mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
249 lines
9.2 KiB
Python
249 lines
9.2 KiB
Python
# This code is modified from https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw
|
|
# This code is modified from https://github.com/GitYCC/g2pW
|
|
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
import json
|
|
import os
|
|
import zipfile
|
|
import requests
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import onnxruntime
|
|
|
|
onnxruntime.set_default_logger_severity(3)
|
|
from opencc import OpenCC
|
|
from transformers import AutoTokenizer
|
|
from pypinyin import pinyin
|
|
from pypinyin import Style
|
|
|
|
from .dataset import get_char_phoneme_labels
|
|
from .dataset import get_phoneme_labels
|
|
from .dataset import prepare_onnx_input
|
|
from .utils import load_config
|
|
from ..zh_normalization.char_convert import tranditional_to_simplified
|
|
|
|
model_version = "1.1"
|
|
|
|
|
|
def predict(session, onnx_input: Dict[str, Any], labels: List[str]) -> Tuple[List[str], List[float]]:
|
|
all_preds = []
|
|
all_confidences = []
|
|
probs = session.run(
|
|
[],
|
|
{
|
|
"input_ids": onnx_input["input_ids"],
|
|
"token_type_ids": onnx_input["token_type_ids"],
|
|
"attention_mask": onnx_input["attention_masks"],
|
|
"phoneme_mask": onnx_input["phoneme_masks"],
|
|
"char_ids": onnx_input["char_ids"],
|
|
"position_ids": onnx_input["position_ids"],
|
|
},
|
|
)[0]
|
|
|
|
preds = np.argmax(probs, axis=1).tolist()
|
|
max_probs = []
|
|
for index, arr in zip(preds, probs.tolist()):
|
|
max_probs.append(arr[index])
|
|
all_preds += [labels[pred] for pred in preds]
|
|
all_confidences += max_probs
|
|
|
|
return all_preds, all_confidences
|
|
|
|
|
|
def download_and_decompress(model_dir: str = "G2PWModel/"):
|
|
if not os.path.exists(model_dir):
|
|
parent_directory = os.path.dirname(model_dir)
|
|
zip_dir = os.path.join(parent_directory, "G2PWModel_1.1.zip")
|
|
extract_dir = os.path.join(parent_directory, "G2PWModel_1.1")
|
|
extract_dir_new = os.path.join(parent_directory, "G2PWModel")
|
|
print("Downloading g2pw model...")
|
|
modelscope_url = "https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip"
|
|
with requests.get(modelscope_url, stream=True) as r:
|
|
r.raise_for_status()
|
|
with open(zip_dir, "wb") as f:
|
|
for chunk in r.iter_content(chunk_size=8192):
|
|
if chunk:
|
|
f.write(chunk)
|
|
|
|
print("Extracting g2pw model...")
|
|
with zipfile.ZipFile(zip_dir, "r") as zip_ref:
|
|
zip_ref.extractall(parent_directory)
|
|
|
|
os.rename(extract_dir, extract_dir_new)
|
|
|
|
return model_dir
|
|
|
|
|
|
class G2PWOnnxConverter:
|
|
def __init__(
|
|
self,
|
|
model_dir: str = "G2PWModel/",
|
|
style: str = "bopomofo",
|
|
model_source: str = None,
|
|
enable_non_tradional_chinese: bool = False,
|
|
):
|
|
uncompress_path = download_and_decompress(model_dir)
|
|
|
|
sess_options = onnxruntime.SessionOptions()
|
|
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
|
|
sess_options.intra_op_num_threads = 2
|
|
try:
|
|
self.session_g2pW = onnxruntime.InferenceSession(
|
|
os.path.join(uncompress_path, "g2pW.onnx"),
|
|
sess_options=sess_options,
|
|
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
|
|
)
|
|
except:
|
|
self.session_g2pW = onnxruntime.InferenceSession(
|
|
os.path.join(uncompress_path, "g2pW.onnx"),
|
|
sess_options=sess_options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
self.config = load_config(config_path=os.path.join(uncompress_path, "config.py"), use_default=True)
|
|
|
|
self.model_source = model_source if model_source else self.config.model_source
|
|
self.enable_opencc = enable_non_tradional_chinese
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_source)
|
|
|
|
polyphonic_chars_path = os.path.join(uncompress_path, "POLYPHONIC_CHARS.txt")
|
|
monophonic_chars_path = os.path.join(uncompress_path, "MONOPHONIC_CHARS.txt")
|
|
self.polyphonic_chars = [
|
|
line.split("\t") for line in open(polyphonic_chars_path, encoding="utf-8").read().strip().split("\n")
|
|
]
|
|
self.non_polyphonic = {
|
|
"一",
|
|
"不",
|
|
"和",
|
|
"咋",
|
|
"嗲",
|
|
"剖",
|
|
"差",
|
|
"攢",
|
|
"倒",
|
|
"難",
|
|
"奔",
|
|
"勁",
|
|
"拗",
|
|
"肖",
|
|
"瘙",
|
|
"誒",
|
|
"泊",
|
|
"听",
|
|
"噢",
|
|
}
|
|
self.non_monophonic = {"似", "攢"}
|
|
self.monophonic_chars = [
|
|
line.split("\t") for line in open(monophonic_chars_path, encoding="utf-8").read().strip().split("\n")
|
|
]
|
|
self.labels, self.char2phonemes = (
|
|
get_char_phoneme_labels(polyphonic_chars=self.polyphonic_chars)
|
|
if self.config.use_char_phoneme
|
|
else get_phoneme_labels(polyphonic_chars=self.polyphonic_chars)
|
|
)
|
|
|
|
self.chars = sorted(list(self.char2phonemes.keys()))
|
|
|
|
self.polyphonic_chars_new = set(self.chars)
|
|
for char in self.non_polyphonic:
|
|
if char in self.polyphonic_chars_new:
|
|
self.polyphonic_chars_new.remove(char)
|
|
|
|
self.monophonic_chars_dict = {char: phoneme for char, phoneme in self.monophonic_chars}
|
|
for char in self.non_monophonic:
|
|
if char in self.monophonic_chars_dict:
|
|
self.monophonic_chars_dict.pop(char)
|
|
|
|
self.pos_tags = ["UNK", "A", "C", "D", "I", "N", "P", "T", "V", "DE", "SHI"]
|
|
|
|
with open(os.path.join(uncompress_path, "bopomofo_to_pinyin_wo_tune_dict.json"), "r", encoding="utf-8") as fr:
|
|
self.bopomofo_convert_dict = json.load(fr)
|
|
self.style_convert_func = {
|
|
"bopomofo": lambda x: x,
|
|
"pinyin": self._convert_bopomofo_to_pinyin,
|
|
}[style]
|
|
|
|
with open(os.path.join(uncompress_path, "char_bopomofo_dict.json"), "r", encoding="utf-8") as fr:
|
|
self.char_bopomofo_dict = json.load(fr)
|
|
|
|
if self.enable_opencc:
|
|
self.cc = OpenCC("s2tw")
|
|
|
|
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str:
|
|
tone = bopomofo[-1]
|
|
assert tone in "12345"
|
|
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
|
|
if component:
|
|
return component + tone
|
|
else:
|
|
print(f'Warning: "{bopomofo}" cannot convert to pinyin')
|
|
return None
|
|
|
|
def __call__(self, sentences: List[str]) -> List[List[str]]:
|
|
if isinstance(sentences, str):
|
|
sentences = [sentences]
|
|
|
|
if self.enable_opencc:
|
|
translated_sentences = []
|
|
for sent in sentences:
|
|
translated_sent = self.cc.convert(sent)
|
|
assert len(translated_sent) == len(sent)
|
|
translated_sentences.append(translated_sent)
|
|
sentences = translated_sentences
|
|
|
|
texts, query_ids, sent_ids, partial_results = self._prepare_data(sentences=sentences)
|
|
if len(texts) == 0:
|
|
# sentences no polyphonic words
|
|
return partial_results
|
|
|
|
onnx_input = prepare_onnx_input(
|
|
tokenizer=self.tokenizer,
|
|
labels=self.labels,
|
|
char2phonemes=self.char2phonemes,
|
|
chars=self.chars,
|
|
texts=texts,
|
|
query_ids=query_ids,
|
|
use_mask=self.config.use_mask,
|
|
window_size=None,
|
|
)
|
|
|
|
preds, confidences = predict(session=self.session_g2pW, onnx_input=onnx_input, labels=self.labels)
|
|
if self.config.use_char_phoneme:
|
|
preds = [pred.split(" ")[1] for pred in preds]
|
|
|
|
results = partial_results
|
|
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
|
|
results[sent_id][query_id] = self.style_convert_func(pred)
|
|
|
|
return results
|
|
|
|
def _prepare_data(self, sentences: List[str]) -> Tuple[List[str], List[int], List[int], List[List[str]]]:
|
|
texts, query_ids, sent_ids, partial_results = [], [], [], []
|
|
for sent_id, sent in enumerate(sentences):
|
|
# pypinyin works well for Simplified Chinese than Traditional Chinese
|
|
sent_s = tranditional_to_simplified(sent)
|
|
pypinyin_result = pinyin(sent_s, neutral_tone_with_five=True, style=Style.TONE3)
|
|
partial_result = [None] * len(sent)
|
|
for i, char in enumerate(sent):
|
|
if char in self.polyphonic_chars_new:
|
|
texts.append(sent)
|
|
query_ids.append(i)
|
|
sent_ids.append(sent_id)
|
|
elif char in self.monophonic_chars_dict:
|
|
partial_result[i] = self.style_convert_func(self.monophonic_chars_dict[char])
|
|
elif char in self.char_bopomofo_dict:
|
|
partial_result[i] = pypinyin_result[i][0]
|
|
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
|
|
else:
|
|
partial_result[i] = pypinyin_result[i][0]
|
|
|
|
partial_results.append(partial_result)
|
|
return texts, query_ids, sent_ids, partial_results
|