mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
466 lines
19 KiB
Python
466 lines
19 KiB
Python
from torch.nn.functional import *
|
||
from torch.nn.functional import (
|
||
_mha_shape_check,
|
||
_canonical_mask,
|
||
_none_or_dtype,
|
||
_in_projection_packed,
|
||
)
|
||
from torch.nn import functional as F
|
||
import torch
|
||
# Tensor = torch.Tensor
|
||
# from typing import Callable, List, Optional, Tuple, Union
|
||
|
||
|
||
def multi_head_attention_forward_patched(
|
||
query,
|
||
key,
|
||
value,
|
||
embed_dim_to_check,
|
||
num_heads,
|
||
in_proj_weight,
|
||
in_proj_bias,
|
||
bias_k,
|
||
bias_v,
|
||
add_zero_attn,
|
||
dropout_p: float,
|
||
out_proj_weight,
|
||
out_proj_bias,
|
||
training = True,
|
||
key_padding_mask = None,
|
||
need_weights = True,
|
||
attn_mask = None,
|
||
use_separate_proj_weight = False,
|
||
q_proj_weight = None,
|
||
k_proj_weight = None,
|
||
v_proj_weight = None,
|
||
static_k = None,
|
||
static_v = None,
|
||
average_attn_weights = True,
|
||
is_causal = False,
|
||
cache=None,
|
||
):
|
||
r"""
|
||
Args:
|
||
query, key, value: map a query and a set of key-value pairs to an output.
|
||
See "Attention Is All You Need" for more details.
|
||
embed_dim_to_check: total dimension of the model.
|
||
num_heads: parallel attention heads.
|
||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
||
add_zero_attn: add a new batch of zeros to the key and
|
||
value sequences at dim=1.
|
||
dropout_p: probability of an element to be zeroed.
|
||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||
training: apply dropout if is ``True``.
|
||
key_padding_mask: if provided, specified padding elements in the key will
|
||
be ignored by the attention. This is an binary mask. When the value is True,
|
||
the corresponding value on the attention layer will be filled with -inf.
|
||
need_weights: output attn_output_weights.
|
||
Default: `True`
|
||
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
||
For best performance when attention weights are not nedeeded.
|
||
*Setting needs_weights to `True`
|
||
leads to a significant performance degradation.*
|
||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
||
attn_mask for computing scaled dot product attention.
|
||
Default: ``False``.
|
||
.. warning::
|
||
is_causal is provides a hint that the attn_mask is the
|
||
causal mask.Providing incorrect hints can result in
|
||
incorrect execution, including forward and backward
|
||
compatibility.
|
||
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
||
and value in different forms. If false, in_proj_weight will be used, which is
|
||
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
||
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
||
static_k, static_v: static key and value used for attention operators.
|
||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
||
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
||
when ``need_weights=True.``. Default: True
|
||
|
||
|
||
Shape:
|
||
Inputs:
|
||
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||
the embedding dimension.
|
||
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||
the embedding dimension.
|
||
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||
the embedding dimension.
|
||
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||
If a FloatTensor is provided, it will be directly added to the value.
|
||
If a BoolTensor is provided, the positions with the
|
||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||
positions. If a BoolTensor is provided, positions with ``True``
|
||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||
is provided, it will be added to the attention weight.
|
||
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||
|
||
Outputs:
|
||
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||
E is the embedding dimension.
|
||
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
||
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
||
"""
|
||
tens_ops = (
|
||
query,
|
||
key,
|
||
value,
|
||
in_proj_weight,
|
||
in_proj_bias,
|
||
bias_k,
|
||
bias_v,
|
||
out_proj_weight,
|
||
out_proj_bias,
|
||
)
|
||
if has_torch_function(tens_ops):
|
||
return handle_torch_function(
|
||
multi_head_attention_forward,
|
||
tens_ops,
|
||
query,
|
||
key,
|
||
value,
|
||
embed_dim_to_check,
|
||
num_heads,
|
||
in_proj_weight,
|
||
in_proj_bias,
|
||
bias_k,
|
||
bias_v,
|
||
add_zero_attn,
|
||
dropout_p,
|
||
out_proj_weight,
|
||
out_proj_bias,
|
||
training=training,
|
||
key_padding_mask=key_padding_mask,
|
||
need_weights=need_weights,
|
||
attn_mask=attn_mask,
|
||
is_causal=is_causal,
|
||
use_separate_proj_weight=use_separate_proj_weight,
|
||
q_proj_weight=q_proj_weight,
|
||
k_proj_weight=k_proj_weight,
|
||
v_proj_weight=v_proj_weight,
|
||
static_k=static_k,
|
||
static_v=static_v,
|
||
average_attn_weights=average_attn_weights,
|
||
cache=cache,
|
||
)
|
||
|
||
is_batched = _mha_shape_check(
|
||
query, key, value, key_padding_mask, attn_mask, num_heads
|
||
)
|
||
|
||
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||
# is batched, run the computation and before returning squeeze the
|
||
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
||
if not is_batched:
|
||
# unsqueeze if the input is unbatched
|
||
query = query.unsqueeze(1)
|
||
key = key.unsqueeze(1)
|
||
value = value.unsqueeze(1)
|
||
if key_padding_mask is not None:
|
||
key_padding_mask = key_padding_mask.unsqueeze(0)
|
||
|
||
# set up shape vars
|
||
tgt_len, bsz, embed_dim = query.shape
|
||
src_len, _, _ = key.shape
|
||
|
||
key_padding_mask = _canonical_mask(
|
||
mask=key_padding_mask,
|
||
mask_name="key_padding_mask",
|
||
other_type=_none_or_dtype(attn_mask),
|
||
other_name="attn_mask",
|
||
target_type=query.dtype,
|
||
)
|
||
|
||
if is_causal and attn_mask is None:
|
||
raise RuntimeError(
|
||
"Need attn_mask if specifying the is_causal hint. "
|
||
"You may use the Transformer module method "
|
||
"`generate_square_subsequent_mask` to create this mask."
|
||
)
|
||
|
||
if is_causal and key_padding_mask is None and not need_weights:
|
||
# when we have a kpm or need weights, we need attn_mask
|
||
# Otherwise, we use the is_causal hint go as is_causal
|
||
# indicator to SDPA.
|
||
attn_mask = None
|
||
else:
|
||
attn_mask = _canonical_mask(
|
||
mask=attn_mask,
|
||
mask_name="attn_mask",
|
||
other_type=None,
|
||
other_name="",
|
||
target_type=query.dtype,
|
||
check_other=False,
|
||
)
|
||
|
||
if key_padding_mask is not None:
|
||
# We have the attn_mask, and use that to merge kpm into it.
|
||
# Turn off use of is_causal hint, as the merged mask is no
|
||
# longer causal.
|
||
is_causal = False
|
||
|
||
assert (
|
||
embed_dim == embed_dim_to_check
|
||
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||
if isinstance(embed_dim, torch.Tensor):
|
||
# embed_dim can be a tensor when JIT tracing
|
||
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
||
else:
|
||
head_dim = embed_dim // num_heads
|
||
assert (
|
||
head_dim * num_heads == embed_dim
|
||
), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||
if use_separate_proj_weight:
|
||
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||
assert (
|
||
key.shape[:2] == value.shape[:2]
|
||
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||
else:
|
||
assert (
|
||
key.shape == value.shape
|
||
), f"key shape {key.shape} does not match value shape {value.shape}"
|
||
|
||
#
|
||
# compute in-projection
|
||
#
|
||
if not use_separate_proj_weight:
|
||
assert (
|
||
in_proj_weight is not None
|
||
), "use_separate_proj_weight is False but in_proj_weight is None"
|
||
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||
else:
|
||
assert (
|
||
q_proj_weight is not None
|
||
), "use_separate_proj_weight is True but q_proj_weight is None"
|
||
assert (
|
||
k_proj_weight is not None
|
||
), "use_separate_proj_weight is True but k_proj_weight is None"
|
||
assert (
|
||
v_proj_weight is not None
|
||
), "use_separate_proj_weight is True but v_proj_weight is None"
|
||
if in_proj_bias is None:
|
||
b_q = b_k = b_v = None
|
||
else:
|
||
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||
q, k, v = _in_projection(
|
||
query,
|
||
key,
|
||
value,
|
||
q_proj_weight,
|
||
k_proj_weight,
|
||
v_proj_weight,
|
||
b_q,
|
||
b_k,
|
||
b_v,
|
||
)
|
||
if cache != None:
|
||
if cache["first_infer"] == 1:
|
||
cache["k"][cache["stage"]] = k
|
||
# print(0,cache["k"].shape)
|
||
cache["v"][cache["stage"]] = v
|
||
else: ###12个layer每个都要留自己的cache_kv
|
||
# print(1,cache["k"].shape)
|
||
cache["k"][cache["stage"]] = torch.cat(
|
||
[cache["k"][cache["stage"]], k], 0
|
||
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
||
# print(2, cache["k"].shape)
|
||
src_len = cache["k"][cache["stage"]].shape[0]
|
||
k = cache["k"][cache["stage"]]
|
||
v = cache["v"][cache["stage"]]
|
||
# if attn_mask is not None:
|
||
# attn_mask=attn_mask[-1:,]
|
||
# print(attn_mask.shape,attn_mask)
|
||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||
# print(2333,cache)
|
||
# prep attention mask
|
||
|
||
attn_mask = _canonical_mask(
|
||
mask=attn_mask,
|
||
mask_name="attn_mask",
|
||
other_type=None,
|
||
other_name="",
|
||
target_type=q.dtype,
|
||
check_other=False,
|
||
)
|
||
|
||
if attn_mask is not None:
|
||
# ensure attn_mask's dim is 3
|
||
if attn_mask.dim() == 2:
|
||
correct_2d_size = (tgt_len, src_len)
|
||
if attn_mask.shape != correct_2d_size:
|
||
raise RuntimeError(
|
||
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
||
)
|
||
attn_mask = attn_mask.unsqueeze(0)
|
||
elif attn_mask.dim() == 3:
|
||
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||
if attn_mask.shape != correct_3d_size:
|
||
raise RuntimeError(
|
||
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
||
)
|
||
else:
|
||
raise RuntimeError(
|
||
f"attn_mask's dimension {attn_mask.dim()} is not supported"
|
||
)
|
||
|
||
# add bias along batch dimension (currently second)
|
||
if bias_k is not None and bias_v is not None:
|
||
assert static_k is None, "bias cannot be added to static key."
|
||
assert static_v is None, "bias cannot be added to static value."
|
||
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
||
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
||
if attn_mask is not None:
|
||
attn_mask = pad(attn_mask, (0, 1))
|
||
if key_padding_mask is not None:
|
||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||
else:
|
||
assert bias_k is None
|
||
assert bias_v is None
|
||
|
||
#
|
||
# reshape q, k, v for multihead attention and make em batch first
|
||
#
|
||
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||
if static_k is None:
|
||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||
else:
|
||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||
assert (
|
||
static_k.size(0) == bsz * num_heads
|
||
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||
assert (
|
||
static_k.size(2) == head_dim
|
||
), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||
k = static_k
|
||
if static_v is None:
|
||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||
else:
|
||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||
assert (
|
||
static_v.size(0) == bsz * num_heads
|
||
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||
assert (
|
||
static_v.size(2) == head_dim
|
||
), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||
v = static_v
|
||
|
||
# add zero attention along batch dimension (now first)
|
||
if add_zero_attn:
|
||
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||
k = torch.cat(
|
||
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
|
||
)
|
||
v = torch.cat(
|
||
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
|
||
)
|
||
if attn_mask is not None:
|
||
attn_mask = pad(attn_mask, (0, 1))
|
||
if key_padding_mask is not None:
|
||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||
|
||
# update source sequence length after adjustments
|
||
src_len = k.size(1)
|
||
|
||
# merge key padding and attention masks
|
||
if key_padding_mask is not None:
|
||
assert key_padding_mask.shape == (
|
||
bsz,
|
||
src_len,
|
||
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||
key_padding_mask = (
|
||
key_padding_mask.view(bsz, 1, 1, src_len)
|
||
.expand(-1, num_heads, -1, -1)
|
||
.reshape(bsz * num_heads, 1, src_len)
|
||
)
|
||
if attn_mask is None:
|
||
attn_mask = key_padding_mask
|
||
else:
|
||
attn_mask = attn_mask + key_padding_mask
|
||
|
||
# adjust dropout probability
|
||
if not training:
|
||
dropout_p = 0.0
|
||
|
||
#
|
||
# (deep breath) calculate attention and out projection
|
||
#
|
||
|
||
if need_weights:
|
||
B, Nt, E = q.shape
|
||
q_scaled = q / math.sqrt(E)
|
||
|
||
assert not (
|
||
is_causal and attn_mask is None
|
||
), "FIXME: is_causal not implemented for need_weights"
|
||
|
||
if attn_mask is not None:
|
||
attn_output_weights = torch.baddbmm(
|
||
attn_mask, q_scaled, k.transpose(-2, -1)
|
||
)
|
||
else:
|
||
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||
if dropout_p > 0.0:
|
||
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||
|
||
attn_output = torch.bmm(attn_output_weights, v)
|
||
|
||
attn_output = (
|
||
attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||
)
|
||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||
|
||
# optionally average attention weights over heads
|
||
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||
if average_attn_weights:
|
||
attn_output_weights = attn_output_weights.mean(dim=1)
|
||
|
||
if not is_batched:
|
||
# squeeze the output if input was unbatched
|
||
attn_output = attn_output.squeeze(1)
|
||
attn_output_weights = attn_output_weights.squeeze(0)
|
||
return attn_output, attn_output_weights
|
||
else:
|
||
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||
if attn_mask is not None:
|
||
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||
attn_mask = attn_mask.unsqueeze(0)
|
||
else:
|
||
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
||
|
||
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||
|
||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||
attn_output = scaled_dot_product_attention(
|
||
q, k, v, attn_mask, dropout_p, is_causal
|
||
)
|
||
|
||
attn_output = (
|
||
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||
)
|
||
|
||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||
if not is_batched:
|
||
# squeeze the output if input was unbatched
|
||
attn_output = attn_output.squeeze(1)
|
||
return attn_output, None
|