mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
224 lines
7.2 KiB
Python
224 lines
7.2 KiB
Python
# modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
|
||
import re
|
||
|
||
import pyopenjtalk
|
||
import os
|
||
import hashlib
|
||
current_file_path = os.path.dirname(__file__)
|
||
def get_hash(fp: str) -> str:
|
||
hash_md5 = hashlib.md5()
|
||
with open(fp, "rb") as f:
|
||
for chunk in iter(lambda: f.read(4096), b""):
|
||
hash_md5.update(chunk)
|
||
return hash_md5.hexdigest()
|
||
|
||
USERDIC_CSV_PATH = os.path.join(current_file_path, "ja_userdic", "userdict.csv")
|
||
USERDIC_BIN_PATH = os.path.join(current_file_path, "ja_userdic", "user.dict")
|
||
USERDIC_HASH_PATH = os.path.join(current_file_path, "ja_userdic", "userdict.md5")
|
||
# 如果没有用户词典,就生成一个;如果有,就检查md5,如果不一样,就重新生成
|
||
if os.path.exists(USERDIC_CSV_PATH):
|
||
if not os.path.exists(USERDIC_BIN_PATH) or get_hash(USERDIC_CSV_PATH) != open(USERDIC_HASH_PATH, "r",encoding='utf-8').read():
|
||
pyopenjtalk.mecab_dict_index(USERDIC_CSV_PATH, USERDIC_BIN_PATH)
|
||
with open(USERDIC_HASH_PATH, "w", encoding='utf-8') as f:
|
||
f.write(get_hash(USERDIC_CSV_PATH))
|
||
|
||
if os.path.exists(USERDIC_BIN_PATH):
|
||
pyopenjtalk.update_global_jtalk_with_user_dict(USERDIC_BIN_PATH)
|
||
|
||
|
||
from text.symbols import punctuation
|
||
# Regular expression matching Japanese without punctuation marks:
|
||
_japanese_characters = re.compile(
|
||
r"[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
|
||
)
|
||
|
||
# Regular expression matching non-Japanese characters or punctuation marks:
|
||
_japanese_marks = re.compile(
|
||
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
|
||
)
|
||
|
||
# List of (symbol, Japanese) pairs for marks:
|
||
_symbols_to_japanese = [(re.compile("%s" % x[0]), x[1]) for x in [("%", "パーセント")]]
|
||
|
||
|
||
# List of (consonant, sokuon) pairs:
|
||
_real_sokuon = [
|
||
(re.compile("%s" % x[0]), x[1])
|
||
for x in [
|
||
(r"Q([↑↓]*[kg])", r"k#\1"),
|
||
(r"Q([↑↓]*[tdjʧ])", r"t#\1"),
|
||
(r"Q([↑↓]*[sʃ])", r"s\1"),
|
||
(r"Q([↑↓]*[pb])", r"p#\1"),
|
||
]
|
||
]
|
||
|
||
# List of (consonant, hatsuon) pairs:
|
||
_real_hatsuon = [
|
||
(re.compile("%s" % x[0]), x[1])
|
||
for x in [
|
||
(r"N([↑↓]*[pbm])", r"m\1"),
|
||
(r"N([↑↓]*[ʧʥj])", r"n^\1"),
|
||
(r"N([↑↓]*[tdn])", r"n\1"),
|
||
(r"N([↑↓]*[kg])", r"ŋ\1"),
|
||
]
|
||
]
|
||
|
||
|
||
def post_replace_ph(ph):
|
||
rep_map = {
|
||
":": ",",
|
||
";": ",",
|
||
",": ",",
|
||
"。": ".",
|
||
"!": "!",
|
||
"?": "?",
|
||
"\n": ".",
|
||
"·": ",",
|
||
"、": ",",
|
||
"...": "…",
|
||
}
|
||
|
||
if ph in rep_map.keys():
|
||
ph = rep_map[ph]
|
||
# if ph in symbols:
|
||
# return ph
|
||
# if ph not in symbols:
|
||
# ph = "UNK"
|
||
return ph
|
||
|
||
|
||
def replace_consecutive_punctuation(text):
|
||
punctuations = ''.join(re.escape(p) for p in punctuation)
|
||
pattern = f'([{punctuations}])([{punctuations}])+'
|
||
result = re.sub(pattern, r'\1', text)
|
||
return result
|
||
|
||
|
||
def symbols_to_japanese(text):
|
||
for regex, replacement in _symbols_to_japanese:
|
||
text = re.sub(regex, replacement, text)
|
||
return text
|
||
|
||
|
||
def preprocess_jap(text, with_prosody=False):
|
||
"""Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html"""
|
||
text = symbols_to_japanese(text)
|
||
sentences = re.split(_japanese_marks, text)
|
||
marks = re.findall(_japanese_marks, text)
|
||
text = []
|
||
for i, sentence in enumerate(sentences):
|
||
if re.match(_japanese_characters, sentence):
|
||
if with_prosody:
|
||
text += pyopenjtalk_g2p_prosody(sentence)[1:-1]
|
||
else:
|
||
p = pyopenjtalk.g2p(sentence)
|
||
text += p.split(" ")
|
||
|
||
if i < len(marks):
|
||
if marks[i] == " ":# 防止意外的UNK
|
||
continue
|
||
text += [marks[i].replace(" ", "")]
|
||
return text
|
||
|
||
|
||
def text_normalize(text):
|
||
# todo: jap text normalize
|
||
|
||
# 避免重复标点引起的参考泄露
|
||
text = replace_consecutive_punctuation(text)
|
||
return text
|
||
|
||
# Copied from espnet https://github.com/espnet/espnet/blob/master/espnet2/text/phoneme_tokenizer.py
|
||
def pyopenjtalk_g2p_prosody(text, drop_unvoiced_vowels=True):
|
||
"""Extract phoneme + prosoody symbol sequence from input full-context labels.
|
||
|
||
The algorithm is based on `Prosodic features control by symbols as input of
|
||
sequence-to-sequence acoustic modeling for neural TTS`_ with some r9y9's tweaks.
|
||
|
||
Args:
|
||
text (str): Input text.
|
||
drop_unvoiced_vowels (bool): whether to drop unvoiced vowels.
|
||
|
||
Returns:
|
||
List[str]: List of phoneme + prosody symbols.
|
||
|
||
Examples:
|
||
>>> from espnet2.text.phoneme_tokenizer import pyopenjtalk_g2p_prosody
|
||
>>> pyopenjtalk_g2p_prosody("こんにちは。")
|
||
['^', 'k', 'o', '[', 'N', 'n', 'i', 'ch', 'i', 'w', 'a', '$']
|
||
|
||
.. _`Prosodic features control by symbols as input of sequence-to-sequence acoustic
|
||
modeling for neural TTS`: https://doi.org/10.1587/transinf.2020EDP7104
|
||
|
||
"""
|
||
labels = pyopenjtalk.make_label(pyopenjtalk.run_frontend(text))
|
||
N = len(labels)
|
||
|
||
phones = []
|
||
for n in range(N):
|
||
lab_curr = labels[n]
|
||
|
||
# current phoneme
|
||
p3 = re.search(r"\-(.*?)\+", lab_curr).group(1)
|
||
# deal unvoiced vowels as normal vowels
|
||
if drop_unvoiced_vowels and p3 in "AEIOU":
|
||
p3 = p3.lower()
|
||
|
||
# deal with sil at the beginning and the end of text
|
||
if p3 == "sil":
|
||
assert n == 0 or n == N - 1
|
||
if n == 0:
|
||
phones.append("^")
|
||
elif n == N - 1:
|
||
# check question form or not
|
||
e3 = _numeric_feature_by_regex(r"!(\d+)_", lab_curr)
|
||
if e3 == 0:
|
||
phones.append("$")
|
||
elif e3 == 1:
|
||
phones.append("?")
|
||
continue
|
||
elif p3 == "pau":
|
||
phones.append("_")
|
||
continue
|
||
else:
|
||
phones.append(p3)
|
||
|
||
# accent type and position info (forward or backward)
|
||
a1 = _numeric_feature_by_regex(r"/A:([0-9\-]+)\+", lab_curr)
|
||
a2 = _numeric_feature_by_regex(r"\+(\d+)\+", lab_curr)
|
||
a3 = _numeric_feature_by_regex(r"\+(\d+)/", lab_curr)
|
||
|
||
# number of mora in accent phrase
|
||
f1 = _numeric_feature_by_regex(r"/F:(\d+)_", lab_curr)
|
||
|
||
a2_next = _numeric_feature_by_regex(r"\+(\d+)\+", labels[n + 1])
|
||
# accent phrase border
|
||
if a3 == 1 and a2_next == 1 and p3 in "aeiouAEIOUNcl":
|
||
phones.append("#")
|
||
# pitch falling
|
||
elif a1 == 0 and a2_next == a2 + 1 and a2 != f1:
|
||
phones.append("]")
|
||
# pitch rising
|
||
elif a2 == 1 and a2_next == 2:
|
||
phones.append("[")
|
||
|
||
return phones
|
||
|
||
# Copied from espnet https://github.com/espnet/espnet/blob/master/espnet2/text/phoneme_tokenizer.py
|
||
def _numeric_feature_by_regex(regex, s):
|
||
match = re.search(regex, s)
|
||
if match is None:
|
||
return -50
|
||
return int(match.group(1))
|
||
|
||
def g2p(norm_text, with_prosody=True):
|
||
phones = preprocess_jap(norm_text, with_prosody)
|
||
phones = [post_replace_ph(i) for i in phones]
|
||
# todo: implement tones and word2ph
|
||
return phones
|
||
|
||
|
||
if __name__ == "__main__":
|
||
phones = g2p("こんにちは, hello, AKITOです,よろしくお願いしますね!")
|
||
print(phones)
|