mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
1. Fix the issue that gui needs to reload models for each inference 2. Fix the issue that webui would be toggled by relevant import 3. Complement missing package import 4. Simplify GUI's code and address various inefficiencies, including: enabling direct input of ref text and target text (akin to the WebUI), facilitating file selection for ref audio uploads, adding language options for CH-EN/JA-EN/Multi (with Multi as the default), standardizing variable name to enhance readability.
651 lines
25 KiB
Python
651 lines
25 KiB
Python
'''
|
||
按中英混合识别
|
||
按日英混合识别
|
||
多语种启动切分识别语种
|
||
全部按中文识别
|
||
全部按英文识别
|
||
全部按日文识别
|
||
'''
|
||
import os, re, logging
|
||
import LangSegment
|
||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||
import pdb
|
||
import torch
|
||
|
||
if os.path.exists("./gweight.txt"):
|
||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||
gweight_data = file.read()
|
||
gpt_path = os.environ.get(
|
||
"gpt_path", gweight_data)
|
||
else:
|
||
gpt_path = os.environ.get(
|
||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||
|
||
if os.path.exists("./sweight.txt"):
|
||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||
sweight_data = file.read()
|
||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||
else:
|
||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||
# gpt_path = os.environ.get(
|
||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
# )
|
||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||
cnhubert_base_path = os.environ.get(
|
||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||
)
|
||
bert_path = os.environ.get(
|
||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
)
|
||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||
infer_ttswebui = int(infer_ttswebui)
|
||
is_share = os.environ.get("is_share", "False")
|
||
is_share = eval(is_share)
|
||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
||
import gradio as gr
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import numpy as np
|
||
import librosa
|
||
from feature_extractor import cnhubert
|
||
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
|
||
from module.models import SynthesizerTrn
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from time import time as ttime
|
||
from module.mel_processing import spectrogram_torch
|
||
from my_utils import load_audio
|
||
from tools.i18n.i18n import I18nAuto
|
||
|
||
i18n = I18nAuto()
|
||
|
||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||
|
||
if torch.cuda.is_available():
|
||
device = "cuda"
|
||
else:
|
||
device = "cpu"
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
if is_half == True:
|
||
bert_model = bert_model.half().to(device)
|
||
else:
|
||
bert_model = bert_model.to(device)
|
||
|
||
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(device)
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
return phone_level_feature.T
|
||
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def __delattr__(self, item):
|
||
try:
|
||
del self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
|
||
ssl_model = cnhubert.get_model()
|
||
if is_half == True:
|
||
ssl_model = ssl_model.half().to(device)
|
||
else:
|
||
ssl_model = ssl_model.to(device)
|
||
|
||
|
||
def change_sovits_weights(sovits_path):
|
||
global vq_model, hps
|
||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||
hps = dict_s2["config"]
|
||
hps = DictToAttrRecursive(hps)
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model
|
||
)
|
||
if ("pretrained" not in sovits_path):
|
||
del vq_model.enc_q
|
||
if is_half == True:
|
||
vq_model = vq_model.half().to(device)
|
||
else:
|
||
vq_model = vq_model.to(device)
|
||
vq_model.eval()
|
||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||
f.write(sovits_path)
|
||
|
||
|
||
change_sovits_weights(sovits_path)
|
||
|
||
|
||
def change_gpt_weights(gpt_path):
|
||
global hz, max_sec, t2s_model, config
|
||
hz = 50
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
if is_half == True:
|
||
t2s_model = t2s_model.half()
|
||
t2s_model = t2s_model.to(device)
|
||
t2s_model.eval()
|
||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||
|
||
|
||
change_gpt_weights(gpt_path)
|
||
|
||
|
||
def get_spepc(hps, filename):
|
||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(
|
||
audio_norm,
|
||
hps.data.filter_length,
|
||
hps.data.sampling_rate,
|
||
hps.data.hop_length,
|
||
hps.data.win_length,
|
||
center=False,
|
||
)
|
||
return spec
|
||
|
||
|
||
dict_language = {
|
||
i18n("中文"): "all_zh",#全部按中文识别
|
||
i18n("英文"): "en",#全部按英文识别#######不变
|
||
i18n("日文"): "all_ja",#全部按日文识别
|
||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||
}
|
||
|
||
|
||
def clean_text_inf(text, language):
|
||
phones, word2ph, norm_text = clean_text(text, language)
|
||
phones = cleaned_text_to_sequence(phones)
|
||
return phones, word2ph, norm_text
|
||
|
||
dtype=torch.float16 if is_half == True else torch.float32
|
||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||
language=language.replace("all_","")
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
|
||
return bert
|
||
|
||
|
||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||
|
||
|
||
def get_first(text):
|
||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||
text = re.split(pattern, text)[0].strip()
|
||
return text
|
||
|
||
|
||
def get_phones_and_bert(text,language):
|
||
if language in {"en","all_zh","all_ja"}:
|
||
language = language.replace("all_","")
|
||
if language == "en":
|
||
LangSegment.setfilters(["en"])
|
||
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
||
else:
|
||
# 因无法区别中日文汉字,以用户输入为准
|
||
formattext = text
|
||
while " " in formattext:
|
||
formattext = formattext.replace(" ", " ")
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
elif language in {"zh", "ja","auto"}:
|
||
textlist=[]
|
||
langlist=[]
|
||
LangSegment.setfilters(["zh","ja","en","ko"])
|
||
if language == "auto":
|
||
for tmp in LangSegment.getTexts(text):
|
||
if tmp["lang"] == "ko":
|
||
langlist.append("zh")
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
for tmp in LangSegment.getTexts(text):
|
||
if tmp["lang"] == "en":
|
||
langlist.append(tmp["lang"])
|
||
else:
|
||
# 因无法区别中日文汉字,以用户输入为准
|
||
langlist.append(language)
|
||
textlist.append(tmp["text"])
|
||
print(textlist)
|
||
print(langlist)
|
||
phones_list = []
|
||
bert_list = []
|
||
norm_text_list = []
|
||
for i in range(len(textlist)):
|
||
lang = langlist[i]
|
||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||
phones_list.append(phones)
|
||
norm_text_list.append(norm_text)
|
||
bert_list.append(bert)
|
||
bert = torch.cat(bert_list, dim=1)
|
||
phones = sum(phones_list, [])
|
||
norm_text = ''.join(norm_text_list)
|
||
|
||
return phones,bert.to(dtype),norm_text
|
||
|
||
|
||
def merge_short_text_in_array(texts, threshold):
|
||
if (len(texts)) < 2:
|
||
return texts
|
||
result = []
|
||
text = ""
|
||
for ele in texts:
|
||
text += ele
|
||
if len(text) >= threshold:
|
||
result.append(text)
|
||
text = ""
|
||
if (len(text) > 0):
|
||
if len(result) == 0:
|
||
result.append(text)
|
||
else:
|
||
result[len(result) - 1] += text
|
||
return result
|
||
|
||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||
if prompt_text is None or len(prompt_text) == 0:
|
||
ref_free = True
|
||
t0 = ttime()
|
||
prompt_language = dict_language[prompt_language]
|
||
text_language = dict_language[text_language]
|
||
if not ref_free:
|
||
prompt_text = prompt_text.strip("\n")
|
||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||
text = text.strip("\n")
|
||
text = replace_consecutive_punctuation(text)
|
||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||
|
||
print(i18n("实际输入的目标文本:"), text)
|
||
zero_wav = np.zeros(
|
||
int(hps.data.sampling_rate * 0.3),
|
||
dtype=np.float16 if is_half == True else np.float32,
|
||
)
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||
wav16k = torch.from_numpy(wav16k)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
if is_half == True:
|
||
wav16k = wav16k.half().to(device)
|
||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||
else:
|
||
wav16k = wav16k.to(device)
|
||
zero_wav_torch = zero_wav_torch.to(device)
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||
"last_hidden_state"
|
||
].transpose(
|
||
1, 2
|
||
) # .float()
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
|
||
prompt_semantic = codes[0, 0]
|
||
t1 = ttime()
|
||
|
||
if (how_to_cut == i18n("凑四句一切")):
|
||
text = cut1(text)
|
||
elif (how_to_cut == i18n("凑50字一切")):
|
||
text = cut2(text)
|
||
elif (how_to_cut == i18n("按中文句号。切")):
|
||
text = cut3(text)
|
||
elif (how_to_cut == i18n("按英文句号.切")):
|
||
text = cut4(text)
|
||
elif (how_to_cut == i18n("按标点符号切")):
|
||
text = cut5(text)
|
||
while "\n\n" in text:
|
||
text = text.replace("\n\n", "\n")
|
||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||
texts = text.split("\n")
|
||
texts = process_text(texts)
|
||
texts = merge_short_text_in_array(texts, 5)
|
||
audio_opt = []
|
||
if not ref_free:
|
||
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
|
||
|
||
for text in texts:
|
||
# 解决输入目标文本的空行导致报错的问题
|
||
if (len(text.strip()) == 0):
|
||
continue
|
||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||
print(i18n("实际输入的目标文本(每句):"), text)
|
||
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
|
||
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
||
if not ref_free:
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||
else:
|
||
bert = bert2
|
||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||
|
||
bert = bert.to(device).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||
t2 = ttime()
|
||
with torch.no_grad():
|
||
# pred_semantic = t2s_model.model.infer(
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
None if ref_free else prompt,
|
||
bert,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k=top_k,
|
||
top_p=top_p,
|
||
temperature=temperature,
|
||
early_stop_num=hz * max_sec,
|
||
)
|
||
t3 = ttime()
|
||
# print(pred_semantic.shape,idx)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||
0
|
||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||
if is_half == True:
|
||
refer = refer.half().to(device)
|
||
else:
|
||
refer = refer.to(device)
|
||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||
audio = (
|
||
vq_model.decode(
|
||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||
)
|
||
.detach()
|
||
.cpu()
|
||
.numpy()[0, 0]
|
||
) ###试试重建不带上prompt部分
|
||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||
if max_audio>1:audio/=max_audio
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav)
|
||
t4 = ttime()
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||
np.int16
|
||
)
|
||
|
||
|
||
def split(todo_text):
|
||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||
if todo_text[-1] not in splits:
|
||
todo_text += "。"
|
||
i_split_head = i_split_tail = 0
|
||
len_text = len(todo_text)
|
||
todo_texts = []
|
||
while 1:
|
||
if i_split_head >= len_text:
|
||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||
if todo_text[i_split_head] in splits:
|
||
i_split_head += 1
|
||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||
i_split_tail = i_split_head
|
||
else:
|
||
i_split_head += 1
|
||
return todo_texts
|
||
|
||
|
||
def cut1(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
split_idx = list(range(0, len(inps), 4))
|
||
split_idx[-1] = None
|
||
if len(split_idx) > 1:
|
||
opts = []
|
||
for idx in range(len(split_idx) - 1):
|
||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||
else:
|
||
opts = [inp]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
def cut2(inp):
|
||
inp = inp.strip("\n")
|
||
inps = split(inp)
|
||
if len(inps) < 2:
|
||
return inp
|
||
opts = []
|
||
summ = 0
|
||
tmp_str = ""
|
||
for i in range(len(inps)):
|
||
summ += len(inps[i])
|
||
tmp_str += inps[i]
|
||
if summ > 50:
|
||
summ = 0
|
||
opts.append(tmp_str)
|
||
tmp_str = ""
|
||
if tmp_str != "":
|
||
opts.append(tmp_str)
|
||
# print(opts)
|
||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||
opts[-2] = opts[-2] + opts[-1]
|
||
opts = opts[:-1]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
def cut3(inp):
|
||
inp = inp.strip("\n")
|
||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
def cut4(inp):
|
||
inp = inp.strip("\n")
|
||
opts = ["%s" % item for item in inp.strip(".").split(".")]
|
||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||
return "\n".join(opts)
|
||
|
||
|
||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||
def cut5(inp):
|
||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||
# inp += '。'
|
||
inp = inp.strip("\n")
|
||
punds = r'[,.;?!、,。?!;:…]'
|
||
items = re.split(f'({punds})', inp)
|
||
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
||
if len(items)%2 == 1:
|
||
mergeitems.append(items[-1])
|
||
opt = [item for item in mergeitems if not set(item).issubset(punctuation)]
|
||
return "\n".join(opt)
|
||
|
||
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split('(\d+)', s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
def process_text(texts):
|
||
_text=[]
|
||
if all(text in [None, " ", "\n",""] for text in texts):
|
||
raise ValueError(i18n("请输入有效文本"))
|
||
for text in texts:
|
||
if text in [None, " ", ""]:
|
||
pass
|
||
else:
|
||
_text.append(text)
|
||
return _text
|
||
|
||
|
||
def replace_consecutive_punctuation(text):
|
||
punctuations = ''.join(re.escape(p) for p in punctuation)
|
||
pattern = f'([{punctuations}])([{punctuations}])+'
|
||
result = re.sub(pattern, r'\1', text)
|
||
return result
|
||
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||
|
||
|
||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
SoVITS_weight_root = "SoVITS_weights"
|
||
GPT_weight_root = "GPT_weights"
|
||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||
|
||
|
||
def get_weights_names():
|
||
SoVITS_names = [pretrained_sovits_name]
|
||
for name in os.listdir(SoVITS_weight_root):
|
||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||
GPT_names = [pretrained_gpt_name]
|
||
for name in os.listdir(GPT_weight_root):
|
||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||
return SoVITS_names, GPT_names
|
||
|
||
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
gr.Markdown(
|
||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
||
)
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("模型切换"))
|
||
with gr.Row():
|
||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
||
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||
with gr.Row():
|
||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||
with gr.Column():
|
||
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
||
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
|
||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||
prompt_language = gr.Dropdown(
|
||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||
)
|
||
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||
with gr.Row():
|
||
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
||
text_language = gr.Dropdown(
|
||
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||
)
|
||
how_to_cut = gr.Radio(
|
||
label=i18n("怎么切"),
|
||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
gr.Markdown(value=i18n("gpt采样参数(无参考文本时不要太低):"))
|
||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||
output = gr.Audio(label=i18n("输出的语音"))
|
||
|
||
inference_button.click(
|
||
get_tts_wav,
|
||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
|
||
[output],
|
||
)
|
||
|
||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||
with gr.Row():
|
||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
||
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||
button1.click(cut1, [text_inp], [text_opt])
|
||
button2.click(cut2, [text_inp], [text_opt])
|
||
button3.click(cut3, [text_inp], [text_opt])
|
||
button4.click(cut4, [text_inp], [text_opt])
|
||
button5.click(cut5, [text_inp], [text_opt])
|
||
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=infer_ttswebui,
|
||
quiet=True,
|
||
)
|