RVC-Boss ad158b0f50
support sovits v2Pro v2ProPlus
support sovits v2Pro v2ProPlus
2025-06-04 15:20:04 +08:00

110 lines
3.6 KiB
Python

# -*- coding: utf-8 -*-
import sys
import os
inp_text = os.environ.get("inp_text")
inp_wav_dir = os.environ.get("inp_wav_dir")
exp_name = os.environ.get("exp_name")
i_part = os.environ.get("i_part")
all_parts = os.environ.get("all_parts")
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
from feature_extractor import cnhubert
opt_dir = os.environ.get("opt_dir")
sv_path = os.environ.get("sv_path")
import torch
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
import traceback
import numpy as np
from scipy.io import wavfile
import torchaudio
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append(f"{now_dir}/GPT_SoVITS/eres2net")
from tools.my_utils import load_audio, clean_path
from time import time as ttime
import shutil
from ERes2NetV2 import ERes2NetV2
import kaldi as Kaldi
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
dir = os.path.dirname(path)
name = os.path.basename(path)
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
tmp_path = "%s%s.pth" % (ttime(), i_part)
torch.save(fea, tmp_path)
shutil.move(tmp_path, "%s/%s" % (dir, name))
sv_cn_dir = "%s/7-sv_cn" % (opt_dir)
wav32dir = "%s/5-wav32k" % (opt_dir)
os.makedirs(opt_dir, exist_ok=True)
os.makedirs(sv_cn_dir, exist_ok=True)
os.makedirs(wav32dir, exist_ok=True)
maxx = 0.95
alpha = 0.5
if torch.cuda.is_available():
device = "cuda:0"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
class SV:
def __init__(self,device,is_half):
pretrained_state = torch.load(sv_path, map_location='cpu')
embedding_model = ERes2NetV2(baseWidth=24,scale=4,expansion=4)
embedding_model.load_state_dict(pretrained_state)
embedding_model.eval()
self.embedding_model=embedding_model
self.res=torchaudio.transforms.Resample(32000, 16000).to(device)
if is_half == False:
self.embedding_model=self.embedding_model.to(device)
else:
self.embedding_model=self.embedding_model.half().to(device)
self.is_half=is_half
def compute_embedding3(self,wav):#(1,x)#-1~1
with torch.no_grad():
wav=self.res(wav)
if self.is_half==True:wav=wav.half()
feat = torch.stack([Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav])
sv_emb = self.embedding_model.forward3(feat)
return sv_emb
sv=SV(device,is_half)
def name2go(wav_name, wav_path):
sv_cn_path = "%s/%s.pt" % (sv_cn_dir, wav_name)
if os.path.exists(sv_cn_path):return
wav_path="%s/%s" % (wav32dir, wav_name)
wav32k,sr0 = torchaudio.load(wav_path)
assert sr0==32000
wav32k = wav32k.to(device)
emb=sv.compute_embedding3(wav32k).cpu() # torch.Size([1, 20480])
my_save(emb, sv_cn_path)
with open(inp_text, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
for line in lines[int(i_part) :: int(all_parts)]:
try:
wav_name, spk_name, language, text = line.split("|")
wav_name = clean_path(wav_name)
if inp_wav_dir != "" and inp_wav_dir != None:
wav_name = os.path.basename(wav_name)
wav_path = "%s/%s" % (inp_wav_dir, wav_name)
else:
wav_path = wav_name
wav_name = os.path.basename(wav_name)
name2go(wav_name, wav_path)
except:
print(line, traceback.format_exc())