mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
954 lines
42 KiB
Python
954 lines
42 KiB
Python
'''
|
||
按中英混合识别
|
||
按日英混合识别
|
||
多语种启动切分识别语种
|
||
全部按中文识别
|
||
全部按英文识别
|
||
全部按日文识别
|
||
'''
|
||
import logging
|
||
import traceback,torchaudio,warnings
|
||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
|
||
warnings.simplefilter(action='ignore', category=FutureWarning)
|
||
|
||
import os, re, sys, json
|
||
import pdb
|
||
import torch
|
||
from text.LangSegmenter import LangSegmenter
|
||
|
||
try:
|
||
import gradio.analytics as analytics
|
||
analytics.version_check = lambda:None
|
||
except:...
|
||
version=model_version=os.environ.get("version","v2")
|
||
path_sovits_v3="GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||
is_exist_s2gv3=os.path.exists(path_sovits_v3)
|
||
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",path_sovits_v3]
|
||
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
|
||
|
||
|
||
|
||
_ =[[],[]]
|
||
for i in range(3):
|
||
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
|
||
if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
|
||
pretrained_gpt_name,pretrained_sovits_name = _
|
||
|
||
|
||
if os.path.exists(f"./weight.json"):
|
||
pass
|
||
else:
|
||
with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)
|
||
|
||
with open(f"./weight.json", 'r', encoding="utf-8") as file:
|
||
weight_data = file.read()
|
||
weight_data=json.loads(weight_data)
|
||
gpt_path = os.environ.get(
|
||
"gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
|
||
sovits_path = os.environ.get(
|
||
"sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
|
||
if isinstance(gpt_path,list):
|
||
gpt_path = gpt_path[0]
|
||
if isinstance(sovits_path,list):
|
||
sovits_path = sovits_path[0]
|
||
|
||
# gpt_path = os.environ.get(
|
||
# "gpt_path", pretrained_gpt_name
|
||
# )
|
||
# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
|
||
cnhubert_base_path = os.environ.get(
|
||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||
)
|
||
bert_path = os.environ.get(
|
||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
)
|
||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||
infer_ttswebui = int(infer_ttswebui)
|
||
is_share = os.environ.get("is_share", "False")
|
||
is_share = eval(is_share)
|
||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||
# is_half=False
|
||
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
||
import gradio as gr
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import numpy as np
|
||
import librosa
|
||
from feature_extractor import cnhubert
|
||
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
|
||
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3
|
||
import numpy as np
|
||
import random
|
||
def set_seed(seed):
|
||
if seed == -1:
|
||
seed = random.randint(0, 1000000)
|
||
seed = int(seed)
|
||
random.seed(seed)
|
||
os.environ["PYTHONHASHSEED"] = str(seed)
|
||
np.random.seed(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
# set_seed(42)
|
||
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from time import time as ttime
|
||
from tools.my_utils import load_audio
|
||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||
from peft import LoraConfig, PeftModel, get_peft_model
|
||
|
||
language=os.environ.get("language","Auto")
|
||
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||
i18n = I18nAuto(language=language)
|
||
|
||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||
|
||
if torch.cuda.is_available():
|
||
device = "cuda"
|
||
else:
|
||
device = "cpu"
|
||
|
||
dict_language_v1 = {
|
||
i18n("中文"): "all_zh",#全部按中文识别
|
||
i18n("英文"): "en",#全部按英文识别#######不变
|
||
i18n("日文"): "all_ja",#全部按日文识别
|
||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||
}
|
||
dict_language_v2 = {
|
||
i18n("中文"): "all_zh",#全部按中文识别
|
||
i18n("英文"): "en",#全部按英文识别#######不变
|
||
i18n("日文"): "all_ja",#全部按日文识别
|
||
i18n("粤语"): "all_yue",#全部按中文识别
|
||
i18n("韩文"): "all_ko",#全部按韩文识别
|
||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||
i18n("粤英混合"): "yue",#按粤英混合识别####不变
|
||
i18n("韩英混合"): "ko",#按韩英混合识别####不变
|
||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||
i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
|
||
}
|
||
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
if is_half == True:
|
||
bert_model = bert_model.half().to(device)
|
||
else:
|
||
bert_model = bert_model.to(device)
|
||
|
||
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(device)
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
return phone_level_feature.T
|
||
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def __delattr__(self, item):
|
||
try:
|
||
del self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
|
||
ssl_model = cnhubert.get_model()
|
||
if is_half == True:
|
||
ssl_model = ssl_model.half().to(device)
|
||
else:
|
||
ssl_model = ssl_model.to(device)
|
||
|
||
resample_transform_dict={}
|
||
def resample(audio_tensor, sr0):
|
||
global resample_transform_dict
|
||
if sr0 not in resample_transform_dict:
|
||
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
|
||
sr0, 24000
|
||
).to(device)
|
||
return resample_transform_dict[sr0](audio_tensor)
|
||
|
||
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
|
||
#symbol_version-model_version-if_lora_v3
|
||
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
|
||
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
||
global vq_model, hps, version, model_version, dict_language,if_lora_v3
|
||
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
|
||
# print(sovits_path,version, model_version, if_lora_v3)
|
||
if if_lora_v3==True and is_exist_s2gv3==False:
|
||
info= "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||
gr.Warning(info)
|
||
raise FileExistsError(info)
|
||
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
||
if prompt_language is not None and text_language is not None:
|
||
if prompt_language in list(dict_language.keys()):
|
||
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
|
||
else:
|
||
prompt_text_update = {'__type__':'update', 'value':''}
|
||
prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
|
||
if text_language in list(dict_language.keys()):
|
||
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
|
||
else:
|
||
text_update = {'__type__':'update', 'value':''}
|
||
text_language_update = {'__type__':'update', 'value':i18n("中文")}
|
||
if model_version=="v3":
|
||
visible_sample_steps=True
|
||
visible_inp_refs=False
|
||
else:
|
||
visible_sample_steps=False
|
||
visible_inp_refs=True
|
||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps,"value":32},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False},{"__type__": "update", "visible":True if model_version=="v3"else False},{"__type__": "update", "value":i18n("模型加载中,请等待"),"interactive":False}
|
||
|
||
dict_s2 = load_sovits_new(sovits_path)
|
||
hps = dict_s2["config"]
|
||
hps = DictToAttrRecursive(hps)
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
if 'enc_p.text_embedding.weight'not in dict_s2['weight']:
|
||
hps.model.version = "v2"#v3model,v2sybomls
|
||
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||
hps.model.version = "v1"
|
||
else:
|
||
hps.model.version = "v2"
|
||
version=hps.model.version
|
||
# print("sovits版本:",hps.model.version)
|
||
if model_version!="v3":
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model
|
||
)
|
||
model_version=version
|
||
else:
|
||
vq_model = SynthesizerTrnV3(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model
|
||
)
|
||
if ("pretrained" not in sovits_path):
|
||
try:
|
||
del vq_model.enc_q
|
||
except:pass
|
||
if is_half == True:
|
||
vq_model = vq_model.half().to(device)
|
||
else:
|
||
vq_model = vq_model.to(device)
|
||
vq_model.eval()
|
||
if if_lora_v3==False:
|
||
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||
else:
|
||
print("loading sovits_v3pretrained_G", vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False))
|
||
lora_rank=dict_s2["lora_rank"]
|
||
lora_config = LoraConfig(
|
||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||
r=lora_rank,
|
||
lora_alpha=lora_rank,
|
||
init_lora_weights=True,
|
||
)
|
||
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||
print("loading sovits_v3_lora%s"%(lora_rank))
|
||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||
# torch.save(vq_model.state_dict(),"merge_win.pth")
|
||
vq_model.eval()
|
||
|
||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps,"value":32},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False},{"__type__": "update", "visible":True if model_version=="v3"else False},{"__type__": "update", "value":i18n("合成语音"),"interactive":True}
|
||
with open("./weight.json")as f:
|
||
data=f.read()
|
||
data=json.loads(data)
|
||
data["SoVITS"][version]=sovits_path
|
||
with open("./weight.json","w")as f:f.write(json.dumps(data))
|
||
|
||
|
||
try:next(change_sovits_weights(sovits_path))
|
||
except:pass
|
||
|
||
def change_gpt_weights(gpt_path):
|
||
global hz, max_sec, t2s_model, config
|
||
hz = 50
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
if is_half == True:
|
||
t2s_model = t2s_model.half()
|
||
t2s_model = t2s_model.to(device)
|
||
t2s_model.eval()
|
||
# total = sum([param.nelement() for param in t2s_model.parameters()])
|
||
# print("Number of parameter: %.2fM" % (total / 1e6))
|
||
with open("./weight.json")as f:
|
||
data=f.read()
|
||
data=json.loads(data)
|
||
data["GPT"][version]=gpt_path
|
||
with open("./weight.json","w")as f:f.write(json.dumps(data))
|
||
|
||
|
||
change_gpt_weights(gpt_path)
|
||
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
||
import torch,soundfile
|
||
now_dir = os.getcwd()
|
||
import soundfile
|
||
|
||
def init_bigvgan():
|
||
global bigvgan_model
|
||
from BigVGAN import bigvgan
|
||
bigvgan_model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) # if True, RuntimeError: Ninja is required to load C++ extensions
|
||
# remove weight norm in the model and set to eval mode
|
||
bigvgan_model.remove_weight_norm()
|
||
bigvgan_model = bigvgan_model.eval()
|
||
if is_half == True:
|
||
bigvgan_model = bigvgan_model.half().to(device)
|
||
else:
|
||
bigvgan_model = bigvgan_model.to(device)
|
||
|
||
if model_version!="v3":bigvgan_model=None
|
||
else:init_bigvgan()
|
||
|
||
|
||
def get_spepc(hps, filename):
|
||
# audio = load_audio(filename, int(hps.data.sampling_rate))
|
||
audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
maxx=audio.abs().max()
|
||
if(maxx>1):audio/=min(2,maxx)
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(
|
||
audio_norm,
|
||
hps.data.filter_length,
|
||
hps.data.sampling_rate,
|
||
hps.data.hop_length,
|
||
hps.data.win_length,
|
||
center=False,
|
||
)
|
||
return spec
|
||
|
||
def clean_text_inf(text, language, version):
|
||
language = language.replace("all_","")
|
||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||
phones = cleaned_text_to_sequence(phones, version)
|
||
return phones, word2ph, norm_text
|
||
|
||
dtype=torch.float16 if is_half == True else torch.float32
|
||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||
language=language.replace("all_","")
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
|
||
return bert
|
||
|
||
|
||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||
|
||
|
||
def get_first(text):
|
||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||
text = re.split(pattern, text)[0].strip()
|
||
return text
|
||
|
||
from text import chinese
|
||
def get_phones_and_bert(text,language,version,final=False):
|
||
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
||
formattext = text
|
||
while " " in formattext:
|
||
formattext = formattext.replace(" ", " ")
|
||
if language == "all_zh":
|
||
if re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"zh",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||
elif language == "all_yue" and re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"yue",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||
textlist=[]
|
||
langlist=[]
|
||
if language == "auto":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
elif language == "auto_yue":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "zh":
|
||
tmp["lang"] = "yue"
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "en":
|
||
langlist.append(tmp["lang"])
|
||
else:
|
||
# 因无法区别中日韩文汉字,以用户输入为准
|
||
langlist.append(language)
|
||
textlist.append(tmp["text"])
|
||
print(textlist)
|
||
print(langlist)
|
||
phones_list = []
|
||
bert_list = []
|
||
norm_text_list = []
|
||
for i in range(len(textlist)):
|
||
lang = langlist[i]
|
||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||
phones_list.append(phones)
|
||
norm_text_list.append(norm_text)
|
||
bert_list.append(bert)
|
||
bert = torch.cat(bert_list, dim=1)
|
||
phones = sum(phones_list, [])
|
||
norm_text = ''.join(norm_text_list)
|
||
|
||
if not final and len(phones) < 6:
|
||
return get_phones_and_bert("." + text,language,version,final=True)
|
||
|
||
return phones,bert.to(dtype),norm_text
|
||
|
||
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
|
||
spec_min = -12
|
||
spec_max = 2
|
||
def norm_spec(x):
|
||
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||
def denorm_spec(x):
|
||
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||
mel_fn=lambda x: mel_spectrogram_torch(x, **{
|
||
"n_fft": 1024,
|
||
"win_size": 1024,
|
||
"hop_size": 256,
|
||
"num_mels": 100,
|
||
"sampling_rate": 24000,
|
||
"fmin": 0,
|
||
"fmax": None,
|
||
"center": False
|
||
})
|
||
|
||
def merge_short_text_in_array(texts, threshold):
|
||
if (len(texts)) < 2:
|
||
return texts
|
||
result = []
|
||
text = ""
|
||
for ele in texts:
|
||
text += ele
|
||
if len(text) >= threshold:
|
||
result.append(text)
|
||
text = ""
|
||
if (len(text) > 0):
|
||
if len(result) == 0:
|
||
result.append(text)
|
||
else:
|
||
result[len(result) - 1] += text
|
||
return result
|
||
|
||
sr_model=None
|
||
def audio_sr(audio,sr):
|
||
global sr_model
|
||
if sr_model==None:
|
||
from tools.audio_sr import AP_BWE
|
||
try:
|
||
sr_model=AP_BWE(device,DictToAttrRecursive)
|
||
except FileNotFoundError:
|
||
gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
|
||
return audio.cpu().detach().numpy(),sr
|
||
return sr_model(audio,sr)
|
||
|
||
|
||
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
|
||
# cache_tokens={}#暂未实现清理机制
|
||
cache= {}
|
||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=None,sample_steps=8,if_sr=False,pause_second=0.3):
|
||
global cache
|
||
if ref_wav_path:pass
|
||
else:gr.Warning(i18n('请上传参考音频'))
|
||
if text:pass
|
||
else:gr.Warning(i18n('请填入推理文本'))
|
||
t = []
|
||
if prompt_text is None or len(prompt_text) == 0:
|
||
ref_free = True
|
||
if model_version=="v3":
|
||
ref_free=False#s2v3暂不支持ref_free
|
||
else:
|
||
if_sr=False
|
||
t0 = ttime()
|
||
prompt_language = dict_language[prompt_language]
|
||
text_language = dict_language[text_language]
|
||
|
||
|
||
if not ref_free:
|
||
prompt_text = prompt_text.strip("\n")
|
||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||
text = text.strip("\n")
|
||
# if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||
|
||
print(i18n("实际输入的目标文本:"), text)
|
||
zero_wav = np.zeros(
|
||
int(hps.data.sampling_rate * pause_second),
|
||
dtype=np.float16 if is_half == True else np.float32,
|
||
)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
if is_half == True:
|
||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||
else:
|
||
zero_wav_torch = zero_wav_torch.to(device)
|
||
if not ref_free:
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
|
||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||
wav16k = torch.from_numpy(wav16k)
|
||
if is_half == True:
|
||
wav16k = wav16k.half().to(device)
|
||
else:
|
||
wav16k = wav16k.to(device)
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||
"last_hidden_state"
|
||
].transpose(
|
||
1, 2
|
||
) # .float()
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
prompt_semantic = codes[0, 0]
|
||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||
|
||
t1 = ttime()
|
||
t.append(t1-t0)
|
||
|
||
if (how_to_cut == i18n("凑四句一切")):
|
||
text = cut1(text)
|
||
elif (how_to_cut == i18n("凑50字一切")):
|
||
text = cut2(text)
|
||
elif (how_to_cut == i18n("按中文句号。切")):
|
||
text = cut3(text)
|
||
elif (how_to_cut == i18n("按英文句号.切")):
|
||
text = cut4(text)
|
||
elif (how_to_cut == i18n("按标点符号切")):
|
||
text = cut5(text)
|
||
while "\n\n" in text:
|
||
text = text.replace("\n\n", "\n")
|
||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||
texts = text.split("\n")
|
||
texts = process_text(texts)
|
||
texts = merge_short_text_in_array(texts, 5)
|
||
audio_opt = []
|
||
###s2v3暂不支持ref_free
|
||
if not ref_free:
|
||
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
|
||
|
||
for i_text,text in enumerate(texts):
|
||
# 解决输入目标文本的空行导致报错的问题
|
||
if (len(text.strip()) == 0):
|
||
continue
|
||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||
print(i18n("实际输入的目标文本(每句):"), text)
|
||
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
|
||
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
||
if not ref_free:
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||
else:
|
||
bert = bert2
|
||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||
|
||
bert = bert.to(device).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||
|
||
t2 = ttime()
|
||
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
|
||
# print(cache.keys(),if_freeze)
|
||
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
|
||
else:
|
||
with torch.no_grad():
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
None if ref_free else prompt,
|
||
bert,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k=top_k,
|
||
top_p=top_p,
|
||
temperature=temperature,
|
||
early_stop_num=hz * max_sec,
|
||
)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||
cache[i_text]=pred_semantic
|
||
t3 = ttime()
|
||
###v3不存在以下逻辑和inp_refs
|
||
if model_version!="v3":
|
||
refers=[]
|
||
if(inp_refs):
|
||
for path in inp_refs:
|
||
try:
|
||
refer = get_spepc(hps, path.name).to(dtype).to(device)
|
||
refers.append(refer)
|
||
except:
|
||
traceback.print_exc()
|
||
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
||
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed)[0][0]#.cpu().detach().numpy()
|
||
else:
|
||
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
|
||
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||
# print(11111111, phoneme_ids0, phoneme_ids1)
|
||
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
||
ref_audio, sr = torchaudio.load(ref_wav_path)
|
||
ref_audio=ref_audio.to(device).float()
|
||
if (ref_audio.shape[0] == 2):
|
||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||
if sr!=24000:
|
||
ref_audio=resample(ref_audio,sr)
|
||
# print("ref_audio",ref_audio.abs().mean())
|
||
mel2 = mel_fn(ref_audio)
|
||
mel2 = norm_spec(mel2)
|
||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||
mel2 = mel2[:, :, :T_min]
|
||
fea_ref = fea_ref[:, :, :T_min]
|
||
if (T_min > 468):
|
||
mel2 = mel2[:, :, -468:]
|
||
fea_ref = fea_ref[:, :, -468:]
|
||
T_min = 468
|
||
chunk_len = 934 - T_min
|
||
# print("fea_ref",fea_ref,fea_ref.shape)
|
||
# print("mel2",mel2)
|
||
mel2=mel2.to(dtype)
|
||
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge,speed)
|
||
# print("fea_todo",fea_todo)
|
||
# print("ge",ge.abs().mean())
|
||
cfm_resss = []
|
||
idx = 0
|
||
while (1):
|
||
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
|
||
if (fea_todo_chunk.shape[-1] == 0): break
|
||
idx += chunk_len
|
||
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||
# set_seed(123)
|
||
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||
mel2 = cfm_res[:, :, -T_min:]
|
||
# print("fea", fea)
|
||
# print("mel2in", mel2)
|
||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||
cfm_resss.append(cfm_res)
|
||
cmf_res = torch.cat(cfm_resss, 2)
|
||
cmf_res = denorm_spec(cmf_res)
|
||
if bigvgan_model==None:init_bigvgan()
|
||
with torch.inference_mode():
|
||
wav_gen = bigvgan_model(cmf_res)
|
||
audio=wav_gen[0][0]#.cpu().detach().numpy()
|
||
max_audio=torch.abs(audio).max()#简单防止16bit爆音
|
||
if max_audio>1:audio=audio/max_audio
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav_torch)#zero_wav
|
||
t4 = ttime()
|
||
t.extend([t2 - t1,t3 - t2, t4 - t3])
|
||
t1 = ttime()
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
|
||
audio_opt=torch.cat(audio_opt, 0)#np.concatenate
|
||
sr=hps.data.sampling_rate if model_version!="v3"else 24000
|
||
if if_sr==True and sr==24000:
|
||
print(i18n("音频超分中"))
|
||
audio_opt,sr=audio_sr(audio_opt.unsqueeze(0),sr)
|
||
max_audio=np.abs(audio_opt).max()
|
||
if max_audio > 1: audio_opt /= max_audio
|
||
else:
|
||
audio_opt=audio_opt.cpu().detach().numpy()
|
||
yield sr, (audio_opt * 32767).astype(np.int16)
|
||
|
||
|
||
def split(todo_text):
|
||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||
if todo_text[-1] not in splits:
|
||
todo_text += "。"
|
||
i_split_head = i_split_tail = 0
|
||
len_text = len(todo_text)
|
||
todo_texts = []
|
||
while 1:
|
||
if i_split_head >= len_text:
|
||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||
if todo_text[i_split_head] in splits:
|
||
i_split_head += 1
|
||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||
i_split_tail = i_split_head
|
||
else:
|
||
i_split_head += 1
|
||
return todo_texts
|
||
|
||
|
||
def cut1(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
split_idx = list(range(0, len(inps), 4))
|
||
split_idx[-1] = None
|
||
if len(split_idx) > 1:
|
||
opts = []
|
||
for idx in range(len(split_idx) - 1):
|
||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||
else:
|
||
opts = [inp]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
def cut2(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
if len(inps) < 2:
|
||
return inp
|
||
opts = []
|
||
summ = 0
|
||
tmp_str = ""
|
||
for i in range(len(inps)):
|
||
summ += len(inps[i])
|
||
tmp_str += inps[i]
|
||
if summ > 50:
|
||
summ = 0
|
||
opts.append(tmp_str)
|
||
tmp_str = ""
|
||
if tmp_str != "":
|
||
opts.append(tmp_str)
|
||
# print(opts)
|
||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||
opts[-2] = opts[-2] + opts[-1]
|
||
opts = opts[:-1]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
def cut3(inp):
|
||
inp = inp.strip("\n")
|
||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
def cut4(inp):
|
||
inp = inp.strip("\n")
|
||
opts = re.split(r'(?<!\d)\.(?!\d)', inp.strip("."))
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||
def cut5(inp):
|
||
inp = inp.strip("\n")
|
||
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
||
mergeitems = []
|
||
items = []
|
||
|
||
for i, char in enumerate(inp):
|
||
if char in punds:
|
||
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
||
items.append(char)
|
||
else:
|
||
items.append(char)
|
||
mergeitems.append("".join(items))
|
||
items = []
|
||
else:
|
||
items.append(char)
|
||
|
||
if items:
|
||
mergeitems.append("".join(items))
|
||
|
||
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
||
return "\n".join(opt)
|
||
|
||
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split('(\d+)', s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
def process_text(texts):
|
||
_text=[]
|
||
if all(text in [None, " ", "\n",""] for text in texts):
|
||
raise ValueError(i18n("请输入有效文本"))
|
||
for text in texts:
|
||
if text in [None, " ", ""]:
|
||
pass
|
||
else:
|
||
_text.append(text)
|
||
return _text
|
||
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||
|
||
|
||
SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"]
|
||
GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"]
|
||
for path in SoVITS_weight_root+GPT_weight_root:
|
||
os.makedirs(path,exist_ok=True)
|
||
|
||
|
||
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
|
||
SoVITS_names = [i for i in pretrained_sovits_name]
|
||
for path in SoVITS_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
|
||
GPT_names = [i for i in pretrained_gpt_name]
|
||
for path in GPT_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
|
||
return SoVITS_names, GPT_names
|
||
|
||
|
||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||
|
||
def html_center(text, label='p'):
|
||
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||
</div>"""
|
||
|
||
def html_left(text, label='p'):
|
||
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||
</div>"""
|
||
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
gr.Markdown(
|
||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "<br>" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||
)
|
||
with gr.Group():
|
||
gr.Markdown(html_center(i18n("模型切换"),'h3'))
|
||
with gr.Row():
|
||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True, scale=14)
|
||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True, scale=14)
|
||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
|
||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
|
||
with gr.Row():
|
||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
|
||
with gr.Column(scale=13):
|
||
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。")+i18n("v3暂不支持该模式,使用了会报错。"), value=False, interactive=True if model_version!="v3"else False, show_label=True,scale=1)
|
||
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT")+"<br>"+i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")))
|
||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5,scale=1)
|
||
with gr.Column(scale=14):
|
||
prompt_language = gr.Dropdown(
|
||
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"),
|
||
)
|
||
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple")if model_version!="v3"else gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple",visible=False)
|
||
sample_steps = gr.Radio(label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),value=32,choices=[4,8,16,32],visible=True)if model_version=="v3"else gr.Radio(label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),choices=[4,8,16,32],visible=False,value=32)
|
||
if_sr_Checkbox=gr.Checkbox(label=i18n("v3输出如果觉得闷可以试试开超分"), value=False, interactive=True, show_label=True,visible=False if model_version!="v3"else True)
|
||
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
|
||
with gr.Row():
|
||
with gr.Column(scale=13):
|
||
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
|
||
with gr.Column(scale=7):
|
||
text_language = gr.Dropdown(
|
||
label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1
|
||
)
|
||
how_to_cut = gr.Dropdown(
|
||
label=i18n("怎么切"),
|
||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True, scale=1
|
||
)
|
||
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
|
||
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True, scale=1)
|
||
with gr.Row():
|
||
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True, scale=1)
|
||
pause_second_slider = gr.Slider(minimum=0.1,maximum=0.5,step=0.01,label=i18n("句间停顿秒数"),value=0.3,interactive=True, scale=1)
|
||
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
|
||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True, scale=1)
|
||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True, scale=1)
|
||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True, scale=1)
|
||
# with gr.Column():
|
||
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
|
||
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
|
||
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
|
||
with gr.Row():
|
||
inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size='lg', scale=25)
|
||
output = gr.Audio(label=i18n("输出的语音"), scale=14)
|
||
|
||
inference_button.click(
|
||
get_tts_wav,
|
||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs,sample_steps,if_sr_Checkbox,pause_second_slider],
|
||
[output],
|
||
)
|
||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language,sample_steps,inp_refs,ref_text_free,if_sr_Checkbox,inference_button])
|
||
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
||
|
||
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||
# with gr.Row():
|
||
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
||
# button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||
# button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||
# button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||
# button1.click(cut1, [text_inp], [text_opt])
|
||
# button2.click(cut2, [text_inp], [text_opt])
|
||
# button3.click(cut3, [text_inp], [text_opt])
|
||
# button4.click(cut4, [text_inp], [text_opt])
|
||
# button5.click(cut5, [text_inp], [text_opt])
|
||
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
|
||
|
||
if __name__ == '__main__':
|
||
app.queue().launch(#concurrency_count=511, max_size=1022
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=infer_ttswebui,
|
||
quiet=True,
|
||
)
|