mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
101 lines
2.8 KiB
Python
101 lines
2.8 KiB
Python
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
|
# LICENSE is in incl_licenses directory.
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import glob
|
|
import os
|
|
import numpy as np
|
|
import argparse
|
|
import json
|
|
import torch
|
|
from scipy.io.wavfile import write
|
|
from env import AttrDict
|
|
from meldataset import MAX_WAV_VALUE
|
|
from bigvgan import BigVGAN as Generator
|
|
|
|
h = None
|
|
device = None
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
|
|
def load_checkpoint(filepath, device):
|
|
assert os.path.isfile(filepath)
|
|
print(f"Loading '{filepath}'")
|
|
checkpoint_dict = torch.load(filepath, map_location=device)
|
|
print("Complete.")
|
|
return checkpoint_dict
|
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix):
|
|
pattern = os.path.join(cp_dir, prefix + "*")
|
|
cp_list = glob.glob(pattern)
|
|
if len(cp_list) == 0:
|
|
return ""
|
|
return sorted(cp_list)[-1]
|
|
|
|
|
|
def inference(a, h):
|
|
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
|
|
|
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
|
generator.load_state_dict(state_dict_g["generator"])
|
|
|
|
filelist = os.listdir(a.input_mels_dir)
|
|
|
|
os.makedirs(a.output_dir, exist_ok=True)
|
|
|
|
generator.eval()
|
|
generator.remove_weight_norm()
|
|
with torch.no_grad():
|
|
for i, filname in enumerate(filelist):
|
|
# Load the mel spectrogram in .npy format
|
|
x = np.load(os.path.join(a.input_mels_dir, filname))
|
|
x = torch.FloatTensor(x).to(device)
|
|
if len(x.shape) == 2:
|
|
x = x.unsqueeze(0)
|
|
|
|
y_g_hat = generator(x)
|
|
|
|
audio = y_g_hat.squeeze()
|
|
audio = audio * MAX_WAV_VALUE
|
|
audio = audio.cpu().numpy().astype("int16")
|
|
|
|
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + "_generated_e2e.wav")
|
|
write(output_file, h.sampling_rate, audio)
|
|
print(output_file)
|
|
|
|
|
|
def main():
|
|
print("Initializing Inference Process..")
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--input_mels_dir", default="test_mel_files")
|
|
parser.add_argument("--output_dir", default="generated_files_from_mel")
|
|
parser.add_argument("--checkpoint_file", required=True)
|
|
parser.add_argument("--use_cuda_kernel", action="store_true", default=False)
|
|
|
|
a = parser.parse_args()
|
|
|
|
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json")
|
|
with open(config_file) as f:
|
|
data = f.read()
|
|
|
|
global h
|
|
json_config = json.loads(data)
|
|
h = AttrDict(json_config)
|
|
|
|
torch.manual_seed(h.seed)
|
|
global device
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(h.seed)
|
|
device = torch.device("cuda")
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
inference(a, h)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|