GPT-SoVITS/tools/asr/sensevoice_asr.py
2024-07-13 23:00:24 +08:00

84 lines
3.6 KiB
Python

import argparse
import os
import re
import traceback
import torch
from tqdm import tqdm
from funasr import AutoModel
path_asr = "tools/asr/models/SenseVoiceSmall"
path_vad = 'tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch'
path_punc = 'tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch'
path_asr = path_asr if os.path.exists(path_asr) else "iic/SenseVoiceSmall"
path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
def execute_asr(input_folder, output_folder, language, device):
try:
model = AutoModel(model=path_asr,
vad_model=path_vad,
vad_kwargs={"max_single_segment_time": 2000},
punc_model=path_punc
)
except:
return print(traceback.format_exc())
input_file_names = os.listdir(input_folder)
input_file_names.sort()
output = []
output_file_name = os.path.basename(input_folder)
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
for file_name in tqdm(input_file_names):
try:
file_path = os.path.join(input_folder, file_name)
res = model.generate(
input=file_path,
cache={},
language=language.lower(), # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
batch_size_s=0,
device = device
)[0]['text']
text_language = re.search(r'<([^<>]+)>', res).group(1)[1:-1].upper() if language == 'auto' else language.upper()
text = re.sub(r'<[^<>]*>', '', res).replace(' ', '')
if text_language != "EN":
text = text.replace(' ', '')
output.append(f"{file_path}|{output_file_name}|{text_language}|{text}")
except:
print(traceback.format_exc())
output_folder = output_folder or "output/asr_opt"
os.makedirs(output_folder, exist_ok=True)
output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list')
with open(output_file_path, "w", encoding="utf-8") as f:
f.write("\n".join(output))
print(f"ASR 任务完成->标注文件路径: {output_file_path}\n")
return output_file_path
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_folder", type=str, required=True,
help="Path to the folder containing WAV files.")
parser.add_argument("-o", "--output_folder", type=str, required=True,
help="Output folder to store transcriptions.")
parser.add_argument("-l", "--language", type=str, default='auto',
choices=['auto','zh','en','ja'],
help="Language of the audio files.")
parser.add_argument("-d", "--device", type=str, default=None, choices=['cpu','cuda'],
help="CPU or CUDA")
parser.add_argument("-p", "--precision", type=str, default='float32', choices=['float32'],
help="fp16 or fp32")
parser.add_argument("-s", "--model_size", type=str, default='small',
choices=['small'],
help="Model Size of Faster Whisper")
cmd = parser.parse_args()
output_file_path = execute_asr(
input_folder = cmd.input_folder,
output_folder = cmd.output_folder,
language = cmd.language,
device = cmd.device,
)