GPT-SoVITS/GPT_SoVITS/onnx_export.py

413 lines
15 KiB
Python

import torch
import torch.nn.functional as F
import torchaudio
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
from feature_extractor import cnhubert
from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
from torch import nn
from sv import SV
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path = cnhubert_base_path
ssl_model = cnhubert.get_model()
import json
import os
import soundfile
from text import cleaned_text_to_sequence
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
hann_window = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def resample_audio(audio: torch.Tensor, orig_sr: int, target_sr: int) -> torch.Tensor:
"""
Resample audio from orig_sr to target_sr using linear interpolation.
audio: (batch, channels, samples) or (channels, samples) or (samples,)
"""
if audio.dim() == 1:
audio = audio.unsqueeze(0).unsqueeze(0)
elif audio.dim() == 2:
audio = audio.unsqueeze(0)
# audio shape: (batch, channels, samples)
batch, channels, samples = audio.shape
new_samples = int(samples * target_sr / orig_sr)
audio = audio.view(batch * channels, 1, samples)
resampled = F.interpolate(audio, size=new_samples, mode='linear', align_corners=False)
resampled = resampled.view(batch, channels, new_samples)
if resampled.shape[0] == 1 and resampled.shape[1] == 1:
resampled = resampled.squeeze(0).squeeze(0)
elif resampled.shape[0] == 1:
resampled = resampled.squeeze(0)
return resampled
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
class T2SEncoder(nn.Module):
def __init__(self, t2s, vits):
super().__init__()
self.encoder = t2s.onnx_encoder
self.fsdc = t2s.first_stage_decoder
self.vits = vits
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
codes = self.vits.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0)
return self.fsdc(self.encoder(all_phoneme_ids, bert), prompt)
class T2SModel(nn.Module):
def __init__(self, t2s_path, vits_model):
super().__init__()
dict_s1 = torch.load(t2s_path, map_location="cpu")
self.config = dict_s1["config"]
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
self.t2s_model.load_state_dict(dict_s1["weight"])
self.t2s_model.eval()
self.vits_model = vits_model.vq_model
self.hz = 50
self.max_sec = self.config["data"]["max_sec"]
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
self.t2s_model = self.t2s_model.model
self.t2s_model.init_onnx()
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
self.first_stage_decoder = self.t2s_model.first_stage_decoder
self.stage_decoder = self.t2s_model.stage_decoder
# self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
early_stop_num = self.t2s_model.early_stop_num
# [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
y, k, v, y_emb, x_example = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
stop = False
for idx in range(1, 1500):
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
enco = self.stage_decoder(y, k, v, y_emb, x_example)
y, k, v, y_emb, logits, samples = enco
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
stop = True
if stop:
break
y[0, -1] = 0
return y[:, -idx:].unsqueeze(0)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
# self.onnx_encoder = torch.jit.script(self.onnx_encoder)
if dynamo:
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
onnx_encoder_export_output = torch.onnx.dynamo_export(
self.onnx_encoder, (ref_seq, text_seq, ref_bert, text_bert, ssl_content), export_options=export_options
)
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
return
torch.onnx.export(
self.onnx_encoder,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
output_names=["y", "k", "v", "y_emb", "x_example"],
dynamic_axes={
"ref_seq": {1: "ref_length"},
"text_seq": {1: "text_length"},
"ref_bert": {0: "ref_length"},
"text_bert": {0: "text_length"},
"ssl_content": {2: "ssl_length"},
},
opset_version=16,
)
y, k, v, y_emb, x_example = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
# torch.onnx.export(
# self.first_stage_decoder,
# (x, prompts),
# f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
# input_names=["x", "prompts"],
# output_names=["y", "k", "v", "y_emb", "x_example"],
# dynamic_axes={
# "x": {1: "x_length"},
# "prompts": {1: "prompts_length"},
# },
# verbose=False,
# opset_version=16,
# )
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
torch.onnx.export(
self.stage_decoder,
(y, k, v, y_emb, x_example),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
dynamic_axes={
"iy": {1: "iy_length"},
"ik": {1: "ik_length"},
"iv": {1: "iv_length"},
"iy_emb": {1: "iy_emb_length"},
"ix_example": {1: "ix_example_length"},
},
verbose=False,
opset_version=16,
)
class VitsModel(nn.Module):
def __init__(self, vits_path, version:str = 'v2'):
super().__init__()
dict_s2 = torch.load(vits_path, map_location="cpu")
self.hps = dict_s2["config"]
if dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
self.hps["model"]["version"] = "v1"
else:
self.hps["model"]["version"] = version
self.sv_model = None
if version == "v2ProPlus" or version == "v2Pro":
self.sv_model = SV("cpu", False)
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model,
)
self.vq_model.eval()
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
def forward(self, text_seq, pred_semantic, ref_audio):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
if self.sv_model is not None:
sv_emb=self.sv_model.compute_embedding3_onnx(resample_audio(ref_audio, 32000, 16000))
return self.vq_model(pred_semantic, text_seq, refer, sv_emb=sv_emb)[0, 0]
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
class GptSoVits(nn.Module):
def __init__(self, vits, t2s):
super().__init__()
self.vits = vits
self.t2s = t2s
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content):
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
audio = self.vits(text_seq, pred_semantic, ref_audio)
return audio
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
torch.onnx.export(
self.vits,
(text_seq, pred_semantic, ref_audio),
f"onnx/{project_name}/{project_name}_vits.onnx",
input_names=["text_seq", "pred_semantic", "ref_audio"],
output_names=["audio"],
dynamic_axes={
"text_seq": {1: "text_length"},
"pred_semantic": {2: "pred_length"},
"ref_audio": {1: "audio_length"},
},
opset_version=17,
verbose=False,
)
class SSLModel(nn.Module):
def __init__(self):
super().__init__()
self.ssl = ssl_model
def forward(self, ref_audio_16k):
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
vits = VitsModel(vits_path, version=voice_model_version)
gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt)
ssl = SSLModel()
ref_seq = torch.LongTensor(
[
cleaned_text_to_sequence(
[
"n",
"i2",
"h",
"ao3",
",",
"w",
"o3",
"sh",
"i4",
"b",
"ai2",
"y",
"e4",
],
version='v2',
)
]
)
text_seq = torch.LongTensor(
[
cleaned_text_to_sequence(
[
"w",
"o3",
"sh",
"i4",
"b",
"ai2",
"y",
"e4",
"w",
"o3",
"sh",
"i4",
"b",
"ai2",
"y",
"e4",
"w",
"o3",
"sh",
"i4",
"b",
"ai2",
"y",
"e4",
],
version='v2',
)
]
)
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio = torch.randn((1, 48000 * 5)).float()
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
ref_audio_16k = torchaudio.functional.resample(ref_audio, 48000, 16000).float()
ref_audio_sr = torchaudio.functional.resample(ref_audio, 48000, vits.hps.data.sampling_rate).float()
try:
os.mkdir(f"onnx/{project_name}")
except:
pass
ssl_content = ssl(ref_audio_16k).float()
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
if voice_model_version == "v1":
symbols = symbols_v1
else:
symbols = symbols_v2
MoeVSConf = {
"Folder": f"{project_name}",
"Name": f"{project_name}",
"Type": "GPT-SoVits",
"Rate": vits.hps.data.sampling_rate,
"NumLayers": gpt.t2s_model.num_layers,
"EmbeddingDim": gpt.t2s_model.embedding_dim,
"Dict": "BasicDict",
"BertPath": "chinese-roberta-wwm-ext-large",
# "Symbol": symbols,
"AddBlank": False,
}
MoeVSConfJson = json.dumps(MoeVSConf)
with open(f"onnx/{project_name}.json", "w") as MoeVsConfFile:
json.dump(MoeVSConf, MoeVsConfFile, indent=4)
if __name__ == "__main__":
try:
os.mkdir("onnx")
except:
pass
# gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
# exp_path = "v2_export"
# version = "v2"
# export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
exp_path = "v2pro_export"
version = "v2Pro"
export(vits_path, gpt_path, exp_path, version)
# gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth"
# exp_path = "v2proplus_export"
# version = "v2ProPlus"
# export(vits_path, gpt_path, exp_path, version)