mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
150 lines
5.5 KiB
Python
150 lines
5.5 KiB
Python
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
|
|
# reference: https://github.com/lifeiteng/vall-e
|
|
import itertools
|
|
import math
|
|
import random
|
|
from random import shuffle
|
|
from typing import Iterator, Optional, TypeVar
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.utils.data import Dataset, Sampler
|
|
|
|
__all__ = [
|
|
"DistributedBucketSampler",
|
|
]
|
|
|
|
T_co = TypeVar("T_co", covariant=True)
|
|
|
|
|
|
class DistributedBucketSampler(Sampler[T_co]):
|
|
r"""
|
|
sort the dataset wrt. input length
|
|
divide samples into buckets
|
|
sort within buckets
|
|
divide buckets into batches
|
|
sort batches
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset: Dataset,
|
|
num_replicas: Optional[int] = None,
|
|
rank: Optional[int] = None,
|
|
shuffle: bool = True,
|
|
seed: int = 0,
|
|
drop_last: bool = False,
|
|
batch_size: int = 32,
|
|
) -> None:
|
|
if num_replicas is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
|
if rank is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_device(rank)
|
|
if rank >= num_replicas or rank < 0:
|
|
raise ValueError("Invalid rank {}, rank should be in the interval [0, {}]".format(rank, num_replicas - 1))
|
|
self.dataset = dataset
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.epoch = 0
|
|
self.drop_last = drop_last
|
|
# If the dataset length is evenly divisible by # of replicas, then there
|
|
# is no need to drop any data, since the dataset will be split equally.
|
|
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
|
# Split to nearest available length that is evenly divisible.
|
|
# This is to ensure each rank receives the same amount of data when
|
|
# using this Sampler.
|
|
self.num_samples = math.ceil(
|
|
(len(self.dataset) - self.num_replicas) / self.num_replicas, # type: ignore[arg-type]
|
|
)
|
|
else:
|
|
self.num_samples = math.ceil(
|
|
len(self.dataset) / self.num_replicas,
|
|
) # type: ignore[arg-type]
|
|
self.total_size = self.num_samples * self.num_replicas
|
|
self.shuffle = shuffle
|
|
self.seed = seed
|
|
self.batch_size = batch_size
|
|
self.id_with_length = self._get_sample_lengths()
|
|
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
|
|
|
def _get_sample_lengths(self):
|
|
id_with_lengths = []
|
|
for i in range(len(self.dataset)):
|
|
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
|
id_with_lengths.sort(key=lambda x: x[1])
|
|
return id_with_lengths
|
|
|
|
def make_buckets(self, bucket_width: float = 2.0):
|
|
buckets = []
|
|
cur = []
|
|
max_sec = bucket_width
|
|
for id, sec in self.id_with_length:
|
|
if sec < max_sec:
|
|
cur.append(id)
|
|
else:
|
|
buckets.append(cur)
|
|
cur = [id]
|
|
max_sec += bucket_width
|
|
if len(cur) > 0:
|
|
buckets.append(cur)
|
|
return buckets
|
|
|
|
def __iter__(self) -> Iterator[T_co]:
|
|
if self.shuffle:
|
|
# deterministically shuffle based on epoch and seed
|
|
g = torch.Generator()
|
|
g.manual_seed(self.seed + self.epoch)
|
|
random.seed(self.epoch + self.seed)
|
|
shuffled_bucket = []
|
|
for buc in self.id_buckets:
|
|
buc_copy = buc.copy()
|
|
shuffle(buc_copy)
|
|
shuffled_bucket.append(buc_copy)
|
|
grouped_batch_size = self.batch_size * self.num_replicas
|
|
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
|
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
|
batches = [shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] for b in range(n_batch)]
|
|
shuffle(batches)
|
|
indices = list(itertools.chain(*batches))
|
|
else:
|
|
# type: ignore[arg-type]
|
|
indices = list(range(len(self.dataset)))
|
|
|
|
if not self.drop_last:
|
|
# add extra samples to make it evenly divisible
|
|
padding_size = self.total_size - len(indices)
|
|
if padding_size <= len(indices):
|
|
indices += indices[:padding_size]
|
|
else:
|
|
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
|
else:
|
|
# remove tail of data to make it evenly divisible.
|
|
indices = indices[: self.total_size]
|
|
assert len(indices) == self.total_size
|
|
|
|
# subsample
|
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
return iter(indices)
|
|
|
|
def __len__(self) -> int:
|
|
return self.num_samples
|
|
|
|
def set_epoch(self, epoch: int) -> None:
|
|
r"""
|
|
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
|
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
|
sampler will yield the same ordering.
|
|
|
|
Args:
|
|
epoch (int): Epoch number.
|
|
"""
|
|
self.epoch = epoch
|