GPT-SoVITS/GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
2025-09-06 22:58:58 +08:00

238 lines
9.1 KiB
Python

import os
import re
import sys
import threading
from typing import Dict, List, Tuple
import torch
from tqdm import tqdm
from transformers import AutoModelForMaskedLM, AutoTokenizer
from GPT_SoVITS.text import cleaned_text_to_sequence
from GPT_SoVITS.text.cleaner import clean_text
from GPT_SoVITS.text.LangSegmenter import LangSegmenter
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method as get_seg_method
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import split_big_text, splits
from tools.i18n.i18n import I18nAuto, scan_language_list
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
punctuation = set(["!", "?", "", ",", ".", "-"])
def get_first(text: str) -> str:
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def merge_short_text_in_array(texts: str, threshold: int) -> list:
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if len(text) > 0:
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
class TextPreprocessor:
def __init__(self, bert_model: AutoModelForMaskedLM, tokenizer: AutoTokenizer, device: torch.device):
self.bert_model = bert_model
self.tokenizer = tokenizer
self.device = device
self.bert_lock = threading.RLock()
def preprocess(self, text: str, lang: str, text_split_method: str, version: str = "v2") -> List[Dict]:
print(f"############ {i18n('切分文本')} ############")
text = self.replace_consecutive_punctuation(text)
texts = self.pre_seg_text(text, lang, text_split_method)
result = []
print(f"############ {i18n('提取文本Bert特征')} ############")
for text in tqdm(texts):
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang, version)
if phones is None or norm_text == "":
continue
res = {
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
result.append(res)
return result
def pre_seg_text(self, text: str, lang: str, text_split_method: str):
text = text.strip("\n")
if len(text) == 0:
return []
if text[0] not in splits and len(get_first(text)) < 4:
text = "" + text if lang != "en" else "." + text
print(i18n("实际输入的目标文本:"))
print(text)
seg_method = get_seg_method(text_split_method)
text = seg_method(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
_texts = text.split("\n")
_texts = self.filter_text(_texts)
_texts = merge_short_text_in_array(_texts, 5)
texts = []
for text in _texts:
# 解决输入目标文本的空行导致报错的问题
if len(text.strip()) == 0:
continue
if not re.sub("\W+", "", text):
# 检测一下,如果是纯符号,就跳过。
continue
if text[-1] not in splits:
text += "" if lang != "en" else "."
# 解决句子过长导致Bert报错的问题
if len(text) > 510:
texts.extend(split_big_text(text))
else:
texts.append(text)
print(i18n("实际输入的目标文本(切句后):"))
print(texts)
return texts
def segment_and_extract_feature_for_text(
self, text: str, language: str, version: str = "v1"
) -> Tuple[list, torch.Tensor, str]:
return self.get_phones_and_bert(text, language, version)
def get_phones_and_bert(self, text: str, language: str, version: str, final: bool = False):
with self.bert_lock:
text = re.sub(r" {2,}", " ", text)
textlist = []
langlist = []
if language == "all_zh":
for tmp in LangSegmenter.getTexts(text, "zh"):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "all_yue":
for tmp in LangSegmenter.getTexts(text, "zh"):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "all_ja":
for tmp in LangSegmenter.getTexts(text, "ja"):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "all_ko":
for tmp in LangSegmenter.getTexts(text, "ko"):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "en":
langlist.append("en")
textlist.append(text)
elif language == "auto":
for tmp in LangSegmenter.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegmenter.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegmenter.getTexts(text):
if langlist:
if (tmp["lang"] == "en" and langlist[-1] == "en") or (
tmp["lang"] != "en" and langlist[-1] != "en"
):
textlist[-1] += tmp["text"]
continue
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
# print(textlist)
# print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang, version)
bert = self.get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = "".join(norm_text_list)
if not final and len(phones) < 6:
return self.get_phones_and_bert("." + text, language, version, final=True)
return phones, bert, norm_text
def get_bert_feature(self, text: str, word2ph: list) -> torch.Tensor:
inputs = self.tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(self.device)
res = self.bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def clean_text_inf(self, text: str, language: str, version: str = "v2"):
language = language.replace("all_", "")
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text
@torch.no_grad()
def get_bert_inf(self, phones: list, word2ph: list, norm_text: str, language: str):
language = language.replace("all_", "")
if language == "zh":
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
else:
feature = torch.zeros(
(1024, len(phones)),
dtype=torch.float32,
).to(self.device)
return feature
def filter_text(self, texts):
_text = []
if all(text in [None, " ", "\n", ""] for text in texts):
raise ValueError(i18n("请输入有效文本"))
for text in texts:
if text in [None, " ", ""]:
pass
else:
_text.append(text)
return _text
def replace_consecutive_punctuation(self, text):
punctuations = "".join(re.escape(p) for p in punctuation)
pattern = f"([{punctuations}])([{punctuations}])+"
result = re.sub(pattern, r"\1", text)
return result