge_and_unload()
|
||
|
||
|
||
vits_model = vits_model.to(self.configs.device)
|
||
vits_model = vits_model.eval()
|
||
|
||
self.vits_model = vits_model
|
||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||
self.vits_model = self.vits_model.half()
|
||
|
||
|
||
def init_t2s_weights(self, weights_path: str):
|
||
print(f"Loading Text2Semantic weights from {weights_path}")
|
||
self.configs.t2s_weights_path = weights_path
|
||
self.configs.save_configs()
|
||
self.configs.hz = 50
|
||
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
||
config = dict_s1["config"]
|
||
self.configs.max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
t2s_model = t2s_model.to(self.configs.device)
|
||
t2s_model = t2s_model.eval()
|
||
self.t2s_model = t2s_model
|
||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||
self.t2s_model = self.t2s_model.half()
|
||
|
||
|
||
def init_bigvgan(self):
|
||
if self.bigvgan_model is not None:
|
||
return
|
||
self.bigvgan_model = BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) # if True, RuntimeError: Ninja is required to load C++ extensions
|
||
# remove weight norm in the model and set to eval mode
|
||
self.bigvgan_model.remove_weight_norm()
|
||
self.bigvgan_model = self.bigvgan_model.eval()
|
||
if self.configs.is_half == True:
|
||
self.bigvgan_model = self.bigvgan_model.half().to(self.configs.device)
|
||
else:
|
||
self.bigvgan_model = self.bigvgan_model.to(self.configs.device)
|
||
|
||
def init_sr_model(self):
|
||
if self.sr_model is not None:
|
||
return
|
||
try:
|
||
self.sr_model:AP_BWE=AP_BWE(self.configs.device,DictToAttrRecursive)
|
||
self.sr_model_not_exist = False
|
||
except FileNotFoundError:
|
||
print(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
|
||
self.sr_model_not_exist = True
|
||
|
||
|
||
def enable_half_precision(self, enable: bool = True, save: bool = True):
|
||
'''
|
||
To enable half precision for the TTS model.
|
||
Args:
|
||
enable: bool, whether to enable half precision.
|
||
|
||
'''
|
||
if str(self.configs.device) == "cpu" and enable:
|
||
print("Half precision is not supported on CPU.")
|
||
return
|
||
|
||
self.configs.is_half = enable
|
||
self.precision = torch.float16 if enable else torch.float32
|
||
if save:
|
||
self.configs.save_configs()
|
||
if enable:
|
||
if self.t2s_model is not None:
|
||
self.t2s_model =self.t2s_model.half()
|
||
if self.vits_model is not None:
|
||
self.vits_model = self.vits_model.half()
|
||
if self.bert_model is not None:
|
||
self.bert_model =self.bert_model.half()
|
||
if self.cnhuhbert_model is not None:
|
||
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||
if self.bigvgan_model is not None:
|
||
self.bigvgan_model = self.bigvgan_model.half()
|
||
else:
|
||
if self.t2s_model is not None:
|
||
self.t2s_model = self.t2s_model.float()
|
||
if self.vits_model is not None:
|
||
self.vits_model = self.vits_model.float()
|
||
if self.bert_model is not None:
|
||
self.bert_model = self.bert_model.float()
|
||
if self.cnhuhbert_model is not None:
|
||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||
if self.bigvgan_model is not None:
|
||
self.bigvgan_model = self.bigvgan_model.float()
|
||
|
||
def set_device(self, device: torch.device, save: bool = True):
|
||
'''
|
||
To set the device for all models.
|
||
Args:
|
||
device: torch.device, the device to use for all models.
|
||
'''
|
||
self.configs.device = device
|
||
if save:
|
||
self.configs.save_configs()
|
||
if self.t2s_model is not None:
|
||
self.t2s_model = self.t2s_model.to(device)
|
||
if self.vits_model is not None:
|
||
self.vits_model = self.vits_model.to(device)
|
||
if self.bert_model is not None:
|
||
self.bert_model = self.bert_model.to(device)
|
||
if self.cnhuhbert_model is not None:
|
||
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
||
if self.bigvgan_model is not None:
|
||
self.bigvgan_model = self.bigvgan_model.to(device)
|
||
if self.sr_model is not None:
|
||
self.sr_model = self.sr_model.to(device)
|
||
|
||
|
||
def set_ref_audio(self, ref_audio_path:str):
|
||
'''
|
||
To set the reference audio for the TTS model,
|
||
including the prompt_semantic and refer_spepc.
|
||
Args:
|
||
ref_audio_path: str, the path of the reference audio.
|
||
'''
|
||
self._set_prompt_semantic(ref_audio_path)
|
||
self._set_ref_spec(ref_audio_path)
|
||
self._set_ref_audio_path(ref_audio_path)
|
||
|
||
def _set_ref_audio_path(self, ref_audio_path):
|
||
self.prompt_cache["ref_audio_path"] = ref_audio_path
|
||
|
||
def _set_ref_spec(self, ref_audio_path):
|
||
spec = self._get_ref_spec(ref_audio_path)
|
||
if self.prompt_cache["refer_spec"] in [[],None]:
|
||
self.prompt_cache["refer_spec"]=[spec]
|
||
else:
|
||
self.prompt_cache["refer_spec"][0] = spec
|
||
|
||
def _get_ref_spec(self, ref_audio_path):
|
||
raw_audio, raw_sr = torchaudio.load(ref_audio_path)
|
||
raw_audio=raw_audio.to(self.configs.device).float()
|
||
self.prompt_cache["raw_audio"] = raw_audio
|
||
self.prompt_cache["raw_sr"] = raw_sr
|
||
|
||
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
maxx=audio.abs().max()
|
||
if(maxx>1):audio/=min(2,maxx)
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(
|
||
audio_norm,
|
||
self.configs.filter_length,
|
||
self.configs.sampling_rate,
|
||
self.configs.hop_length,
|
||
self.configs.win_length,
|
||
center=False,
|
||
)
|
||
spec = spec.to(self.configs.device)
|
||
if self.configs.is_half:
|
||
spec = spec.half()
|
||
return spec
|
||
|
||
def _set_prompt_semantic(self, ref_wav_path:str):
|
||
zero_wav = np.zeros(
|
||
int(self.configs.sampling_rate * 0.3),
|
||
dtype=np.float16 if self.configs.is_half else np.float32,
|
||
)
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||
wav16k = torch.from_numpy(wav16k)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
wav16k = wav16k.to(self.configs.device)
|
||
zero_wav_torch = zero_wav_torch.to(self.configs.device)
|
||
if self.configs.is_half:
|
||
wav16k = wav16k.half()
|
||
zero_wav_torch = zero_wav_torch.half()
|
||
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[
|
||
"last_hidden_state"
|
||
].transpose(
|
||
1, 2
|
||
) # .float()
|
||
codes = self.vits_model.extract_latent(hubert_feature)
|
||
|
||
prompt_semantic = codes[0, 0].to(self.configs.device)
|
||
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
||
|
||
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
||
seq = sequences[0]
|
||
ndim = seq.dim()
|
||
if axis < 0:
|
||
axis += ndim
|
||
dtype:torch.dtype = seq.dtype
|
||
pad_value = torch.tensor(pad_value, dtype=dtype)
|
||
seq_lengths = [seq.shape[axis] for seq in sequences]
|
||
if max_length is None:
|
||
max_length = max(seq_lengths)
|
||
else:
|
||
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
|
||
|
||
padded_sequences = []
|
||
for seq, length in zip(sequences, seq_lengths):
|
||
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
|
||
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
|
||
padded_sequences.append(padded_seq)
|
||
batch = torch.stack(padded_sequences)
|
||
return batch
|
||
|
||
def to_batch(self, data:list,
|
||
prompt_data:dict=None,
|
||
batch_size:int=5,
|
||
threshold:float=0.75,
|
||
split_bucket:bool=True,
|
||
device:torch.device=torch.device("cpu"),
|
||
precision:torch.dtype=torch.float32,
|
||
):
|
||
_data:list = []
|
||
index_and_len_list = []
|
||
for idx, item in enumerate(data):
|
||
norm_text_len = len(item["norm_text"])
|
||
index_and_len_list.append([idx, norm_text_len])
|
||
|
||
batch_index_list = []
|
||
if split_bucket:
|
||
index_and_len_list.sort(key=lambda x: x[1])
|
||
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||
|
||
batch_index_list_len = 0
|
||
pos = 0
|
||
while pos <index_and_len_list.shape[0]:
|
||
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
|
||
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
|
||
while pos < pos_end:
|
||
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
|
||
if (score>=threshold) or (pos_end-pos==1):
|
||
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
|
||
batch_index_list_len += len(batch_index)
|
||
batch_index_list.append(batch_index)
|
||
pos = pos_end
|
||
break
|
||
pos_end=pos_end-1
|
||
|
||
assert batch_index_list_len == len(data)
|
||
|
||
else:
|
||
for i in range(len(data)):
|
||
if i%batch_size == 0:
|
||
batch_index_list.append([])
|
||
batch_index_list[-1].append(i)
|
||
|
||
|
||
for batch_idx, index_list in enumerate(batch_index_list):
|
||
item_list = [data[idx] for idx in index_list]
|
||
phones_list = []
|
||
phones_len_list = []
|
||
# bert_features_list = []
|
||
all_phones_list = []
|
||
all_phones_len_list = []
|
||
all_bert_features_list = []
|
||
norm_text_batch = []
|
||
all_bert_max_len = 0
|
||
all_phones_max_len = 0
|
||
for item in item_list:
|
||
if prompt_data is not None:
|
||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||
.to(dtype=precision, device=device)
|
||
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
|
||
phones = torch.LongTensor(item["phones"]).to(device)
|
||
# norm_text = prompt_data["norm_text"]+item["norm_text"]
|
||
else:
|
||
all_bert_features = item["bert_features"]\
|
||
.to(dtype=precision, device=device)
|
||
phones = torch.LongTensor(item["phones"]).to(device)
|
||
all_phones = phones
|
||
# norm_text = item["norm_text"]
|
||
|
||
all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1])
|
||
all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1])
|
||
|
||
phones_list.append(phones)
|
||
phones_len_list.append(phones.shape[-1])
|
||
all_phones_list.append(all_phones)
|
||
all_phones_len_list.append(all_phones.shape[-1])
|
||
all_bert_features_list.append(all_bert_features)
|
||
norm_text_batch.append(item["norm_text"])
|
||
|
||
phones_batch = phones_list
|
||
all_phones_batch = all_phones_list
|
||
all_bert_features_batch = all_bert_features_list
|
||
|
||
|
||
max_len = max(all_bert_max_len, all_phones_max_len)
|
||
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
|
||
# all_bert_features_batch = all_bert_features_list
|
||
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
|
||
# for idx, item in enumerate(all_bert_features_list):
|
||
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||
|
||
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
|
||
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||
|
||
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||
|
||
batch = {
|
||
"phones": phones_batch,
|
||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||
"all_phones": all_phones_batch,
|
||
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
|
||
"all_bert_features": all_bert_features_batch,
|
||
"norm_text": norm_text_batch,
|
||
"max_len": max_len,
|
||
}
|
||
_data.append(batch)
|
||
|
||
return _data, batch_index_list
|
||
|
||
def recovery_order(self, data:list, batch_index_list:list)->list:
|
||
'''
|
||
Recovery the order of the audio according to the batch_index_list.
|
||
|
||
Args:
|
||
data (List[list(torch.Tensor)]): the out of order audio .
|
||
batch_index_list (List[list[int]]): the batch index list.
|
||
|
||
Returns:
|
||
list (List[torch.Tensor]): the data in the original order.
|
||
'''
|
||
length = len(sum(batch_index_list, []))
|
||
_data = [None]*length
|
||
for i, index_list in enumerate(batch_index_list):
|
||
for j, index in enumerate(index_list):
|
||
_data[index] = data[i][j]
|
||
return _data
|
||
|
||
def stop(self,):
|
||
'''
|
||
Stop the inference process.
|
||
'''
|
||
self.stop_flag = True
|
||
|
||
@torch.no_grad()
|
||
def run(self, inputs:dict):
|
||
"""
|
||
Text to speech inference.
|
||
|
||
Args:
|
||
inputs (dict):
|
||
{
|
||
"text": "", # str.(required) text to be synthesized
|
||
"text_lang: "", # str.(required) language of the text to be synthesized
|
||
"ref_audio_path": "", # str.(required) reference audio path
|
||
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion
|
||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
||
"top_k": 5, # int. top k sampling
|
||
"top_p": 1, # float. top p sampling
|
||
"temperature": 1, # float. temperature for sampling
|
||
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
|
||
"batch_size": 1, # int. batch size for inference
|
||
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||
"return_fragment": False, # bool. step by step return the audio fragment.
|
||
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||
"seed": -1, # int. random seed for reproducibility.
|
||
"parallel_infer": True, # bool. whether to use parallel inference.
|
||
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
|
||
"sample_steps": 32, # int. number of sampling steps for VITS model V3.
|
||
"super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3.
|
||
}
|
||
returns:
|
||
Tuple[int, np.ndarray]: sampling rate and audio data.
|
||
"""
|
||
########## variables initialization ###########
|
||
self.stop_flag:bool = False
|
||
text:str = inputs.get("text", "")
|
||
text_lang:str = inputs.get("text_lang", "")
|
||
ref_audio_path:str = inputs.get("ref_audio_path", "")
|
||
aux_ref_audio_paths:list = inputs.get("aux_ref_audio_paths", [])
|
||
prompt_text:str = inputs.get("prompt_text", "")
|
||
prompt_lang:str = inputs.get("prompt_lang", "")
|
||
top_k:int = inputs.get("top_k", 5)
|
||
top_p:float = inputs.get("top_p", 1)
|
||
temperature:float = inputs.get("temperature", 1)
|
||
text_split_method:str = inputs.get("text_split_method", "cut0")
|
||
batch_size = inputs.get("batch_size", 1)
|
||
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||
speed_factor = inputs.get("speed_factor", 1.0)
|
||
split_bucket = inputs.get("split_bucket", True)
|
||
return_fragment = inputs.get("return_fragment", False)
|
||
fragment_interval = inputs.get("fragment_interval", 0.3)
|
||
seed = inputs.get("seed", -1)
|
||
seed = -1 if seed in ["", None] else seed
|
||
actual_seed = set_seed(seed)
|
||
parallel_infer = inputs.get("parallel_infer", True)
|
||
repetition_penalty = inputs.get("repetition_penalty", 1.35)
|
||
sample_steps = inputs.get("sample_steps", 32)
|
||
super_sampling = inputs.get("super_sampling", False)
|
||
|
||
if parallel_infer:
|
||
print(i18n("并行推理模式已开启"))
|
||
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer
|
||
else:
|
||
print(i18n("并行推理模式已关闭"))
|
||
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched
|
||
|
||
if return_fragment:
|
||
print(i18n("分段返回模式已开启"))
|
||
if split_bucket:
|
||
split_bucket = False
|
||
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
||
|
||
if split_bucket and speed_factor==1.0 and not (self.configs.is_v3_synthesizer and parallel_infer):
|
||
print(i18n("分桶处理模式已开启"))
|
||
elif speed_factor!=1.0:
|
||
print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理"))
|
||
split_bucket = False
|
||
elif self.configs.is_v3_synthesizer and parallel_infer:
|
||
print(i18n("当开启并行推理模式时,SoVits V3模型不支持分桶处理,已自动关闭分桶处理"))
|
||
split_bucket = False
|
||
else:
|
||
print(i18n("分桶处理模式已关闭"))
|
||
|
||
if fragment_interval<0.01:
|
||
fragment_interval = 0.01
|
||
print(i18n("分段间隔过小,已自动设置为0.01"))
|
||
|
||
no_prompt_text = False
|
||
if prompt_text in [None, ""]:
|
||
no_prompt_text = True
|
||
|
||
assert text_lang in self.configs.languages
|
||
if not no_prompt_text:
|
||
assert prompt_lang in self.configs.languages
|
||
|
||
if no_prompt_text and self.configs.is_v3_synthesizer:
|
||
raise NO_PROMPT_ERROR("prompt_text cannot be empty when using SoVITS_V3")
|
||
|
||
if ref_audio_path in [None, ""] and \
|
||
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])):
|
||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||
|
||
###### setting reference audio and prompt text preprocessing ########
|
||
t0 = time.perf_counter()
|
||
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||
if not os.path.exists(ref_audio_path):
|
||
raise ValueError(f"{ref_audio_path} not exists")
|
||
self.set_ref_audio(ref_audio_path)
|
||
|
||
aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else []
|
||
paths = set(aux_ref_audio_paths)&set(self.prompt_cache["aux_ref_audio_paths"])
|
||
if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])):
|
||
self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths
|
||
self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]]
|
||
for path in aux_ref_audio_paths:
|
||
if path in [None, ""]:
|
||
continue
|
||
if not os.path.exists(path):
|
||
print(i18n("音频文件不存在,跳过:"), path)
|
||
continue
|
||
self.prompt_cache["refer_spec"].append(self._get_ref_spec(path))
|
||
|
||
if not no_prompt_text:
|
||
prompt_text = prompt_text.strip("\n")
|
||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
|
||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||
if self.prompt_cache["prompt_text"] != prompt_text:
|
||
phones, bert_features, norm_text = \
|
||
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||
prompt_text,
|
||
prompt_lang,
|
||
self.configs.version)
|
||
self.prompt_cache["prompt_text"] = prompt_text
|
||
self.prompt_cache["prompt_lang"] = prompt_lang
|
||
self.prompt_cache["phones"] = phones
|
||
self.prompt_cache["bert_features"] = bert_features
|
||
self.prompt_cache["norm_text"] = norm_text
|
||
|
||
|
||
|
||
|
||
###### text preprocessing ########
|
||
t1 = time.perf_counter()
|
||
data:list = None
|
||
if not return_fragment:
|
||
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
|
||
if len(data) == 0:
|
||
yield 16000, np.zeros(int(16000), dtype=np.int16)
|
||
return
|
||
|
||
batch_index_list:list = None
|
||
data, batch_index_list = self.to_batch(data,
|
||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||
batch_size=batch_size,
|
||
threshold=batch_threshold,
|
||
split_bucket=split_bucket,
|
||
device=self.configs.device,
|
||
precision=self.precision
|
||
)
|
||
else:
|
||
print(f'############ {i18n("切分文本")} ############')
|
||
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
|
||
data = []
|
||
for i in range(len(texts)):
|
||
if i%batch_size == 0:
|
||
data.append([])
|
||
data[-1].append(texts[i])
|
||
|
||
def make_batch(batch_texts):
|
||
batch_data = []
|
||
print(f'############ {i18n("提取文本Bert特征")} ############')
|
||
for text in tqdm(batch_texts):
|
||
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang, self.configs.version)
|
||
if phones is None:
|
||
continue
|
||
res={
|
||
"phones": phones,
|
||
"bert_features": bert_features,
|
||
"norm_text": norm_text,
|
||
}
|
||
batch_data.append(res)
|
||
if len(batch_data) == 0:
|
||
return None
|
||
batch, _ = self.to_batch(batch_data,
|
||
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||
batch_size=batch_size,
|
||
threshold=batch_threshold,
|
||
split_bucket=False,
|
||
device=self.configs.device,
|
||
precision=self.precision
|
||
)
|
||
return batch[0]
|
||
|
||
|
||
t2 = time.perf_counter()
|
||
try:
|
||
print("############ 推理 ############")
|
||
###### inference ######
|
||
t_34 = 0.0
|
||
t_45 = 0.0
|
||
audio = []
|
||
output_sr = self.configs.sampling_rate if not self.configs.is_v3_synthesizer else 24000
|
||
for item in data:
|
||
t3 = time.perf_counter()
|
||
if return_fragment:
|
||
item = make_batch(item)
|
||
if item is None:
|
||
continue
|
||
|
||
batch_phones:List[torch.LongTensor] = item["phones"]
|
||
# batch_phones:torch.LongTensor = item["phones"]
|
||
batch_phones_len:torch.LongTensor = item["phones_len"]
|
||
all_phoneme_ids:torch.LongTensor = item["all_phones"]
|
||
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
|
||
all_bert_features:torch.LongTensor = item["all_bert_features"]
|
||
norm_text:str = item["norm_text"]
|
||
max_len = item["max_len"]
|
||
|
||
print(i18n("前端处理后的文本(每句):"), norm_text)
|
||
if no_prompt_text :
|
||
prompt = None
|
||
else:
|
||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||
|
||
print(f"############ {i18n('预测语义Token')} ############")
|
||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_lens,
|
||
prompt,
|
||
all_bert_features,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k=top_k,
|
||
top_p=top_p,
|
||
temperature=temperature,
|
||
early_stop_num=self.configs.hz * self.configs.max_sec,
|
||
max_len=max_len,
|
||
repetition_penalty=repetition_penalty,
|
||
)
|
||
t4 = time.perf_counter()
|
||
t_34 += t4 - t3
|
||
|
||
refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]]
|
||
|
||
|
||
batch_audio_fragment = []
|
||
|
||
# ## vits并行推理 method 1
|
||
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
|
||
# max_len = 0
|
||
# for i in range(0, len(batch_phones)):
|
||
# max_len = max(max_len, batch_phones[i].shape[-1])
|
||
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
|
||
# batch_phones = batch_phones.to(self.configs.device)
|
||
# batch_audio_fragment = (self.vits_model.batched_decode(
|
||
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec
|
||
# ))
|
||
print(f"############ {i18n('合成音频')} ############")
|
||
if not self.configs.is_v3_synthesizer:
|
||
if speed_factor == 1.0:
|
||
print(f"{i18n('并行合成中')}...")
|
||
# ## vits并行推理 method 2
|
||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
||
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
|
||
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||
_batch_audio_fragment = (self.vits_model.decode(
|
||
all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor
|
||
).detach()[0, 0, :])
|
||
audio_frag_end_idx.insert(0, 0)
|
||
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||
else:
|
||
# ## vits串行推理
|
||
for i, idx in enumerate(tqdm(idx_list)):
|
||
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||
_pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||
audio_fragment =(self.vits_model.decode(
|
||
_pred_semantic, phones, refer_audio_spec, speed=speed_factor
|
||
).detach()[0, 0, :])
|
||
batch_audio_fragment.append(
|
||
audio_fragment
|
||
) ###试试重建不带上prompt部分
|
||
else:
|
||
if parallel_infer:
|
||
print(f"{i18n('并行合成中')}...")
|
||
audio_fragments = self.v3_synthesis_batched_infer(
|
||
idx_list,
|
||
pred_semantic_list,
|
||
batch_phones,
|
||
speed=speed_factor,
|
||
sample_steps=sample_steps
|
||
)
|
||
batch_audio_fragment.extend(audio_fragments)
|
||
else:
|
||
for i, idx in enumerate(tqdm(idx_list)):
|
||
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||
_pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||
audio_fragment = self.v3_synthesis(
|
||
_pred_semantic, phones, speed=speed_factor, sample_steps=sample_steps
|
||
)
|
||
batch_audio_fragment.append(
|
||
audio_fragment
|
||
)
|
||
|
||
t5 = time.perf_counter()
|
||
t_45 += t5 - t4
|
||
if return_fragment:
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||
yield self.audio_postprocess([batch_audio_fragment],
|
||
output_sr,
|
||
None,
|
||
speed_factor,
|
||
False,
|
||
fragment_interval,
|
||
super_sampling if self.configs.is_v3_synthesizer else False
|
||
)
|
||
else:
|
||
audio.append(batch_audio_fragment)
|
||
|
||
if self.stop_flag:
|
||
yield 16000, np.zeros(int(16000), dtype=np.int16)
|
||
return
|
||
|
||
if not return_fragment:
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||
if len(audio) == 0:
|
||
yield 16000, np.zeros(int(16000), dtype=np.int16)
|
||
return
|
||
yield self.audio_postprocess(audio,
|
||
output_sr,
|
||
batch_index_list,
|
||
speed_factor,
|
||
split_bucket,
|
||
fragment_interval,
|
||
super_sampling if self.configs.is_v3_synthesizer else False
|
||
)
|
||
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
# 必须返回一个空音频, 否则会导致显存不释放。
|
||
yield 16000, np.zeros(int(16000), dtype=np.int16)
|
||
# 重置模型, 否则会导致显存释放不完全。
|
||
del self.t2s_model
|
||
del self.vits_model
|
||
self.t2s_model = None
|
||
self.vits_model = None
|
||
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||
self.init_vits_weights(self.configs.vits_weights_path)
|
||
raise e
|
||
finally:
|
||
self.empty_cache()
|
||
|
||
def empty_cache(self):
|
||
try:
|
||
gc.collect() # 触发gc的垃圾回收。避免内存一直增长。
|
||
if "cuda" in str(self.configs.device):
|
||
torch.cuda.empty_cache()
|
||
elif str(self.configs.device) == "mps":
|
||
torch.mps.empty_cache()
|
||
except:
|
||
pass
|
||
|
||
def audio_postprocess(self,
|
||
audio:List[torch.Tensor],
|
||
sr:int,
|
||
batch_index_list:list=None,
|
||
speed_factor:float=1.0,
|
||
split_bucket:bool=True,
|
||
fragment_interval:float=0.3,
|
||
super_sampling:bool=False,
|
||
)->Tuple[int, np.ndarray]:
|
||
zero_wav = torch.zeros(
|
||
int(self.configs.sampling_rate * fragment_interval),
|
||
dtype=self.precision,
|
||
device=self.configs.device
|
||
)
|
||
|
||
for i, batch in enumerate(audio):
|
||
for j, audio_fragment in enumerate(batch):
|
||
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
||
if max_audio>1: audio_fragment/=max_audio
|
||
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||
audio[i][j] = audio_fragment
|
||
|
||
|
||
if split_bucket:
|
||
audio = self.recovery_order(audio, batch_index_list)
|
||
else:
|
||
# audio = [item for batch in audio for item in batch]
|
||
audio = sum(audio, [])
|
||
|
||
audio = torch.cat(audio, dim=0)
|
||
|
||
if super_sampling:
|
||
print(f"############ {i18n('音频超采样')} ############")
|
||
t1 = time.perf_counter()
|
||
self.init_sr_model()
|
||
if not self.sr_model_not_exist:
|
||
audio,sr=self.sr_model(audio.unsqueeze(0),sr)
|
||
max_audio=np.abs(audio).max()
|
||
if max_audio > 1: audio /= max_audio
|
||
t2 = time.perf_counter()
|
||
print(f"超采样用时:{t2-t1:.3f}s")
|
||
else:
|
||
audio = audio.cpu().numpy()
|
||
|
||
audio = (audio * 32768).astype(np.int16)
|
||
|
||
# try:
|
||
# if speed_factor != 1.0:
|
||
# audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
||
# except Exception as e:
|
||
# print(f"Failed to change speed of audio: \n{e}")
|
||
|
||
return sr, audio
|
||
|
||
|
||
def v3_synthesis(self,
|
||
semantic_tokens:torch.Tensor,
|
||
phones:torch.Tensor,
|
||
speed:float=1.0,
|
||
sample_steps:int=32
|
||
):
|
||
|
||
prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||
prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device)
|
||
refer_audio_spec = self.prompt_cache["refer_spec"][0].to(dtype=self.precision, device=self.configs.device)
|
||
|
||
fea_ref,ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec)
|
||
ref_audio:torch.Tensor = self.prompt_cache["raw_audio"]
|
||
ref_sr = self.prompt_cache["raw_sr"]
|
||
ref_audio=ref_audio.to(self.configs.device).float()
|
||
if (ref_audio.shape[0] == 2):
|
||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||
if ref_sr!=24000:
|
||
ref_audio=resample(ref_audio, ref_sr, self.configs.device)
|
||
|
||
mel2 = mel_fn(ref_audio)
|
||
mel2 = norm_spec(mel2)
|
||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||
mel2 = mel2[:, :, :T_min]
|
||
fea_ref = fea_ref[:, :, :T_min]
|
||
if (T_min > 468):
|
||
mel2 = mel2[:, :, -468:]
|
||
fea_ref = fea_ref[:, :, -468:]
|
||
T_min = 468
|
||
chunk_len = 934 - T_min
|
||
|
||
mel2=mel2.to(self.precision)
|
||
fea_todo, ge = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed)
|
||
|
||
cfm_resss = []
|
||
idx = 0
|
||
while (1):
|
||
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
|
||
if (fea_todo_chunk.shape[-1] == 0): break
|
||
idx += chunk_len
|
||
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||
|
||
cfm_res = self.vits_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||
|
||
mel2 = cfm_res[:, :, -T_min:]
|
||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||
|
||
cfm_resss.append(cfm_res)
|
||
cfm_res = torch.cat(cfm_resss, 2)
|
||
cfm_res = denorm_spec(cfm_res)
|
||
|
||
|
||
with torch.inference_mode():
|
||
wav_gen = self.bigvgan_model(cfm_res)
|
||
audio=wav_gen[0][0]#.cpu().detach().numpy()
|
||
|
||
return audio
|
||
|
||
|
||
|
||
def v3_synthesis_batched_infer(self,
|
||
idx_list:List[int],
|
||
semantic_tokens_list:List[torch.Tensor],
|
||
batch_phones:List[torch.Tensor],
|
||
speed:float=1.0,
|
||
sample_steps:int=32
|
||
)->List[torch.Tensor]:
|
||
|
||
prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||
prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device)
|
||
refer_audio_spec = self.prompt_cache["refer_spec"][0].to(dtype=self.precision, device=self.configs.device)
|
||
|
||
fea_ref,ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec)
|
||
ref_audio:torch.Tensor = self.prompt_cache["raw_audio"]
|
||
ref_sr = self.prompt_cache["raw_sr"]
|
||
ref_audio=ref_audio.to(self.configs.device).float()
|
||
if (ref_audio.shape[0] == 2):
|
||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||
if ref_sr!=24000:
|
||
ref_audio=resample(ref_audio, ref_sr, self.configs.device)
|
||
|
||
mel2 = mel_fn(ref_audio)
|
||
mel2 = norm_spec(mel2)
|
||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||
mel2 = mel2[:, :, :T_min]
|
||
fea_ref = fea_ref[:, :, :T_min]
|
||
if (T_min > 468):
|
||
mel2 = mel2[:, :, -468:]
|
||
fea_ref = fea_ref[:, :, -468:]
|
||
T_min = 468
|
||
chunk_len = 934 - T_min
|
||
|
||
mel2=mel2.to(self.precision)
|
||
|
||
|
||
# #### batched inference
|
||
overlapped_len = 12
|
||
feat_chunks = []
|
||
feat_lens = []
|
||
feat_list = []
|
||
|
||
for i, idx in enumerate(idx_list):
|
||
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||
semantic_tokens = semantic_tokens_list[i][-idx:].unsqueeze(0).unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||
feat, _ = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed)
|
||
feat_list.append(feat)
|
||
feat_lens.append(feat.shape[2])
|
||
|
||
feats = torch.cat(feat_list, 2)
|
||
feats_padded = F.pad(feats, (overlapped_len,0), "constant", 0)
|
||
pos = 0
|
||
padding_len = 0
|
||
while True:
|
||
if pos ==0:
|
||
chunk = feats_padded[:, :, pos:pos + chunk_len]
|
||
else:
|
||
pos = pos - overlapped_len
|
||
chunk = feats_padded[:, :, pos:pos + chunk_len]
|
||
pos += chunk_len
|
||
if (chunk.shape[-1] == 0): break
|
||
|
||
# padding for the last chunk
|
||
padding_len = chunk_len - chunk.shape[2]
|
||
if padding_len != 0:
|
||
chunk = F.pad(chunk, (0,padding_len), "constant", 0)
|
||
feat_chunks.append(chunk)
|
||
|
||
|
||
|
||
feat_chunks = torch.cat(feat_chunks, 0)
|
||
bs = feat_chunks.shape[0]
|
||
fea_ref = fea_ref.repeat(bs,1,1)
|
||
fea = torch.cat([fea_ref, feat_chunks], 2).transpose(2, 1)
|
||
pred_spec = self.vits_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||
pred_spec = pred_spec[:, :, -chunk_len:]
|
||
dd = pred_spec.shape[1]
|
||
pred_spec = pred_spec.permute(1, 0, 2).contiguous().view(dd, -1).unsqueeze(0)
|
||
# pred_spec = pred_spec[..., :-padding_len]
|
||
|
||
|
||
pred_spec = denorm_spec(pred_spec)
|
||
|
||
with torch.no_grad():
|
||
wav_gen = self.bigvgan_model(pred_spec)
|
||
audio = wav_gen[0][0]#.cpu().detach().numpy()
|
||
|
||
|
||
audio_fragments = []
|
||
upsample_rate = 256
|
||
pos = 0
|
||
|
||
while pos < audio.shape[-1]:
|
||
audio_fragment = audio[pos:pos+chunk_len*upsample_rate]
|
||
audio_fragments.append(audio_fragment)
|
||
pos += chunk_len*upsample_rate
|
||
|
||
audio = self.sola_algorithm(audio_fragments, overlapped_len*upsample_rate)
|
||
audio = audio[overlapped_len*upsample_rate:-padding_len*upsample_rate]
|
||
|
||
audio_fragments = []
|
||
for feat_len in feat_lens:
|
||
audio_fragment = audio[:feat_len*upsample_rate]
|
||
audio_fragments.append(audio_fragment)
|
||
audio = audio[feat_len*upsample_rate:]
|
||
|
||
|
||
return audio_fragments
|
||
|
||
|
||
|
||
def sola_algorithm(self,
|
||
audio_fragments:List[torch.Tensor],
|
||
overlap_len:int,
|
||
):
|
||
|
||
for i in range(len(audio_fragments)-1):
|
||
f1 = audio_fragments[i]
|
||
f2 = audio_fragments[i+1]
|
||
w1 = f1[-overlap_len:]
|
||
w2 = f2[:overlap_len]
|
||
assert w1.shape == w2.shape
|
||
corr = F.conv1d(w1.view(1,1,-1), w2.view(1,1,-1),padding=w2.shape[-1]//2).view(-1)[:-1]
|
||
idx = corr.argmax()
|
||
f1_ = f1[:-(overlap_len-idx)]
|
||
audio_fragments[i] = f1_
|
||
|
||
f2_ = f2[idx:]
|
||
window = torch.hann_window((overlap_len-idx)*2, device=f1.device, dtype=f1.dtype)
|
||
f2_[:(overlap_len-idx)] = window[:(overlap_len-idx)]*f2_[:(overlap_len-idx)] + window[(overlap_len-idx):]*f1[-(overlap_len-idx):]
|
||
audio_fragments[i+1] = f2_
|
||
|
||
|
||
return torch.cat(audio_fragments, 0)
|
||
|
||
|
||
|