mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-06-24 13:33:33 +08:00
156 lines
6.0 KiB
Python
156 lines
6.0 KiB
Python
import sys
|
||
import os
|
||
|
||
import torch,re
|
||
|
||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||
i18n = I18nAuto(language=os.environ["language"])
|
||
|
||
|
||
pretrained_sovits_name = {
|
||
"v1":"GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||
"v3":"GPT_SoVITS/pretrained_models/s2Gv3.pth",###v3v4还要检查vocoder,算了。。。
|
||
"v4":"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||
"v2Pro":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro_pre1.pth",
|
||
"v2ProPlus":"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus_pre1.pth",
|
||
}
|
||
|
||
pretrained_gpt_name = {
|
||
"v1":"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||
"v2":"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||
"v3":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
"v4":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
"v2Pro":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
"v2ProPlus":"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
}
|
||
name2sovits_path={
|
||
# i18n("不训练直接推v1底模!"): "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||
i18n("不训练直接推v2底模!"): "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
|
||
# i18n("不训练直接推v3底模!"): "GPT_SoVITS/pretrained_models/s2Gv3.pth",
|
||
# i18n("不训练直接推v4底模!"): "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||
i18n("不训练直接推v2Pro底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro_pre1.pth",
|
||
i18n("不训练直接推v2ProPlus底模!"): "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus_pre1.pth",
|
||
}
|
||
name2gpt_path={
|
||
# i18n("不训练直接推v1底模!"):"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||
i18n("不训练直接推v2底模!"):"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||
i18n("不训练直接推v3底模!"):"GPT_SoVITS/pretrained_models/s1v3.ckpt",
|
||
}
|
||
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4", "SoVITS_weights_v2Pro", "SoVITS_weights_v2ProPlus"]
|
||
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4", "GPT_weights_v2Pro", "GPT_weights_v2ProPlus"]
|
||
SoVITS_weight_version2root={
|
||
"v1":"SoVITS_weights",
|
||
"v2":"SoVITS_weights_v2",
|
||
"v3":"SoVITS_weights_v3",
|
||
"v4":"SoVITS_weights_v4",
|
||
"v2Pro":"SoVITS_weights_v2Pro",
|
||
"v2ProPlus":"SoVITS_weights_v2ProPlus",
|
||
}
|
||
GPT_weight_version2root={
|
||
"v1":"GPT_weights",
|
||
"v2":"GPT_weights_v2",
|
||
"v3":"GPT_weights_v3",
|
||
"v4":"GPT_weights_v4",
|
||
"v2Pro":"GPT_weights_v2Pro",
|
||
"v2ProPlus":"GPT_weights_v2ProPlus",
|
||
}
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split("(\d+)", s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
def get_weights_names():
|
||
SoVITS_names = []
|
||
for key in name2sovits_path:
|
||
if os.path.exists(name2sovits_path[key]):SoVITS_names.append(key)
|
||
for path in SoVITS_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".pth"):
|
||
SoVITS_names.append("%s/%s" % (path, name))
|
||
GPT_names = []
|
||
for key in name2gpt_path:
|
||
if os.path.exists(name2gpt_path[key]):GPT_names.append(key)
|
||
for path in GPT_weight_root:
|
||
for name in os.listdir(path):
|
||
if name.endswith(".ckpt"):
|
||
GPT_names.append("%s/%s" % (path, name))
|
||
SoVITS_names=sorted(SoVITS_names, key=custom_sort_key)
|
||
GPT_names=sorted(GPT_names, key=custom_sort_key)
|
||
return SoVITS_names, GPT_names
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
return {"choices": SoVITS_names, "__type__": "update"}, {
|
||
"choices": GPT_names,
|
||
"__type__": "update",
|
||
}
|
||
|
||
|
||
# 推理用的指定模型
|
||
sovits_path = ""
|
||
gpt_path = ""
|
||
is_half_str = os.environ.get("is_half", "True")
|
||
is_half = True if is_half_str.lower() == "true" else False
|
||
is_share_str = os.environ.get("is_share", "False")
|
||
is_share = True if is_share_str.lower() == "true" else False
|
||
|
||
cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||
bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||
pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
|
||
exp_root = "logs"
|
||
python_exec = sys.executable or "python"
|
||
if torch.cuda.is_available():
|
||
infer_device = "cuda"
|
||
else:
|
||
infer_device = "cpu"
|
||
|
||
webui_port_main = 9874
|
||
webui_port_uvr5 = 9873
|
||
webui_port_infer_tts = 9872
|
||
webui_port_subfix = 9871
|
||
|
||
api_port = 9880
|
||
|
||
if infer_device == "cuda":
|
||
gpu_name = torch.cuda.get_device_name(0)
|
||
if (
|
||
("16" in gpu_name and "V100" not in gpu_name.upper())
|
||
or "P40" in gpu_name.upper()
|
||
or "P10" in gpu_name.upper()
|
||
or "1060" in gpu_name
|
||
or "1070" in gpu_name
|
||
or "1080" in gpu_name
|
||
):
|
||
is_half = False
|
||
|
||
if infer_device == "cpu":
|
||
is_half = False
|
||
|
||
|
||
class Config:
|
||
def __init__(self):
|
||
self.sovits_path = sovits_path
|
||
self.gpt_path = gpt_path
|
||
self.is_half = is_half
|
||
|
||
self.cnhubert_path = cnhubert_path
|
||
self.bert_path = bert_path
|
||
self.pretrained_sovits_path = pretrained_sovits_path
|
||
self.pretrained_gpt_path = pretrained_gpt_path
|
||
|
||
self.exp_root = exp_root
|
||
self.python_exec = python_exec
|
||
self.infer_device = infer_device
|
||
|
||
self.webui_port_main = webui_port_main
|
||
self.webui_port_uvr5 = webui_port_uvr5
|
||
self.webui_port_infer_tts = webui_port_infer_tts
|
||
self.webui_port_subfix = webui_port_subfix
|
||
|
||
self.api_port = api_port
|