mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
1021 lines
47 KiB
Python
1021 lines
47 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
功能:
|
||
- 通过 GET 和 POST 请求提供 TTS 推理接口 (`/`),支持默认参考音频和参数调整。
|
||
- 新增 `/ttsrole` 接口,支持基于角色的 TTS 推理,动态加载角色模型和参考音频,同时支持 GET 和 POST 请求。
|
||
- 支持更换默认参考音频 (`/change_refer`) 和模型权重 (`/set_model`)。
|
||
- 提供控制接口 (`/control`) 用于重启或退出服务。
|
||
- 支持多语言文本处理(中文、英文、日文、韩文等)及自动语言切分。
|
||
- 支持多种音频格式(wav, ogg, aac)和数据类型(int16, int32)。
|
||
- 支持通过 POST 请求动态切换模型版本(v2 或 v3)。
|
||
|
||
使用方法:
|
||
1. 安装依赖:
|
||
pip install -r requirements.txt
|
||
2. 配置环境:
|
||
- 确保 GPT 和 SoVITS 模型文件已准备好。
|
||
- 可选:设置默认参考音频路径、文本和语言。
|
||
3. 运行服务:
|
||
python api_role_v3.py -s "path/to/sovits.pth" -g "path/to/gpt.ckpt" -dr "ref.wav" -dt "参考文本" -dl "zh" -p 9880
|
||
|
||
参数说明:
|
||
命令行参数:
|
||
- -s, --sovits_path: SoVITS 模型路径(默认从 config 获取)。
|
||
- -g, --gpt_path: GPT 模型路径(默认从 config 获取)。
|
||
- -dr, --default_refer_path: 默认参考音频路径。
|
||
- -dt, --default_refer_text: 默认参考音频文本。
|
||
- -dl, --default_refer_language: 默认参考音频语言(zh, en, ja, ko 等)。
|
||
- -d, --device: 设备(cuda 或 cpu,默认从 config 获取)。
|
||
- -a, --bind_addr: 绑定地址(默认 0.0.0.0)。
|
||
- -p, --port: 端口(默认 9880)。
|
||
- -fp, --full_precision: 使用全精度(覆盖默认)。
|
||
- -hp, --half_precision: 使用半精度(覆盖默认)。
|
||
- -sm, --stream_mode: 流式模式(close 或 normal,默认 close)。
|
||
- -mt, --media_type: 音频格式(wav, ogg, aac,默认 wav)。
|
||
- -st, --sub_type: 数据类型(int16 或 int32,默认 int16)。
|
||
- -cp, --cut_punc: 文本切分符号(默认空)。
|
||
- -hb, --hubert_path: HuBERT 模型路径(默认从 config 获取)。
|
||
- -b, --bert_path: BERT 模型路径(默认从 config 获取)。
|
||
|
||
接口参数(/):
|
||
- refer_wav_path: 参考音频路径(可选)。
|
||
- prompt_text: 参考音频文本(可选)。
|
||
- prompt_language: 参考音频语言(可选)。
|
||
- text: 待合成文本(必填)。
|
||
- text_language: 目标文本语言(可选,默认 auto)。
|
||
- cut_punc: 文本切分符号(可选)。
|
||
- top_k: Top-K 采样值(默认 15)。
|
||
- top_p: Top-P 采样值(默认 1.0)。
|
||
- temperature: 温度值(默认 1.0)。
|
||
- speed: 语速因子(默认 1.0)。
|
||
- inp_refs: 辅助参考音频路径列表(默认空)。
|
||
- sample_steps: 采样步数(默认 32,限定 [4, 8, 16, 32])。
|
||
- if_sr: 是否超分(默认 False)。
|
||
|
||
接口参数(/ttsrole):
|
||
- text: 待合成文本(必填)。
|
||
- role: 角色名称(必填)。
|
||
- text_language: 目标文本语言(默认 auto)。
|
||
- ref_audio_path: 参考音频路径(可选)。
|
||
- prompt_text: 参考音频文本(可选)。
|
||
- prompt_language: 参考音频语言(可选)。
|
||
- emotion: 情感标签(可选)。
|
||
- top_k: Top-K 采样值(默认 15)。
|
||
- top_p: Top-P 采样值(默认 0.6)。
|
||
- temperature: 温度值(默认 0.6)。
|
||
- speed: 语速因子(默认 1.0)。
|
||
- inp_refs: 辅助参考音频路径列表(默认空)。
|
||
- sample_steps: 采样步数(默认 32,限定 [4, 8, 16, 32])。
|
||
- if_sr: 是否超分(默认 False)。
|
||
- version: 模型版本(可选,v2 或 v3,POST 请求支持动态切换)。
|
||
|
||
### 完整请求示例 (/ttsrole POST)
|
||
{
|
||
"text": "你好", # str, 必填, 要合成的文本内容
|
||
"role": "role1", # str, 必填, 角色名称,决定使用 roles/{role} 中的配置和音频
|
||
"emotion": "开心", # str, 可选, 情感标签,用于从 roles/{role}/reference_audios 中选择音频
|
||
"text_lang": "auto", # str, 可选, 默认 "auto", 文本语言,"auto" 时根据 emotion 或角色目录动态选择
|
||
"ref_audio_path": "/path/to/ref.wav", # str, 可选, 参考音频路径,若提供则优先使用,跳过自动选择
|
||
"aux_ref_audio_paths": ["/path1.wav", "/path2.wav"], # List[str], 可选, 辅助参考音频路径,用于多说话人融合
|
||
"prompt_lang": "ja", # str, 可选, 提示文本语言,若提供 ref_audio_path 则需指定,"auto" 模式下动态选择
|
||
"prompt_text": "こんにちは", # str, 可选, 提示文本,与 ref_audio_path 配对使用,自动选择时从文件或文件名生成
|
||
"top_k": 10, # int, 可选, Top-K 采样值,覆盖 inference.top_k
|
||
"top_p": 0.8, # float, 可选, Top-P 采样值,覆盖 inference.top_p
|
||
"temperature": 1.0, # float, 可选, 温度值,覆盖 inference.temperature
|
||
"text_split_method": "cut5", # str, 可选, 文本分割方法,覆盖 inference.text_split_method, 具体见text_segmentation_method.py
|
||
"batch_size": 2, # int, 可选, 批处理大小,覆盖 inference.batch_size
|
||
"batch_threshold": 0.75, # float, 可选, 批处理阈值,覆盖 inference.batch_threshold
|
||
"split_bucket": true, # bool, 可选, 是否按桶分割,覆盖 inference.split_bucket
|
||
"speed_factor": 1.2, # float, 可选, 语速因子,覆盖 inference.speed_factor
|
||
"fragment_interval": 0.3, # float, 可选, 片段间隔(秒),覆盖 inference.fragment_interval
|
||
"seed": 42, # int, 可选, 随机种子,覆盖 seed
|
||
"media_type": "wav", # str, 可选, 默认 "wav", 输出格式,支持 "wav", "raw", "ogg", "aac"
|
||
"streaming_mode": false, # bool, 可选, 默认 false, 是否流式返回
|
||
"parallel_infer": true, # bool, 可选, 默认 true, 是否并行推理
|
||
"repetition_penalty": 1.35, # float, 可选, 重复惩罚值,覆盖 inference.repetition_penalty
|
||
"version": "v2", # str, 可选, 配置文件版本,覆盖 version,动态切换 v2 或 v3
|
||
"languages": ["zh", "ja", "en"], # List[str], 可选, 支持的语言列表,覆盖 languages
|
||
"bert_base_path": "/path/to/bert", # str, 可选, BERT 模型路径,覆盖 bert_base_path
|
||
"cnhuhbert_base_path": "/path/to/hubert", # str, 可选, HuBERT 模型路径,覆盖 cnhuhbert_base_path
|
||
"device": "cpu", # str, 可选, 统一设备,覆盖 device
|
||
"is_half": true, # bool, 可选, 是否使用半精度,覆盖 is_half
|
||
"t2s_weights_path": "/path/to/gpt.ckpt", # str, 可选, GPT 模型路径,覆盖 t2s_weights_path
|
||
"vits_weights_path": "/path/to/sovits.pth", # str, 可选, SoVITS 模型路径,覆盖 vits_weights_path
|
||
"t2s_model_path": "/path/to/gpt.ckpt", # str, 可选, GPT 模型路径(与 t2s_weights_path 同义)
|
||
"t2s_model_device": "cpu", # str, 可选, GPT 模型设备,覆盖 t2s_model.device,默认检测显卡
|
||
"vits_model_path": "/path/to/sovits.pth", # str, 可选, SoVITS 模型路径(与 vits_weights_path 同义)
|
||
"vits_model_device": "cpu" # str, 可选, SoVITS 模型设备,覆盖 vits_model.device,默认检测显卡
|
||
}
|
||
|
||
### 参数必要性和优先级
|
||
- 必填参数:
|
||
- /ttsrole: text, role
|
||
- /tts: text, ref_audio_path, prompt_lang
|
||
- 可选参数: 其他均为可选,默认值从 roles/{role}/tts_infer.yaml 或 GPT_SoVITS/configs/tts_infer.yaml 获取
|
||
- 优先级: POST 请求参数 > roles/{role}/tts_infer.yaml > 默认 GPT_SoVITS/configs/tts_infer.yaml
|
||
|
||
### 目录结构
|
||
GPT-SoVITS-roleapi/
|
||
├── api_role_v3.py # 本文件, API 主程序
|
||
├── GPT_SoVITS/ # GPT-SoVITS 核心库
|
||
│ └── configs/
|
||
│ └── tts_infer.yaml # 默认配置文件
|
||
├── roles/ # 角色配置目录
|
||
│ ├── role1/ # 示例角色 role1
|
||
│ │ ├── tts_infer.yaml # 角色配置文件(可选)
|
||
│ │ ├── model.ckpt # GPT 模型(可选)
|
||
│ │ ├── model.pth # SoVITS 模型(可选)
|
||
│ │ └── reference_audios/ # 角色参考音频目录
|
||
│ │ ├── zh/
|
||
│ │ │ ├── 【开心】voice1.wav
|
||
│ │ │ ├── 【开心】voice1.txt
|
||
│ │ ├── ja/
|
||
│ │ │ ├── 【开心】voice2.wav
|
||
│ │ │ ├── 【开心】voice2.txt
|
||
│ ├── role2/
|
||
│ │ ├── tts_infer.yaml
|
||
│ │ ├── model.ckpt
|
||
│ │ ├── model.pth
|
||
│ │ └── reference_audios/
|
||
│ │ ├── zh/
|
||
│ │ │ ├── 【开心】voice1.wav
|
||
│ │ │ ├── 【开心】voice1.txt
|
||
│ │ │ ├── 【悲伤】asdafasdas.wav
|
||
│ │ │ ├── 【悲伤】asdafasdas.txt
|
||
│ │ ├── ja/
|
||
│ │ │ ├── 【开心】voice2.wav
|
||
│ │ │ ├── 【开心】voice2.txt
|
||
|
||
### text_lang, prompt_lang, prompt_text 选择逻辑 (/ttsrole)
|
||
1. text_lang 选择逻辑:
|
||
- 默认值: "auto"
|
||
- 如果请求未提供 text_lang,视为 "auto"
|
||
- 当 text_lang = "auto" 且存在 emotion 参数:
|
||
- 从 roles/{role}/reference_audios 下所有语言文件夹中查找以 "【emotion】" 开头的音频
|
||
- 随机选择一个匹配的音频,语言由音频所在文件夹确定
|
||
- 当 text_lang 指定具体语言(如 "zh"):
|
||
- 从 roles/{role}/reference_audios/{text_lang} 中选择音频
|
||
- 如果指定语言无匹配音频,则尝试其他语言文件夹
|
||
2. prompt_lang 选择逻辑:
|
||
- 如果提供了 ref_audio_path,则需显式指定 prompt_lang
|
||
- 如果未提供 ref_audio_path 且 text_lang = "auto" 且存在 emotion:
|
||
- prompt_lang = 随机选择的音频所在语言文件夹名(如 "zh" 或 "ja")
|
||
- 如果未提供 ref_audio_path 且 text_lang 指定具体语言:
|
||
- prompt_lang = text_lang(如 "zh")
|
||
- 如果 text_lang 无匹配音频,则为随机选择的音频所在语言
|
||
3. prompt_text 选择逻辑:
|
||
- 如果提供了 ref_audio_path(如 "/path/to/ref.wav"):
|
||
- 检查文件名是否包含 "【xxx】" 前缀:
|
||
- 如果有(如 "【开心】abc.wav"):
|
||
- 若存在对应 .txt 文件(如 "【开心】abc.txt"),prompt_text = .txt 文件内容
|
||
- 若无对应 .txt 文件,prompt_text = "abc"(去掉 "【开心】" 和 ".wav" 的部分)
|
||
- 如果无 "【xxx】" 前缀:
|
||
- 若存在对应 .txt 文件(如 "ref.txt"),prompt_text = .txt 文件内容
|
||
- 若无对应 .txt 文件,prompt_text = "ref"(去掉 ".wav" 的部分)
|
||
- 如果未提供 ref_audio_path:
|
||
- 从 roles/{role}/reference_audios 中选择音频(基于 text_lang 和 emotion):
|
||
- 优先匹配 "【emotion】" 前缀的音频(如 "【开心】voice1.wav")
|
||
- 若存在对应 .txt 文件(如 "【开心】voice1.txt"),prompt_text = .txt 文件内容
|
||
- 若无对应 .txt 文件,prompt_text = "voice1"(去掉 "【开心】" 和 ".wav" 的部分)
|
||
- 未匹配 emotion 则随机选择一个音频,逻辑同上
|
||
|
||
### 讲解
|
||
1. 必填参数:
|
||
- /ttsrole: text, role
|
||
- /tts: text, ref_audio_path, prompt_lang
|
||
2. 音频选择 (/ttsrole):
|
||
- 若提供 ref_audio_path,则使用它
|
||
- 否则根据 role、text_lang、emotion 从 roles/{role}/reference_audios 中选择
|
||
- text_lang = "auto" 时,若有 emotion,则跨语言匹配 "【emotion】" 前缀音频
|
||
- emotion 匹配 "【emotion】" 前缀音频,未匹配则随机选择
|
||
3. 设备选择:
|
||
- 默认尝试检测显卡(torch.cuda.is_available()),若可用则用 "cuda",否则 "cpu"
|
||
- 若缺少 torch 依赖或检测失败,回退到 "cpu"
|
||
- POST 参数 device, t2s_model_device, vits_model_device 可强制指定设备,优先级最高
|
||
4. 配置文件:
|
||
- 默认加载 GPT_SoVITS/configs/tts_infer.yaml
|
||
- 若 roles/{role}/tts_infer.yaml 存在且未被请求参数覆盖,则使用它 (/ttsrole)
|
||
- 请求参数(如 top_k, bert_base_path)覆盖所有配置文件
|
||
5. 返回格式:
|
||
- 成功时返回音频流 (Response 或 StreamingResponse)
|
||
- 失败时返回 JSON,包含错误消息和可能的异常详情
|
||
6. 运行:
|
||
- python api_role_v3.py -a 127.0.0.1 -p 9880
|
||
- 检查启动日志确认设备
|
||
7. 模型版本切换:
|
||
- POST 请求中通过 "version" 参数指定 "v2" 或 "v3",动态影响推理逻辑。
|
||
"""
|
||
|
||
import argparse
|
||
import os
|
||
import re
|
||
import sys
|
||
import signal
|
||
from time import time as ttime
|
||
import torch
|
||
import torchaudio
|
||
import librosa
|
||
import soundfile as sf
|
||
from fastapi import FastAPI, Request, Query, HTTPException
|
||
from fastapi.responses import StreamingResponse, JSONResponse
|
||
import uvicorn
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import numpy as np
|
||
from feature_extractor import cnhubert
|
||
from io import BytesIO
|
||
from module.models import SynthesizerTrn, SynthesizerTrnV3
|
||
from peft import LoraConfig, PeftModel, get_peft_model
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from module.mel_processing import spectrogram_torch
|
||
from tools.my_utils import load_audio
|
||
import config as global_config
|
||
import logging
|
||
import subprocess
|
||
import glob
|
||
from typing import Optional, List
|
||
from text.LangSegmenter import LangSegmenter
|
||
import random
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||
|
||
# 日志配置
|
||
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG)
|
||
logger = logging.getLogger('uvicorn')
|
||
|
||
# 获取全局配置
|
||
g_config = global_config.Config()
|
||
|
||
# 默认参考音频类
|
||
class DefaultRefer:
|
||
def __init__(self, path, text, language):
|
||
self.path = path
|
||
self.text = text
|
||
self.language = language
|
||
|
||
def is_ready(self) -> bool:
|
||
return is_full(self.path, self.text, self.language)
|
||
|
||
def is_empty(*items):
|
||
for item in items:
|
||
if item is not None and item != "":
|
||
return False
|
||
return True
|
||
|
||
def is_full(*items):
|
||
for item in items:
|
||
if item is None or item == "":
|
||
return False
|
||
return True
|
||
|
||
# 角色和模型定义
|
||
class Speaker:
|
||
def __init__(self, name, gpt, sovits, phones=None, bert=None, prompt=None):
|
||
self.name = name
|
||
self.gpt = gpt
|
||
self.sovits = sovits
|
||
self.phones = phones
|
||
self.bert = bert
|
||
self.prompt = prompt
|
||
|
||
class Sovits:
|
||
def __init__(self, vq_model, hps):
|
||
self.vq_model = vq_model
|
||
self.hps = hps
|
||
|
||
class Gpt:
|
||
def __init__(self, max_sec, t2s_model):
|
||
self.max_sec = max_sec
|
||
self.t2s_model = t2s_model
|
||
|
||
# 全局变量
|
||
speaker_list = {}
|
||
hz = 50
|
||
bigvgan_model = None
|
||
|
||
# BigVGAN 初始化
|
||
def init_bigvgan():
|
||
global bigvgan_model
|
||
from BigVGAN import bigvgan
|
||
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
|
||
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
|
||
use_cuda_kernel=False
|
||
)
|
||
bigvgan_model.remove_weight_norm()
|
||
bigvgan_model = bigvgan_model.eval()
|
||
if is_half:
|
||
bigvgan_model = bigvgan_model.half().to(device)
|
||
else:
|
||
bigvgan_model = bigvgan_model.to(device)
|
||
|
||
# 模型加载函数
|
||
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
|
||
def get_sovits_weights(sovits_path):
|
||
path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
|
||
|
||
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
|
||
if if_lora_v3 and not is_exist_s2gv3:
|
||
logger.info("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||
|
||
dict_s2 = load_sovits_new(sovits_path)
|
||
hps = dict_s2["config"]
|
||
hps = DictToAttrRecursive(hps)
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
if 'enc_p.text_embedding.weight' not in dict_s2['weight']:
|
||
hps.model.version = "v2"
|
||
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||
hps.model.version = "v1"
|
||
else:
|
||
hps.model.version = "v2"
|
||
|
||
if model_version == "v3":
|
||
hps.model.version = "v3"
|
||
|
||
model_params_dict = vars(hps.model)
|
||
if model_version != "v3":
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**model_params_dict
|
||
)
|
||
else:
|
||
vq_model = SynthesizerTrnV3(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**model_params_dict
|
||
)
|
||
init_bigvgan()
|
||
logger.info(f"模型版本: {hps.model.version}")
|
||
if "pretrained" not in sovits_path:
|
||
try:
|
||
del vq_model.enc_q
|
||
except:
|
||
pass
|
||
if is_half:
|
||
vq_model = vq_model.half().to(device)
|
||
else:
|
||
vq_model = vq_model.to(device)
|
||
vq_model.eval()
|
||
if not if_lora_v3:
|
||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||
else:
|
||
vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False)
|
||
lora_rank = dict_s2["lora_rank"]
|
||
lora_config = LoraConfig(
|
||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||
r=lora_rank,
|
||
lora_alpha=lora_rank,
|
||
init_lora_weights=True,
|
||
)
|
||
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||
vq_model.eval()
|
||
|
||
return Sovits(vq_model, hps)
|
||
|
||
def get_gpt_weights(gpt_path):
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
if is_half:
|
||
t2s_model = t2s_model.half()
|
||
t2s_model = t2s_model.to(device)
|
||
t2s_model.eval()
|
||
return Gpt(max_sec, t2s_model)
|
||
|
||
def change_gpt_sovits_weights(gpt_path, sovits_path):
|
||
try:
|
||
gpt = get_gpt_weights(gpt_path)
|
||
sovits = get_sovits_weights(sovits_path)
|
||
except Exception as e:
|
||
return JSONResponse({"code": 400, "message": str(e)}, status_code=400)
|
||
speaker_list["default"] = Speaker(name="default", gpt=gpt, sovits=sovits)
|
||
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
||
|
||
# 角色配置加载
|
||
def load_role_config(role, vits_weights_path=None, t2s_weights_path=None):
|
||
role_dir = os.path.join(now_dir, "roles", role)
|
||
if not os.path.exists(role_dir):
|
||
return False
|
||
gpt_path = t2s_weights_path or (glob.glob(os.path.join(role_dir, "*.ckpt"))[0] if glob.glob(os.path.join(role_dir, "*.ckpt")) else args.gpt_path)
|
||
sovits_path = vits_weights_path or (glob.glob(os.path.join(role_dir, "*.pth"))[0] if glob.glob(os.path.join(role_dir, "*.pth")) else args.sovits_path)
|
||
speaker_list[role] = Speaker(name=role, gpt=get_gpt_weights(gpt_path), sovits=get_sovits_weights(sovits_path))
|
||
return True
|
||
|
||
# 参考音频选择
|
||
def select_ref_audio(role, text_language, emotion=None):
|
||
audio_base_dir = os.path.join(now_dir, "roles", role, "reference_audios")
|
||
if not os.path.exists(audio_base_dir):
|
||
return None, None, None
|
||
if text_language.lower() == "auto" and emotion:
|
||
all_langs = [d for d in os.listdir(audio_base_dir) if os.path.isdir(os.path.join(audio_base_dir, d))]
|
||
emotion_files = []
|
||
for lang in all_langs:
|
||
lang_dir = os.path.join(audio_base_dir, lang)
|
||
emotion_files.extend(glob.glob(os.path.join(lang_dir, f"【{emotion}】*.*")))
|
||
if emotion_files:
|
||
audio_path = random.choice(emotion_files)
|
||
txt_path = audio_path.rsplit(".", 1)[0] + ".txt"
|
||
prompt_text = open(txt_path, "r", encoding="utf-8").read().strip() if os.path.exists(txt_path) else os.path.basename(audio_path).split("】")[1].rsplit(".", 1)[0]
|
||
prompt_language = os.path.basename(os.path.dirname(audio_path))
|
||
return audio_path, prompt_text, prompt_language
|
||
lang_dir = os.path.join(audio_base_dir, text_language.lower())
|
||
if os.path.exists(lang_dir):
|
||
audio_files = glob.glob(os.path.join(lang_dir, f"【{emotion}】*.*" if emotion else "*.*"))
|
||
if audio_files:
|
||
audio_path = random.choice(audio_files)
|
||
txt_path = audio_path.rsplit(".", 1)[0] + ".txt"
|
||
prompt_text = open(txt_path, "r", encoding="utf-8").read().strip() if os.path.exists(txt_path) else os.path.basename(audio_path).rsplit(".", 1)[0]
|
||
return audio_path, prompt_text, text_language.lower()
|
||
return None, None, None
|
||
|
||
# BERT 和文本处理函数
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(device)
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
return phone_level_feature.T
|
||
|
||
def clean_text_inf(text, language, version):
|
||
language = language.replace("all_", "")
|
||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||
phones = cleaned_text_to_sequence(phones, version)
|
||
return phones, word2ph, norm_text
|
||
|
||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||
language = language.replace("all_", "")
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half else torch.float32,
|
||
).to(device)
|
||
return bert
|
||
|
||
from text import chinese
|
||
def get_phones_and_bert(text, language, version, final=False):
|
||
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
||
formattext = text
|
||
while " " in formattext:
|
||
formattext = formattext.replace(" ", " ")
|
||
if language == "all_zh":
|
||
if re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext, "zh", version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||
elif language == "all_yue" and re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext, "yue", version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half else torch.float32,
|
||
).to(device)
|
||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||
textlist = []
|
||
langlist = []
|
||
if language == "auto":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
elif language == "auto_yue":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "zh":
|
||
tmp["lang"] = "yue"
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "en":
|
||
langlist.append(tmp["lang"])
|
||
else:
|
||
langlist.append(language)
|
||
textlist.append(tmp["text"])
|
||
phones_list = []
|
||
bert_list = []
|
||
norm_text_list = []
|
||
for i in range(len(textlist)):
|
||
lang = langlist[i]
|
||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||
phones_list.append(phones)
|
||
norm_text_list.append(norm_text)
|
||
bert_list.append(bert)
|
||
bert = torch.cat(bert_list, dim=1)
|
||
phones = sum(phones_list, [])
|
||
norm_text = ''.join(norm_text_list)
|
||
if not final and len(phones) < 6:
|
||
return get_phones_and_bert("." + text, language, version, final=True)
|
||
return phones, bert.to(torch.float16 if is_half else torch.float32), norm_text
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def get_spepc(hps, filename):
|
||
audio, _ = librosa.load(filename, int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
maxx = audio.abs().max()
|
||
if maxx > 1:
|
||
audio /= min(2, maxx)
|
||
audio_norm = audio.unsqueeze(0)
|
||
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
|
||
hps.data.win_length, center=False)
|
||
return spec
|
||
|
||
# 音频处理函数
|
||
def pack_audio(audio_bytes, data, rate):
|
||
if media_type == "ogg":
|
||
audio_bytes = pack_ogg(audio_bytes, data, rate)
|
||
elif media_type == "aac":
|
||
audio_bytes = pack_aac(audio_bytes, data, rate)
|
||
else:
|
||
audio_bytes = pack_raw(audio_bytes, data, rate)
|
||
return audio_bytes
|
||
|
||
def pack_ogg(audio_bytes, data, rate):
|
||
with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||
audio_file.write(data)
|
||
return audio_bytes
|
||
|
||
def pack_raw(audio_bytes, data, rate):
|
||
audio_bytes.write(data.tobytes())
|
||
return audio_bytes
|
||
|
||
def pack_wav(audio_bytes, rate):
|
||
if is_int32:
|
||
data = np.frombuffer(audio_bytes.getvalue(), dtype=np.int32)
|
||
wav_bytes = BytesIO()
|
||
sf.write(wav_bytes, data, rate, format='WAV', subtype='PCM_32')
|
||
else:
|
||
data = np.frombuffer(audio_bytes.getvalue(), dtype=np.int16)
|
||
wav_bytes = BytesIO()
|
||
sf.write(wav_bytes, data, rate, format='WAV')
|
||
return wav_bytes
|
||
|
||
def pack_aac(audio_bytes, data, rate):
|
||
pcm = 's32le' if is_int32 else 's16le'
|
||
bit_rate = '256k' if is_int32 else '128k'
|
||
process = subprocess.Popen([
|
||
'ffmpeg', '-f', pcm, '-ar', str(rate), '-ac', '1', '-i', 'pipe:0',
|
||
'-c:a', 'aac', '-b:a', bit_rate, '-vn', '-f', 'adts', 'pipe:1'
|
||
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||
out, _ = process.communicate(input=data.tobytes())
|
||
audio_bytes.write(out)
|
||
return audio_bytes
|
||
|
||
def read_clean_buffer(audio_bytes):
|
||
audio_chunk = audio_bytes.getvalue()
|
||
audio_bytes.truncate(0)
|
||
audio_bytes.seek(0)
|
||
return audio_bytes, audio_chunk
|
||
|
||
# 文本切分
|
||
def cut_text(text, punc):
|
||
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}]
|
||
if len(punc_list) > 0:
|
||
punds = r"[" + "".join(punc_list) + r"]"
|
||
text = text.strip("\n")
|
||
items = re.split(f"({punds})", text)
|
||
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||
if len(items) % 2 == 1:
|
||
mergeitems.append(items[-1])
|
||
text = "\n".join(mergeitems)
|
||
while "\n\n" in text:
|
||
text = text.replace("\n\n", "\n")
|
||
return text
|
||
|
||
def only_punc(text):
|
||
return not any(t.isalnum() or t.isalpha() for t in text)
|
||
|
||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…"}
|
||
|
||
|
||
# TTS 推理函数
|
||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k=15, top_p=0.6, temperature=0.6, speed=1, inp_refs=None, sample_steps=32, if_sr=False, spk="default", version=None):
|
||
infer_sovits = speaker_list[spk].sovits
|
||
vq_model = infer_sovits.vq_model
|
||
hps = infer_sovits.hps
|
||
|
||
# 如果提供了 version 参数,覆盖默认版本
|
||
if version:
|
||
hps.model.version = version
|
||
|
||
infer_gpt = speaker_list[spk].gpt
|
||
t2s_model = infer_gpt.t2s_model
|
||
max_sec = infer_gpt.max_sec
|
||
|
||
prompt_text = prompt_text.strip("\n")
|
||
if prompt_text[-1] not in splits:
|
||
prompt_text += "。" if prompt_language != "en" else "."
|
||
prompt_language, text = prompt_language, text.strip("\n")
|
||
dtype = torch.float16 if is_half else torch.float32
|
||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half else np.float32)
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
wav16k = torch.from_numpy(wav16k)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
if is_half:
|
||
wav16k = wav16k.half().to(device)
|
||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||
else:
|
||
wav16k = wav16k.to(device)
|
||
zero_wav_torch = zero_wav_torch.to(device)
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
prompt_semantic = codes[0, 0]
|
||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||
|
||
if hps.model.version != "v3":
|
||
refers = []
|
||
if inp_refs:
|
||
for path in inp_refs:
|
||
try:
|
||
refer = get_spepc(hps, path).to(dtype).to(device)
|
||
refers.append(refer)
|
||
except Exception as e:
|
||
logger.error(e)
|
||
if not refers:
|
||
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
||
else:
|
||
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
|
||
|
||
prompt_language = dict_language[prompt_language.lower()]
|
||
text_language = dict_language[text_language.lower()]
|
||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, hps.model.version)
|
||
texts = text.split("\n")
|
||
audio_bytes = BytesIO()
|
||
|
||
for text in texts:
|
||
if only_punc(text):
|
||
continue
|
||
audio_opt = []
|
||
if text[-1] not in splits:
|
||
text += "。" if text_language != "en" else "."
|
||
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, hps.model.version)
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
|
||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||
bert = bert.to(device).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||
with torch.no_grad():
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
prompt,
|
||
bert,
|
||
top_k=top_k,
|
||
top_p=top_p,
|
||
temperature=temperature,
|
||
early_stop_num=hz * max_sec)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||
|
||
if hps.model.version != "v3":
|
||
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||
refers, speed=speed).detach().cpu().numpy()[0, 0]
|
||
else:
|
||
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||
fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
||
ref_audio, sr = torchaudio.load(ref_wav_path)
|
||
ref_audio = ref_audio.to(device).float()
|
||
if ref_audio.shape[0] == 2:
|
||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||
if sr != 24000:
|
||
ref_audio = torchaudio.transforms.Resample(sr, 24000).to(device)(ref_audio)
|
||
mel_fn = lambda x: torchaudio.transforms.MelSpectrogram(
|
||
sample_rate=24000, n_fft=1024, win_length=1024, hop_length=256, n_mels=100, f_min=0, f_max=None, center=False
|
||
)(x)
|
||
mel2 = mel_fn(ref_audio)
|
||
mel2 = (mel2 - (-12)) / (2 - (-12)) * 2 - 1 # 简化的 norm_spec
|
||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||
mel2 = mel2[:, :, :T_min]
|
||
fea_ref = fea_ref[:, :, :T_min]
|
||
if T_min > 468:
|
||
mel2 = mel2[:, :, -468:]
|
||
fea_ref = fea_ref[:, :, -468:]
|
||
T_min = 468
|
||
chunk_len = 934 - T_min
|
||
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed)
|
||
cfm_resss = []
|
||
idx = 0
|
||
while True:
|
||
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
|
||
if fea_todo_chunk.shape[-1] == 0:
|
||
break
|
||
idx += chunk_len
|
||
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||
mel2 = cfm_res[:, :, -T_min:]
|
||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||
cfm_resss.append(cfm_res)
|
||
cmf_res = torch.cat(cfm_resss, 2)
|
||
cmf_res = (cmf_res + 1) / 2 * (2 - (-12)) + (-12) # 简化的 denorm_spec
|
||
if bigvgan_model is None:
|
||
init_bigvgan()
|
||
with torch.inference_mode():
|
||
wav_gen = bigvgan_model(cmf_res)
|
||
audio = wav_gen[0][0].cpu().detach().numpy()
|
||
|
||
max_audio = np.abs(audio).max()
|
||
if max_audio > 1:
|
||
audio /= max_audio
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav)
|
||
audio_opt = np.concatenate(audio_opt, 0)
|
||
|
||
sr = hps.data.sampling_rate if hps.model.version != "v3" else 24000
|
||
if if_sr and sr == 24000:
|
||
audio_opt = torch.from_numpy(audio_opt).float().to(device)
|
||
# 简化为无超分逻辑,需自行实现 audio_sr
|
||
audio_opt = audio_opt.cpu().detach().numpy()
|
||
sr = 48000
|
||
|
||
if is_int32:
|
||
audio_bytes = pack_audio(audio_bytes, (audio_opt * 2147483647).astype(np.int32), sr)
|
||
else:
|
||
audio_bytes = pack_audio(audio_bytes, (audio_opt * 32768).astype(np.int16), sr)
|
||
if stream_mode == "normal":
|
||
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
|
||
yield audio_chunk
|
||
|
||
if stream_mode != "normal":
|
||
if media_type == "wav":
|
||
sr = 48000 if if_sr else 24000
|
||
sr = hps.data.sampling_rate if hps.model.version != "v3" else sr
|
||
audio_bytes = pack_wav(audio_bytes, sr)
|
||
yield audio_bytes.getvalue()
|
||
|
||
# 接口处理函数
|
||
def handle_control(command):
|
||
if command == "restart":
|
||
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
|
||
elif command == "exit":
|
||
os.kill(os.getpid(), signal.SIGTERM)
|
||
exit(0)
|
||
|
||
def handle_change(path, text, language):
|
||
if is_empty(path, text, language):
|
||
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
|
||
if path:
|
||
default_refer.path = path
|
||
if text:
|
||
default_refer.text = text
|
||
if language:
|
||
default_refer.language = language
|
||
logger.info(f"当前默认参考音频路径: {default_refer.path}")
|
||
logger.info(f"当前默认参考音频文本: {default_refer.text}")
|
||
logger.info(f"当前默认参考音频语种: {default_refer.language}")
|
||
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
||
|
||
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr):
|
||
if not refer_wav_path or not prompt_text or not prompt_language:
|
||
refer_wav_path, prompt_text, prompt_language = default_refer.path, default_refer.text, default_refer.language
|
||
if not default_refer.is_ready():
|
||
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
|
||
if sample_steps not in [4, 8, 16, 32]:
|
||
sample_steps = 32
|
||
if cut_punc is None:
|
||
text = cut_text(text, default_cut_punc)
|
||
else:
|
||
text = cut_text(text, cut_punc)
|
||
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr), media_type="audio/"+media_type)
|
||
|
||
def handle_ttsrole(text, role, text_language="auto", ref_audio_path=None, prompt_text=None, prompt_language=None, emotion=None, top_k=15, top_p=0.6, temperature=0.6, speed=1, inp_refs=None, sample_steps=32, if_sr=False, version=None, vits_weights_path=None, t2s_weights_path=None):
|
||
if not text or not role:
|
||
return JSONResponse({"code": 400, "message": "text and role are required"}, status_code=400)
|
||
if role not in speaker_list:
|
||
if not load_role_config(role, vits_weights_path, t2s_weights_path):
|
||
return JSONResponse({"code": 400, "message": f"Role {role} not found"}, status_code=400)
|
||
if not ref_audio_path:
|
||
ref_audio_path, prompt_text_auto, prompt_lang_auto = select_ref_audio(role, text_language, emotion)
|
||
if ref_audio_path:
|
||
ref_audio_path, prompt_text, prompt_language = ref_audio_path, prompt_text_auto or prompt_text, prompt_lang_auto or prompt_language
|
||
else:
|
||
ref_audio_path, prompt_text, prompt_language = default_refer.path, default_refer.text, default_refer.language
|
||
if not default_refer.is_ready():
|
||
return JSONResponse({"code": 400, "message": "No reference audio provided and default not set"}, status_code=400)
|
||
if sample_steps not in [4, 8, 16, 32]:
|
||
sample_steps = 32
|
||
text = cut_text(text, default_cut_punc)
|
||
return StreamingResponse(get_tts_wav(ref_audio_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr, spk=role, version=version), media_type="audio/"+media_type)
|
||
|
||
# 初始化参数
|
||
dict_language = {
|
||
"中文": "all_zh", "粤语": "all_yue", "英文": "en", "日文": "all_ja", "韩文": "all_ko",
|
||
"中英混合": "zh", "粤英混合": "yue", "日英混合": "ja", "韩英混合": "ko", "多语种混合": "auto",
|
||
"多语种混合(粤语)": "auto_yue", "all_zh": "all_zh", "all_yue": "all_yue", "en": "en",
|
||
"all_ja": "all_ja", "all_ko": "all_ko", "zh": "zh", "yue": "yue", "ja": "ja", "ko": "ko",
|
||
"auto": "auto", "auto_yue": "auto_yue"
|
||
}
|
||
|
||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
|
||
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
|
||
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
|
||
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
|
||
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
|
||
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
|
||
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
|
||
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
|
||
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="使用全精度")
|
||
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="使用半精度")
|
||
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal")
|
||
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac")
|
||
parser.add_argument("-st", "--sub_type", type=str, default="int16", help="音频数据类型, int16 / int32")
|
||
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定")
|
||
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
|
||
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
|
||
|
||
args = parser.parse_args()
|
||
sovits_path = args.sovits_path
|
||
gpt_path = args.gpt_path
|
||
device = args.device
|
||
port = args.port
|
||
host = args.bind_addr
|
||
cnhubert_base_path = args.hubert_path
|
||
bert_path = args.bert_path
|
||
default_cut_punc = args.cut_punc
|
||
|
||
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)
|
||
if not default_refer.path or not default_refer.text or not default_refer.language:
|
||
default_refer.path, default_refer.text, default_refer.language = "", "", ""
|
||
logger.info("未指定默认参考音频")
|
||
else:
|
||
logger.info(f"默认参考音频路径: {default_refer.path}")
|
||
logger.info(f"默认参考音频文本: {default_refer.text}")
|
||
logger.info(f"默认参考音频语种: {default_refer.language}")
|
||
|
||
is_half = g_config.is_half
|
||
if args.full_precision:
|
||
is_half = False
|
||
if args.half_precision:
|
||
is_half = True
|
||
if args.full_precision and args.half_precision:
|
||
is_half = g_config.is_half
|
||
logger.info(f"半精: {is_half}")
|
||
|
||
stream_mode = "normal" if args.stream_mode.lower() in ["normal", "n"] else "close"
|
||
logger.info(f"流式返回: {'开启' if stream_mode == 'normal' else '关闭'}")
|
||
|
||
media_type = args.media_type.lower() if args.media_type.lower() in ["aac", "ogg"] else ("wav" if stream_mode == "close" else "ogg")
|
||
logger.info(f"编码格式: {media_type}")
|
||
|
||
is_int32 = args.sub_type.lower() == 'int32'
|
||
logger.info(f"数据类型: {'int32' if is_int32 else 'int16'}")
|
||
|
||
# 模型初始化
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
ssl_model = cnhubert.get_model()
|
||
if is_half:
|
||
bert_model = bert_model.half().to(device)
|
||
ssl_model = ssl_model.half().to(device)
|
||
else:
|
||
bert_model = bert_model.to(device)
|
||
ssl_model = ssl_model.to(device)
|
||
change_gpt_sovits_weights(gpt_path=gpt_path, sovits_path=sovits_path)
|
||
|
||
# FastAPI 应用
|
||
app = FastAPI()
|
||
|
||
@app.post("/set_model")
|
||
async def set_model(request: Request):
|
||
json_post_raw = await request.json()
|
||
return change_gpt_sovits_weights(
|
||
gpt_path=json_post_raw.get("gpt_model_path"),
|
||
sovits_path=json_post_raw.get("sovits_model_path")
|
||
)
|
||
|
||
@app.get("/set_model")
|
||
async def set_model(gpt_model_path: str = None, sovits_model_path: str = None):
|
||
return change_gpt_sovits_weights(gpt_path=gpt_model_path, sovits_path=sovits_model_path)
|
||
|
||
@app.post("/control")
|
||
async def control(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle_control(json_post_raw.get("command"))
|
||
|
||
@app.get("/control")
|
||
async def control(command: str = None):
|
||
return handle_control(command)
|
||
|
||
@app.post("/change_refer")
|
||
async def change_refer(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle_change(
|
||
json_post_raw.get("refer_wav_path"),
|
||
json_post_raw.get("prompt_text"),
|
||
json_post_raw.get("prompt_language")
|
||
)
|
||
|
||
@app.get("/change_refer")
|
||
async def change_refer(refer_wav_path: str = None, prompt_text: str = None, prompt_language: str = None):
|
||
return handle_change(refer_wav_path, prompt_text, prompt_language)
|
||
|
||
@app.post("/")
|
||
async def tts_endpoint(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle(
|
||
json_post_raw.get("refer_wav_path"),
|
||
json_post_raw.get("prompt_text"),
|
||
json_post_raw.get("prompt_language"),
|
||
json_post_raw.get("text"),
|
||
json_post_raw.get("text_language"),
|
||
json_post_raw.get("cut_punc"),
|
||
json_post_raw.get("top_k", 15),
|
||
json_post_raw.get("top_p", 1.0),
|
||
json_post_raw.get("temperature", 1.0),
|
||
json_post_raw.get("speed", 1.0),
|
||
json_post_raw.get("inp_refs", []),
|
||
json_post_raw.get("sample_steps", 32),
|
||
json_post_raw.get("if_sr", False)
|
||
)
|
||
|
||
@app.get("/")
|
||
async def tts_endpoint(
|
||
refer_wav_path: str = None, prompt_text: str = None, prompt_language: str = None, text: str = None, text_language: str = None,
|
||
cut_punc: str = None, top_k: int = 15, top_p: float = 1.0, temperature: float = 1.0, speed: float = 1.0, inp_refs: list = Query(default=[]),
|
||
sample_steps: int = 32, if_sr: bool = False
|
||
):
|
||
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr)
|
||
|
||
@app.post("/ttsrole")
|
||
async def ttsrole_endpoint(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle_ttsrole(
|
||
json_post_raw.get("text"),
|
||
json_post_raw.get("role"),
|
||
json_post_raw.get("text_lang", "auto"),
|
||
json_post_raw.get("ref_audio_path"),
|
||
json_post_raw.get("prompt_text"),
|
||
json_post_raw.get("prompt_lang"),
|
||
json_post_raw.get("emotion"),
|
||
json_post_raw.get("top_k", 15),
|
||
json_post_raw.get("top_p", 0.6),
|
||
json_post_raw.get("temperature", 0.6),
|
||
json_post_raw.get("speed_factor", 1.0),
|
||
json_post_raw.get("aux_ref_audio_paths", []),
|
||
json_post_raw.get("sample_steps", 32),
|
||
json_post_raw.get("if_sr", False),
|
||
json_post_raw.get("version"), # 支持动态切换版本
|
||
json_post_raw.get("vits_weights_path"), # 支持动态指定模型路径
|
||
json_post_raw.get("t2s_weights_path")
|
||
)
|
||
|
||
@app.get("/ttsrole")
|
||
async def ttsrole_endpoint(
|
||
text: str, role: str, text_language: str = "auto", ref_audio_path: Optional[str] = None, prompt_text: Optional[str] = None,
|
||
prompt_language: Optional[str] = None, emotion: Optional[str] = None, top_k: int = 15, top_p: float = 0.6,
|
||
temperature: float = 0.6, speed: float = 1.0, inp_refs: list = Query(default=[]), sample_steps: int = 32, if_sr: bool = False, version: Optional[str] = None
|
||
):
|
||
return handle_ttsrole(text, role, text_language, ref_audio_path, prompt_text, prompt_language, emotion, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr, version)
|
||
|
||
if __name__ == "__main__":
|
||
uvicorn.run(app, host=host, port=port, workers=1)
|