GPT-SoVITS/GPT_SoVITS/AR/data/bucket_sampler.py

150 lines
5.5 KiB
Python

# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
# reference: https://github.com/lifeiteng/vall-e
import itertools
import math
import random
from random import shuffle
from typing import Iterator, Optional, TypeVar
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, Sampler
__all__ = [
"DistributedBucketSampler",
]
T_co = TypeVar("T_co", covariant=True)
class DistributedBucketSampler(Sampler[T_co]):
r"""
sort the dataset wrt. input length
divide samples into buckets
sort within buckets
divide buckets into batches
sort batches
"""
def __init__(
self,
dataset: Dataset,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
batch_size: int = 32,
) -> None:
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank() if torch.cuda.is_available() else 0
if torch.cuda.is_available():
torch.cuda.set_device(rank)
if rank >= num_replicas or rank < 0:
raise ValueError("Invalid rank {}, rank should be in the interval [0, {}]".format(rank, num_replicas - 1))
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas, # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(
len(self.dataset) / self.num_replicas,
) # type: ignore[arg-type]
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
self.seed = seed
self.batch_size = batch_size
self.id_with_length = self._get_sample_lengths()
self.id_buckets = self.make_buckets(bucket_width=2.0)
def _get_sample_lengths(self):
id_with_lengths = []
for i in range(len(self.dataset)):
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
id_with_lengths.sort(key=lambda x: x[1])
return id_with_lengths
def make_buckets(self, bucket_width: float = 2.0):
buckets = []
cur = []
max_sec = bucket_width
for id, sec in self.id_with_length:
if sec < max_sec:
cur.append(id)
else:
buckets.append(cur)
cur = [id]
max_sec += bucket_width
if len(cur) > 0:
buckets.append(cur)
return buckets
def __iter__(self) -> Iterator[T_co]:
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
random.seed(self.epoch + self.seed)
shuffled_bucket = []
for buc in self.id_buckets:
buc_copy = buc.copy()
shuffle(buc_copy)
shuffled_bucket.append(buc_copy)
grouped_batch_size = self.batch_size * self.num_replicas
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
batches = [shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] for b in range(n_batch)]
shuffle(batches)
indices = list(itertools.chain(*batches))
else:
# type: ignore[arg-type]
indices = list(range(len(self.dataset)))
if not self.drop_last:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self) -> int:
return self.num_samples
def set_epoch(self, epoch: int) -> None:
r"""
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
use a different random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch